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Abstract Bare metal stents (BMSs) have been studied in

the treatment of tubular organ occlusion, but restenosis

remains a problem with this type of therapy. Drug eluting

stents (DESs) were developed afterwards to treat and pre-

vent re-stenosis. Clinical studied have proven the efficacy

of DESs for the prevention of smooth muscle and cancer

cell proliferations. Coating DESs with a polymer facilitates

sustained drug release by diffusion, degradation, and

osmosis. To control drug delivery in DESs, the drug and

polymeric materials-including their physicochemical

properties-must be taken into consideration. It is important

to understand polymeric materials for the development

drug delivery technologies. This review highlights the

studies on drug delivery system based on polymeric

material used in DESs and the role of polymeric materials

in DESs for drug delivery.
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Introduction

Stents are tubular medical devices which provide support

for a tubular organ. They can be used in the recanalization

of vascular and nonvascular occlusions and prevent future

stenosis (Shaikh et al. 2013). Stents are divided as vascular

and non-vascular depending on the target. Vascular stents

are used to clear occlusions in coronary carotid, renal, iliac,

superficial femoral and tibial arteries (Machan et al.

Machan 2006). Non-vascular stents are used to clear

benign and malignant occlusions of the, esophagus, gas-

trointestinal tract, biliary tree, urethra, and prostate (Shaikh

et al. 2013).

In the past, bare metal stents (BMSs) were used to treat

stenosis; however, their effect was insignificant. When

BMS was implanted, it tended to injure the blood vessel,

causing neointimal proliferation (i.e., re-stenosis). Conse-

quently, BMS re-stenosis rates ranged from 16 to 44 %

(Duckers et al. 2007). To avoid this problem, drug eluting

stents (DES) were developed. Several classes of drugs

combined with stents were used, to produce antiprolifera-

tive, anti-inflammatory and antimicrobial effects. There-

DESs had a significant reduction in restenosis of up to

16 % (Duckers et al. 2007).

The development of DESs relies on polymeric materials

to control drug release. Local delivery of paclitaxel (PTX),

sirolimus, zotarolimus, everolimus and gemcitabine (GEM)

through polymer based DESs proved efficacious in reduc-

ing the occurrence of restenosis (Moses et al. 2003; Stone

et al. 2004; Babapulle et al. 2004; Fajadet et al. 2006).

In selecting a controlled drug delivery system, both the

drug and polymeric material should be taken into con-

sideration specifically, the physicochemical properties of

the drug, the duration of the release and the release

profiles (Huang and Brazel 2001). It is important to

understand the available drug delivery system and how

can be used to improve existing DESs and develop new

DESs.

This review, highlights different DESs formulations and

discusses the role of polymeric materials in DESs with

polymeric film or membrane. Its purpose is to serve as a

useful resource for those studying DES technologies.
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Drugs for DESs

The drugs released from DESs are expected to inhibit

inflammation and neointimal growth (i.e., hyperplasia after

stenting). Because the inflammatory and hyperplasia

responses result from the complex cellular and tissue sig-

naling (Regar et al. 2001), drugs currently used in DESs are

PTX, GEM, sirolimus, everolimus, zotarolimus, dexam-

ethasone, and curcumin (Fig. 1).

PTX was first approved by the FDA in 1992 to treat

ovarian cancer (Donehower 1996). The FDA also approved

the PTX eluting stent in 2004. PTX is a lipophilic molecule

with derivatized diterpenoid that prevent microtubule

function (Heldman et al. 2001). Microtubules are a com-

ponent of the cytoskeleton and essential for cell division

(Abal et al. 2003). Therefore, PTX leads to the cell death

by inhibiting cell division and migration (Wani et al. 1971).

GEM is a hydrophilic drug and an analog of deoxycy-

tidine. After entering the cell, it becomes phosphorylated

by deoxycytidine kinase (Hertel et al. 1990). Then, GEM

diphosphate and GEM triphosphate inhibit DNA synthesis

by replacing cytidine. (Plunkett et al. 1995). GEM was

shown to be effective in treating solid tumors including

ovarian, colon, breast, bladder, lung and bile duct cancer

(Moon et al. 2011). Because of its high water solubility, its

pharmaceutical applications have been restricted (Pili et al.

2009).

Sirolimus, everolimus and zotarolimus (Udipi et al.

2008) are limus family compounds used in DESs. They are

immunosuppressive agents with anti-migratory and anti-

proliferative effects on vascular smooth muscle cells (Pu-

ranik et al. 2013). Sirolimus binds the cytosolic protein,

FK-binding protein 12 (KFBP12), forming a complex

which subsequently binds to its cellular target, mTOR

(Brazelton 1996). mTOR is a member of the P13 K-related

protein kinase (PIKK) that plays a critical role in the cell

cycle (Costa and Simon 2005). As a result, sirolimus

inhibits the cell cycle and leads to cell death.

Dexamethasone is an anti-inflammatory compound

approved by the FDA 40 years ago. Dexamethasone is a

glucocorticoid that readily permeate cell membranes and

binds to specific cytoplasmic receptors (Liu et al. 2003; Villa

et al. 1994). Continuous treatment with dexamethasone inhi-

bits the inflammatory response and reduces reactive intimal

hyperplasia in rabbit and rat restenosis (Berk et al. 1991).

Curcumin (diferuloylmethane), a major chemical com-

ponent of turmeric, has a low intrinsic toxicity (Arbiser

et al. 1998) and possesses a wide range of pharmacological

activity, including anti-thrombus, anti-oxidation, anti-pro-

liferation and anti-carcinogenic properties (Chen and

Huang 1998; Kumar et al. 1998). Loading curcumin in

DESs has blood compatibility issues, due to its

hydrophobic property (Pan et al. 2007). Therefore, the

coated polymer must be more hydrophilic and have good

Fig. 1 Chemical structures of

drugs used in DESs (Paclitaxel

(a), gemcitabine (b), sirolimus

(c), dexamethasone (d))
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anticoagulation characteristics to prevent re-stenosis after

stent implantation (Pan et al. 2006).

Polymeric materials for DESs

Polymeric materials have been used in the pharmaceutical

industry as matrices for drug delivery systems. Polymeric

materials mainly serve as physical support and drug

reservoirs (Hutmacher 2001; Ansel et al. 1995). It is also

used for coating stents. Polymeric materials stay on the

stent after stenting and maintain drug release for sufficient

time. Polymeric materials are mainly categorized into

natural and synthetic polymers. Natural polymers include

collagen, fibrin, hyaluronic acid, chondroitin sulfate, pul-

lulan and gelatin. Synthetic polymers include polyesters

and ethylene copolymer. Although a wide range of polymer

materials have been used to coat stents, only a few have

been studied in laboratory and clinical studied (Table 1).

This is because the polymeric materials must have a

mechanical and biochemical properties suitable for stent

deployment and inflammation prevention.

The natural polymer coated DESs

The ACS Multi-Link (Abbott, USA) stent was coated with

chondroitin sulfate. It is first coated with PTX by evapo-

ration of a volatile solvent and then dipped in a chondroitin

sulfate solution containing glutaraldehyde (Farb et al.

2001). The formation of a polymer film is based on the

coacervation of two oppositely charged polymers, gelatin

and chondroitin sulfate. The chondroitin sulfate film is

prepared under optimized polymer concentrations and

crosslinking density was effective in in vivo controlled

release of PTX for more than 2 weeks (Farb et al. 2001).

Chen Mei-chin, et al. describes the development of a

collagen coated drug eluting stent. Using a spray coating

method, collagen and sirolimus were alternately coated

layer-by-layer onto the surface of a metallic stent with a

topcoat of collagen to control drug release (Chen, M. C.

et al. 2005). With high dose sirolimus and the collagen

topcoat, drug release was sustained for 4 weeks (Chen

et al. 2005).

Moon et al. described the development of an acetylated

pullulan coated drug eluting stent. Pullulan is a neural

glucan and an edible, biodegradable polymer without any

toxicities (Xi et al. 1996; Kim et al. 2008; Lee et al. 2003;

Lu et al. 2009). An acetyl group was chemically introduced

to pullulan to increase solvent compatibility and improve

degradation kinetics (Moon et al. 2011)). The pullulan

acetate (PA) was used to coat a polytetrafluoroethylene

(PTFE) covered self-expandable metal stent dipped in

GEM. Sustained release of GEM from the PA-PTFE

membrane lasted approximately 4 weeks. It seemed that

hydrogen bonds formed between the hydroxyl group of

GEM and acyl group of PA (Le Tien et al. 2003). This

means that, PA-PTFE covered stent are capable of pro-

longed drug release.

Swanson et al. studied phosphocholine-coated stents

doped with PTX. Phosphocholine monomers polymerized

with hydrophobic monomers to create a highly hydropho-

bic polymer. (Swanson et al. 2002). The hydrophobic PTX

interacted with the phosphocholine in a hydrophobic–hy-

drophobic manner. The polymer–drug hydrophobic inter-

action facilitated sustained drug release.

The synthetic polymer coated DESs

Synthetic polymers are one the most commonly used

biomedical polymer materials. The typical synthetic poly-

mers are poly(lactic acid) (PLA), poly(glycolic acid)

(PGA), poly(lactic-co-glycolic acid) (PLGA), poly

(e-caprolactone), polyanhydride, poly(orthoester), and poly

(vinyl alcohol) (PVA) (Gunatillake et al. 2006).

Table 1 List of polymeric materials in DESs

Loading drug Polymeric material Product References

Sirolimus Poly(ethylene vinyl acetate)(PEVA)

Poly(n-butyl methacrylate)(PBMA)

CypherTM Puranik et al. (2013)

Paclitaxel Poly(styrene-b-isobutylene-b-styrene) (SIBS) TaxusTM Puranik et al. (2013)

Everolimus Poly(butylmethacrylate) (PBMA), poly(vinylidenefluoride-

co-hexafluoropropylene) (PVDF-HFP)

Xience Carter et al. (2006)

Dexamethasone Phosphorylcholine (PC) Clinical Liu et al. (2003)

Curcumin Polylactic acid-co-glycolic acid (PLGA) Cell studies Pan et al. (2006)

Gemcitabine Acetylated Pullulan Animal studies Moon et al. (2011)

Gemcitabine Polyurethane Animal studies Lee et al. (2012)

Everolimus Poly(vinylidenefluoride-co-hexafluoroprolpylene)

(PVDF-HFP), poly(butylmethacrylate)(PBMA)

Animal studies Carter et al. (2006)
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The Taxus (Boston Scientific, USA) stent used a

poly(styrene-b-isobutylene-b-styrene) (SIBS) tripolymer

with PTX (Fig. 2a). A styrene layer on the top controls

releases of PTX over a prolonged period of time (Acharya

and Park 2006). PTX is released from the SIBS polymer

matrix directly into the environment by a diffusion-con-

trolled release.

The Cypher (Johnson & Johnson, USA) stent utilizes

poly(ethylene-co-vinyl acetate) (PEVA) and poly(n-butyl

methacrylate) (PBMA) as the non-degradable polymer

coating that carries the sirolimus (Fig. 2b). A coating of

PEVA and PBMAcopolymerwith the sirolimus in a 2:1 ratio

sustained drug release for 30 days (Acharya and Park 2006).

The Cypher stent surface was coated with the reservoir layer

and then coat with a thin layer of PBMA. The presence of the

topcoat results in diffusion-controlled release.

The Xience (Abbott, USA) stent uses a poly(vinylidene-

fluoride-co-hexafluoropropylene) (PVDF-HFP), PBMA

polymer with everolimus (Ding et al. 2009). The Xience

stent uses thin struts stent for reduce contact area, resulting in

endothelial cells more rapidly covering the stent. TheXience

stent surface was coated with PVDF for better biocompati-

bility and PBMA for sustained drug release (Carter et al.

2006).

Lee et al. described the development of a polyurethane

coated drug eluting stent. The polyurethane was coating on

PTFE-covered stent with GEM using dip coating method

(Lee et al. 2012). GEM is highly soluble in water (15.3 mg

per ml) (Pili et al. 2009). To prolong drug release, the GEM

was nano-granulated (Fig. 3a). Doing so dramatically

decreased the initial burst of GEM; however, only 40 % of

the nano-granulated GEM was released after 30 days. To

release more GEM, Lutrol F127 was added, increasing the

30 days release to 60 % (Fig. 3b).

Photosensitizer (PS) incorporated polymer coated

DESs

Photodynamic therapy (PDT) is a clinically approved

method for local treatment of cancers (Dougherty et al.

1998). PDT employs a PS which generates reactive oxygen

species (ROS) or singlet oxygen (SO) through direct pho-

tochemical reactions with specific wavelengths of light

(Chen et al. 2009). ROS and SO have been known to cause

cancer cell death by damaging the cell membrane (Schafer

and Buettner 1999). Recently, PDT was successfully used

in combination with DES to treat various cancers.

Bae et al. describes the development of a PDT stent

using a PS as the drug. PA conjugated pheophorbide A was

used to coat a self-expanding nonvascular metal stent (Bae

et al. 2014). The PDT stent exhibited strong photo-fluo-

rescence (Fig. 4) and is a possible treatment for cholan-

giocarcinoma. The pheophorbide A remained in membrane

coating of the stent for a long period, facilitating the use of

PDT for more than 2 months.

Additionally, Min, Daehong et al. describes the devel-

opment of a photosensitizer loaded drug eluting stent. To

improve the tissue penetration efficiency of hydrophilic

drugs, this group studied photochemical tissue penetration

(PTP) DES (Min et al. 2015). The PTP technology using

SO damages the epithelial layer. The PTP stents were made

using polyurethane, Chlorin e6 and GEM. It inhibited

tumor growth almost 3 times as much as the control group

(Min et al. 2015).

Fig. 2 Schematic illustration of

the cross-sectional views of the

Taxus (a) and Cypher (b) stentS
(Acharya and Park 2006)
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Drug release control of DESs

In DESs, polymeric materials and polymer coating are

significant to drug release control, because drug release

profiles are determined by environmental pH, temperature,

and ionic strength (Park 1997; Qiu and Park 2012). Drugs

can load directly onto a stent’s metallic surface, but most

drugs in DESs are loaded with polymer using topcoating,

sublayer coating, reservoir coating and biodegradable

polymer coating (Fig. 5).

Stent coating methods

Various polymeric materials have been used to cover stent

surfaces using a different coating techniques, such as dip

coating (Wache et al. 2003), spray coating (Liu et al. 2010),

electrospinning (Park et al. 2011), and rolling coating (Jeong

et al. 2015). The dip coatingmethod is themost basic coating

technique. It is done by dipping a stent into a polymer or

polymer–drug solution followed by solvent evaporation.

Although the dip coating method is easy to execute, it has a

disadvantage in that coating thickness and drug dose is

poorly controlled. Spray coating involves spraying micro-

droplets of a polymer or polymer–drug solution directly onto

the stent surface using various spraying devices. It creates a

uniform coat and can be used for thin coats; however, there is

loss of coating solution and polymer viscosity alters the

results. Electrospinning use an electrical field to generate

aligned or random nano-fibers from a polymer or polymer-

drug solution. It creates uniform coat and fiber thickness can

be controlled; however, some coats can be unstable and

membranes can be too thick. Rolling coating is similar to

spray coating. While the stent is rotating, drug or polymer-

drug solution coats it by nozzle or pipet. The coating is

uniform and the amount of drug that is loaded can be con-

trolled, but thickness is limited. Because of this, many use

spray coating rather than rolled coating.

Drug release system of DESs

The drug release system was classified into physical and

chemical mechanisms (Hwang et al. 2001). The physical

mechanisms include diffusion of drug through a polymer

layer, degradation of a polymer matrix controlling the drug

release rate and osmotic pressure for drug release (Craig

2002). The advantage of using physical mechanisms is that

the drug release kinetics can be tuned by adjusting the

thickness of the polymericmembrane, type of a polymer, and

surface area of DESs (Banerjee and Robinson 1991). The

chemical mechanisms are based on breaking of covalent

bonds, such as the bond between the drug and polymer, by

chemical or enzymatic degradation (Langer 1990; Rathbone

et al. 2002; Saltzman 2001). To do this, the drug has to be

chemically modified for grafting to the polymer. Because of

the challenges in synthesis, physical mechanisms have been

used more often than chemical mechanisms.

Drug release from the DESs is highly associated with

the degradation rate of the polymeric materials used.

Biodegradable polymers commonly used in DESs are PLA,

PGA, PLGA, poly(e-caprolactone). They do not dissolve

Fig. 3 Release of nano-granulated gemcitabine (a) and accumulated gemcitabine released from gemcitabine-loaded polyurethane and

polyurethane-Lutrol F127 membranes (b) (Lee et al. 2012). Reprinted with permission from Elsevier

Fig. 4 DIC (a) and Photo-fluorescence (b) images of a PDT stent

(Bae et al. 2014). Reprinted with permission from Elsevier
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quickly in water, but degrade over weeks and months by

hydrolysis. When biodegradable polymers are degraded in

DESs, the loaded drugs are slowly released from the

polymer matrix, providing sustained and effective therapy.

Because stents have to be retained for weeks and months,

biodegradable polymers can be used in DESs. The Conor

stent from Conor Medsystems, has numerous holes. Each

hole is filled with drug and biodegradable polymer, PTX

and PLGA (Finkelstein et al. 2003). The PTX release

profile can be controlled by adjusting the lactic acid to

glycolic acid ratio in the PLGA.

The reservoir system is based on diffusion and utilizes

water insoluble polymers (Robinson 1978). It is often

combined with a film or membrane. Selection of a bio-

compatible polymer is important because surface induced

thrombosis is one of the major problems with DESs (Amiji

and Park 1993). The Cypher stent uses PEVA and PBMA.

The top layer of the Cypher stent, a drug free PBMA

coating, serves to control drug release and prevent a burst

effect. The Taxus stent uses PTX and SIBS polymer; drug

release is mediated by diffusion controlled matrix system.

Osmosis-based drug controlled release is defined as the

spontaneous movement of a solution from a lower solute con-

centration to higher solute concentration through a permeable

membrane (Gupta et al. 2010). Drugs inside the polymeric

membrane ofDESsmove outside themembrane,where there is

a lower drug concentration, by inflow of solvent.

Conclusions

The effectiveness of DES therapy is largely dependent on

the drug, polymeric materials, and coating method because

these factors significantly influence the drug release sys-

tem. Many vascular and non-vascular DESs were studied

with various polymers and drugs for the treatment of

restenosis and gastrointestinal cancer. Although many

polymeric materials have been studied in DESs, there are

very few commercial DESs available, namely, Taxus,

Cypher, and Xience. Additionally, the polymers used in

DESs can cause inflammation, and the drugs can cause

toxicity. To overcome these problems, natural and syn-

thetic polymers such as collagen, pullulan, PLGA, and

PLA were incorporated into DES design. They were

attractive substitutes because they have excellent biocom-

patibility and degradation properties that can be used to

control drug release. Drug release depends on its location

in the polymeric matrix and the material used to coat the

stent. Therefore, the choice of polymer and the coating

methods are very important for controlled drug release. The

success of controlled drug release will depend on the

development of a biocompatible drug releasing polymer

and how it is coated on the stent. Although many DESs

have been developed, it remains for drug release control to

be optimized for efficient treatment of diverse lesions and

conditions.

Fig. 5 Schematic representation of different modalities of DES

platforms. (a) Non-polymer based drug release, (b) drug diffusion

through an additional polymer coating, (c) drug-polymer blend,

released by diffusion, (d) combination of topcoat and matrix coating

membrane, (e) drug loaded in stent reservoir, (f) drug loaded in

reservoir with and additional polymer coating, (g) drug-biodegradable
polymer coating released by degradation of the polymer,

(h) biodegradable polymer-coated biodegradable stent. (Sousa et al.

(2003))
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