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Abstract Unavoidable biotic and abiotic stresses-led reactive oxygen species (ROS) generation has a profound negative

impact on cellular intergradations. To impede the harmful effects of ROS, plant cells follow a multileveled complex

network system of antioxidants, thus maintaining the cellular redox homeostasis. Report suggests plants having better

antioxidative system show better performance under oxidative stress. Low molecular weight nucleoredoxin (NRX) is a

nuclear thioredoxin (TRX) system with oxidoreductase capacity which can protect the cellular components like DNA,

RNA or protein by protecting antioxidative enzymes like catalases. In response to the adverse environmental conditions,

plant cells generate more ROS as a result of signal-led cellular defense mechanism. NRX plays a significant role in

regulating the redox balance of the cell. Furthermore, for stress breeding during the process of developing stress-resistant

varieties favorable alleles of NRX can be introgressed into elite breeding lines of different crops. This review describes the

causes of oxidative stress, ROS production, major classes of ROS, role of ROS on plant growth and development,

functional details of plant NRX and recent updates on plant NRX in different crops, especially in alleviating stress-incurred

damages. NRX will be helpful in the progress toward developing varieties suitable for climate-resilient agriculture.
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Introduction

Reactive oxygen species (ROS) are produced in cell

organelles such as chloroplasts, mitochondria and peroxi-

somes as a result of unavoidable aerobic metabolic

processes like photosynthesis, respiration and photorespi-

ration [77, 83]. Owing to their highly reactive nature, ROS

can induce a series of unwanted chemical reactions

affecting cellular integrity [7]. Cells have their own ROS-

scavenging mechanisms [150] by contributing unpaired

electrons; low molecular weight compounds known as

antioxidants balance out these dangerous free radicals and

unstable compounds [101]. The term ‘‘oxidative burst’’

refers to the excessive ROS generation occurring at the site

of invasion under biotic or abiotic stresses as a result of

cellular signaling during fast defense mechanisms

[16, 140]. A wide range of developmental and stress-re-

lated processes are associated with the cellular accumula-

tion of ROS [140, 141]. Fascinatingly, plants have

developed the capability of utilizing oxidative stress (or

ROS production) for various functions, viz. signaling and

detecting different stresses, controlling growth, determin-

ing polarity and recognizing hormones and regulatory

substances like amino acids and purines. They also play a
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pivotal role in gravitropic reactions and several other

activities not directly associated with stress or oxidation

[88]. Antioxidants aid in defending cells against the

harmful effects of oxidative stress. Oxidative stress occurs

when the amount of cellular ROS outweighs the amount of

antioxidants due to the deregulation of the ROS-scaveng-

ing process causing cellular modifications and potential

damage that might lead to cell death [113, 128]. Con-

versely, when ROS levels are minimal, the cell is in a

reduced state. In this state, ROS can function as secondary

messengers involved in processes like stem cell upkeep,

cell division and differentiation, organ development and

responses to living organisms and environmental factors

[49, 179].

In fungi, animals, plants and microorganisms, low

molecular weight (12 kDa) proteins named thioredoxins

(TRX) are found to be involved in regulating cellular redox

balance. TRXs are recognized as ancient redox regulators

found in both prokaryotes and eukaryotes. They serve as

oxidoreductases, facilitating the reduction of disulfide

bonds in a variety of target proteins, thereby controlling

physiological and biological processes [148]. Multigenic

TRX superfamily includes conventional TRX, nucleore-

doxin (NRX), glutaredoxin (GRX) and protein disulfide

isomerase [142]. These proteins exhibit a shared structural

feature known as the ‘‘Thioredoxin Fold’’ (Fig. 1), char-

acterized by a stacked arrangement of five b-sheets encir-
cled by four a-helices [122]. Members of TRX are found in

almost all cellular compartments. Cytoplasmic TRX genes,

lacking nucleus localizing signals, have been studied

widely, but the existence of a nuclear TRX system has

remained difficult to ascertain over an extended period. In

most of the eukaryotes, NRX is the most predominant

nuclear TRX. NRX exhibits substantial similarity in

sequence to TRX. However, its homology is even more

pronounced with tryparedoxin (TryX), a protein belonging

to the TRX family that was initially discovered in parasite

trypanos. NRX has been less studied compared to other

thioredoxins. Recently, two NRXs have been characterized

in Arabidopsis [22]. NRX possesses a conserved TRX

domain and a catalytic motif essential for oxidoreductase

activity. Notably, among the two identified NRXs, only

NRX1 is subject to reduction by cytosolic NADPH-de-

pendent thioredoxin reductase A (NTRA), whereas NRX2

does not exhibit this behavior. In plant cells under oxida-

tive stress, the oxidoreductase nucleoredoxin (NRX)

specifically interacts with enzymes involved in key

hydrogen peroxide (H2O2)-scavenging pathways, such as

catalases [73, 86]. NRX shows promising potential as a

central redox regulator that plays a pivotal role in regu-

lating various cellular processes, as well as serves as a

crucial node for multiple redox-sensitive signaling path-

ways and their related pathologies [73]. Biotic and abiotic

stresses are modern threats to the yield stability of different

crops [123]. Abiotic stresses like sudden rise or fall in

temperature or change in rainfall also cause drastic yield

loss [59]. In few pockets of the world these stresses turn

into yield reducing disasters. To keep pace with the

increasing population, development of biotic and abiotic

stress-tolerant varieties is on high demand since last few

decades. As every stress always passes through oxidative

stress, NRX can be considered as a potential contributor

toward stress breeding.

This review is intended to discuss the basic idea about

oxidative stress, ROS generation process and their scav-

enging mechanism, role of ROS on plant growth and cur-

rent knowledge about the principle of balancing the redox

potential of a plant cell mainly by nucleoredoxin. Addi-

tionally, this review also looks into the up-to-date research

works about NRX in different crops and takes a modest

attempt in describing newfangled future opportunities

about NRX as an effective tool in resistant breeding.

Oxidative Stress

The term ‘‘Oxidative stress’’ was initially used by [152].

Oxidative stress is a biological state that arises when the

generation of reactive oxygen species (ROS) exceeds the

capacity of the body’s antioxidant defense systems and is

characterized by an imbalance between the harmful free

radical generation and the ability of the cell to nullify them

[8, 130]. It occurs when there is an excess of reactive

oxygen species (ROS) in the cells, leading to damage of

lipids, proteins and DNA. The toxicity of ROS has driven

the evolution of intricate systems of both non-enzymatic
Fig. 1 Structural feature of TRX superfamily showing ‘‘Thioredoxin

Fold’’
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and enzymatic signal-led detoxification mechanisms in

plants [3]. Elevated levels of reactive nitrogen species

(RNS) like NO, peroxynitrite (ONOO-) and nitrosoglu-

tathione (GSNO) in cells may also lead to nitrosative stress

[151, 166].

Reactive Oxygen Species (ROS)

ROS are partially reduced forms of atmospheric oxygen

(O2) [143]. O2 derivatives are considered to be the oldest

stress generator of this planet [35]. ROS can be either free

radicals (highly reactive atoms with an unpaired electron in

their outer shell) like superoxide (O2
•-), hydroxyl (HO•),

peroxyl (RO2
•-), hydroperoxyl (HO2

•) and alkoxyl (RO•)

radicals or not free radicals, for example, hydrogen per-

oxide (H2O2), organic peroxides (ROOH) and hydroxide

ion (OH-) [129].

Under normal growing conditions, the generation of

reactive oxygen intermediates (ROIs) within plant cells is

typically minimal [74], with an estimated rate of

240 lM s-1O2- and a steady-state concentration of

approximately 0.5 lM H2O2 specifically within the

chloroplasts [27, 57]. Insurmountable biotic and abiotic

stresses lead to enhanced production of ROS during the

process of defense, programmed cell death or systemic

signaling. First oxidative burst was reported in potato

tubers inoculated by the pathogen Phytopthera infestans

[34]. ROS generation is further amplified in the presence of

iron, copper or manganese like free metals [1]. NADPH

oxidase enzyme is one of the major enzymes involved in

ROS generation like conversion of oxygen into superoxide

by a one-electron transfer process, facilitated by NADPH

[149].

Few of the major ROS agents are described below.

a. Singlet oxygen (1O2): Two oxygen atoms (O) share a

double bond in the stable diatomic molecule that makes up

molecular oxygen in its natural state. Two unpaired elec-

trons in two different orbitals define singlet oxygen

(Fig. 2). Due to the antibonding molecular orbitals that

these two electrons occupy, the configuration is unsta-

ble [15, 85]. Recent research aided by highly selective

singlet oxygen sensor green (SOSG) suggests that 1O2,

usually generated in chloroplast PSII, is much more

stable than previously thought and it can even diffuse

beyond chloroplasts even up to the cell wall of a plant cell

[36, 43, 108].

b. Superoxide (O2•-): The oxygen atom (O), which has

an extra electron occupying the outer p-orbital, has a

negative charge on the superoxide ion [60, 85]. During

oxidative phosphorylation or photosynthesis, electrons can

leave the electron transport chain, producing superoxide as

a byproduct under non-stress condition. Stresses like cd?,

salinity, pathogen attack, herbicides or xenobiotics may

enhance its generation in peroxisomes by following two

mechanisms: (1) mediated by xanthine oxidase in the cel-

lular matrix and (2) NADH: ferricyanide reductase, cyto-

chrome b and monodehydroascorbate reductase-mediated

synthesis in the membrane of peroxisomes [30, 135]. As a

consequence of aquatic environment acclimatization, rice

roots and stems are the major organs for O2•- production

[176]. Superoxide also takes part in plant stem cell regu-

lation [179], and overproduction of it may lead to cell death

[56].

c. Hydrogen peroxide (H2O2): In addition to the pro-

duction of superoxide during cellular respiration, super-

oxide dismutase (SOD) also converts superoxide to

hydrogen peroxide [23]. In the peroxisomes during pho-

torespiration, as well as in reaction to pathogen attacks and

other abiotic stresses, NADPH oxidase (also known as

respiratory burst oxidase (RBO)) enzymes produce

hydrogen peroxide [41, 85, 149, 169]. Respiratory burst

oxidase homologues (RBOH) gene family codes for

NADPH oxidase and it is omnipresent in all sequenced

plants [58, 76, 82, 160, 162, 173]. Lines with overexpres-

sion of RBOH genes have shown a heightened level of

stress responses [44, 160]. Aquaporins located on plasma

membrane can mediate a long-distance transport of H2O2

[9, 175]. H2O2 also takes part in cell differentiation,

senescence, cell wall formation, hormonal regulated

growth and development, signaling, programmed cell

death, etc. [80, 111, 114, 179].

d. Hydroxyl radical (HO.): The hydroxyl radical consists

of one oxygen atom (O) bound to one hydrogen atom (H).

It has an unpaired electron which is a highly reactive

chemical species [105]. Several reactions like Fenton

reaction or Haber–Weiss reaction generate hydroxyl radi-

cal by typical conversion of H2O2 in presence of O2 and

Fe2? ion or superoxide radicals, respectively (Fig. 3).

Singlet oxygen can also react with water to produce

hydroxyl radicals through a type II photosensitization

reaction [85]. This ROS is generally effective at its gen-

eration site, and it can eventually affect single-stranded

DNA and polysaccharides leading to loosening of cell wall

Fig. 2 ROS atomic structure

with unpaired electron
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[64, 80]. Regulation of seed germination and viability has

been well reviewed by [95].

Table 1 represents the half-life and diffusion distance of

the ROS agents.

Damages Caused by ROS on Cellular
Macromolecules

Several pathways involved in ROS-induced cell damages

have been described in earlier reports [98, 105]. ROS

directly affects DNA, RNA, lipids, proteins and carbohy-

drates [56]. However, when present in greater amounts,

they react, harm a variety of biomolecules and ultimately

cause programmed cell death (PCD) [112, 127]. The

occurrence of protein oxidation and nitrosylation, including

the formation of carbonyl groups, nitration and nitroty-

rosine, has the potential to have a negative impact on

numerous enzymatic processes and growth factors, leading

to significant cellular dysfunction [153].

Cell death is also caused by peroxidation of mainly

phospholipids (main component of cell membrane) due to

sphingomyelinase activation (Fig. 4) [46]. Products of lipid

peroxidation may also oxidize amino acids for example

4-hydroxynonenal and malondialdehyde are known to

affect lysine or histidine [32]. The most common protein

oxidation type is carbonylation of amino acids such as Cys

and Met [100]. The oxidation of the majority of amino

acids is commonly viewed as a pathophysiological process,

whereas the oxidation of sulfur-containing amino acids is

believed to serve a regulatory function by modeling the

protein folding. Oxidation of nucleic acids accompanied

with premature aging and DNA strand breaks leads to

necrosis [7, 113]. Hydroxyl radicals play a significant role

in damaging polynucleic acids. They interact with them by

attaching to the double bonds of nucleotide bases and

removing H? from the C–H bonds of 2-deoxyribose and

the methyl group of thymine [177]. Along with nuclear

ROS protection system, cytosolic ascorbate peroxidase and

catalase play a crucial role in protection of DNA from ROS

[177]. As carbohydrates are the major organic constituent

of a plant cell, oxidation of it may also potentially facilitate

deterioration of cell health. HO. induced breakdown of

pectin and xyloglucan may cause cell wall loosening, cell

expansion and even early ripening of fruits [47, 48].

The extent of these alterations and the cell’s capacity to

repair such damages play a crucial role in determining

whether the consequences are going to be adaptive or

maladaptive [149].

ROS-Scavenging Mechanism

It is an obligation to the plants to effectively manage

excessive ROS production to uphold cellular redox

homeostasis. Consequently, elevated ROS levels are

detected and tightly regulated by a range of ROS-scav-

enging mechanisms. Antioxidants neutralize free radicals

by donating one electron without undergoing any destruc-

tive conversion into radicals, thereby stabilizing them and

preventing damage of cells [117, 139]. Superoxide dis-

mutase (SOD), glutathione peroxidase (GPX), dehy-

droascorbate reductases (DHARs), ascorbate peroxidase

(APX) and catalase (CAT) are major ROS-scavenging

enzymatic antioxidants reported in plant cells

[62, 134, 145], and the balance among their activities is

crucial for determining superoxide radicals and hydrogen

peroxide level in plant cells [81, 172]. Superoxide dismu-

tases are metalloproteins involved in converting superoxide

free radical (O2
•-) to molecular oxygen and H2O2 [13].

CAT is used for ROS removal and APX functions as fine

modulator of ROI signaling. Reduced CAT activity is

mostly compensated by enhanced APX and GPX activity in

plants. The signaling processes followed by different

enzymatic antioxidants have been described by researchers

[38]. Different monosaccharides and disaccharides such as

maltose, sucrose, etc., sometimes behave like ROS scav-

engers [25].

Plant defense mechanism against oxidative stress is also

dependent on high concentration of ascorbic acid and

Fig. 3 Sequential generation of

ROS by reduction of ground

state oxygen

Table 1 Half-life and diffusion distance of the ROS agents

ROS Half-life Diffusion distance

1O2 1.4 lsec 0.8 lm

H2O2 1 ms 1 lm

O2
- 1 s 8 mm

•OH 1–0.01 lsec 0.5 lm
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glutathione in cellular compartments [61]. High reduced

peroxide ratio of glutathione and ascorbic acid in cell is

maintained by dehydroascorbate reductase (DHAR), glu-

tathione reductase (GR) and monodehydroascorbate

reductase (MDAR) involving NADPH as H? donor [6].

However, overproduction of glutathione in chloroplasts

may also cause oxidative stress due to altered redox state

[26, 63, 165]. Synthesis of less sensitive lipid and protein

isoforms in plant cells and a shield composed of layer of

dead cells may reduce the aggressiveness of ROS

[33, 116].

ROS Avoiding Mechanism

Mechanisms like leaf curling, leaf movement, hidden

stomata, C4 or CAM metabolism and rearrangement of the

photosynthetic apparatus or alternative channeling of the

electrons during ETS of photosynthesis or respiration by

enzymes like alternative oxidases (AOXs) can reduce ROS

production by either preventing electrons from reducing O2

into O2
- or by reducing O2 level in cell [14, 125].

Locations of ROS-scavenging system in a plant cell are

furnished in Table 2.

ROS Mediated Plant Growth and Development
Regulation

The presence of H2O2 in the meristematic tissues of roots

confers to cell division, whereas O2•- promotes cell

elongation [37]. Balance between O2•- to H2O2 in cell tip

plays an inevitable role in deciding whether a cell will

divide or elongate. This balance is highly dependent on the

expression of a transcription factor, UPBEAT1 (UPB1)

[164]. ROS along with hormones, Brassinosteroids (BRs)

and auxin signaling can conjointly regulate root growth

[102, 157, 158]. The excessive buildup of ROS-mediated

oxidized glutathione within root apical cells results in

abnormal growth which can be partially restored to the

normal phenotype by applying reduced glutathione exter-

nally [178]. O2
•- concentration in shoot apical meristem is

antagonistically controlled by H2O2. Increased levels of

O2
•- in stem cells trigger the expression of WUSCHEL

gene, supporting stem cell functions. On the other hand, the

accumulation of H2O2 in the peripheral zone encourages

cell differentiation [179]. A thioredoxin, DCC1 can regu-

late ROS levels in cell leading to an altered bud and shoot

regeneration rate in Arabidopsis [182]. The buildup of

H2O2 stimulates the expression of the WRKY53 gene,

which is essential for the onset of leaf senescence [184].

WRKY genes have been reported to be overexpressed in

heat stress tolerant wheat genotypes [19]. If O2
•- levels are

suppressed, tuber sprouting takes longer. However, when

potato tubers are exposed to external H2O2, their dormancy

is broken [99]. In rice, the homeobox gene MADS3 is

demonstrated to be crucial for the development of stamens

during the early stages of floral growth. During advanced

stages of anther development, MADS3 oversees ROS

balance. Irregular expression of MADS3 leads to an

increase in O2
•- levels and results in pollen sterility [71].

Auxin-mediated overexpression of ROS-related genes may

also lead to an activation of RSL4, therefore consequently

affecting root hair growth [103, 109]. Excessive IAA can

cause a buildup of ROS in the apical spikelet, culminating

in cell death within rice panicles [126]. Hypersensitive

response (HR) due to pathogen invasion is also triggered

through ROS accumulation [31]. Under biotic stress, ROS

can kill the pathogen directly or sometimes the spread of

the pathogen can be restricted by thickening the cell wall

[121, 170].

Fig. 4 Molecular damages

caused by ROS
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A notable research gap persists in comprehending the

intricate dynamics of oxidative stress, reactive oxygen

species (ROS) and the mechanisms involved in scavenging

ROS. While significant strides have been made in under-

standing the detrimental effects of oxidative stress on cel-

lular function and its implications for various diseases,

gaps remain in elucidating the precise mechanisms gov-

erning ROS production and detoxification. Furthermore,

future research in this field could explore the role of pro-

teins such as TRX and novel redox-sensitive proteins like

NRX in ROS regulation. Understanding how these proteins

function as ROS sensors and regulators could offer valu-

able insights into developing targeted therapies for oxida-

tive stress-related disorders. Additionally, exploring the

potential crosstalk between TRX and NRX pathways could

uncover novel therapeutic strategies for managing oxida-

tive stress and its associated pathologies.

Thioredoxin (TRX)

TRX was initially discovered involving its role as an

electron donor facilitating ribonucleotide reductase activ-

ity, which is crucial for DNA synthesis in Escherichia coli

[20]. TRX is a compact protein weighing * 12 kDa and is

conserved across various species in both prokaryotes and

eukaryotes [2]. TRX contains a preserved WCGPC (Trp–

Cys–Gly–Pro–Cys) sequence motif, and the oxidoreductase

activity is directly associated with the two cysteine residues

(Cys32 and Cys35 in human TRX1). Several proteins have

been identified as targets for the oxidoreductase function of

TRX viz., peroxiredoxin (Prx), ribonucleotide reductase

and methionine sulfoxide reductase [10].

Types of conventional TRX, viz., m, f, x, y and z, are

localized in plastids and they are said to be involved in

light dependent metabolisms using the ferredoxin (Fdx)/

thioredoxin reductase system (FTR), whereas TRX h and o

types are prevalent in mitochondria and cytosols and they

use the NAD(P)H-dependent thioredoxin reductases (NTR)

[5, 54, 94, 110, 144]. Later co-localization of NTR, TRX h

system in the nucleus of aleurone and scutellum cells of

wheat seeds has been established [131].

Members of TRX Family

This extensive family of TRX, encompassing both glu-

tathione peroxidases and Prx with an extended TRX-like

domain [174], can be categorized into multiple subgroups,

TRX1

TRX1, a pivotal member of the TRX family, orchestrates a

vital ROS-neutralization cascade involving NADPH, TrxR,

TRX and Prx. Its functions encompass reducing Prx, mit-

igating H2O2 and safeguarding cells from oxidative stress

by rectifying disulfide bonds in cellular proteins [69].

TRX1 also serves as an electron donor for enzymes, pri-

marily located in the cytosol, and modulates redox status in

the nucleus [65]. Additionally, it functions extracellularly,

acting as an adult T-cell leukemia-derived factor and

secreted from cells during stress conditions [154].

TRX2

Expressed in diverse tissues, such as heart, skeletal muscle,

cerebellum, adrenal gland and testis, TRX2 is a

Table 2 Locations of ROS-scavenging system in a plant cell

Location ROS Enzymatic antioxidants Non-enzymatic antioxidants Regeneration of reduced forms

Nucleus H2O2 PRX Ascorbate, Glutathion GR, GRX, TRX, NTR

Chloroplast 1O2 Carotenoid,Tocopherol NTR, DHAR, GR, GRX, TRX, MDAR

O2•- Cu Zn SOD, Fe SOD Ascorbate, Glutathion

H2O2 APX, PRX

Peroxisomes H2O2 CAT, APX MDAR, GR

O2•- Cu Zn SOD, Fe SOD Ascorbate, Glutathion

Mitochondria H2O2 APX, PRX TRX, GR, NTR, MDAR, GRX

O2•- Cu Zn SOD, Mn SOD Ascorbate, Glutathion

Cytosol H2O2 APX, PRX NTR, DHAR, GR, GRX, TRX, MDAR

O2•- Cu Zn SOD Ascorbate, Glutathion

Abbreviations used: PRX, peroxiredoxin; CAT, Catalase; APX, ascorbate peroxidase; SOD, superoxide dismutase; GR, glutathione reductase;

GRX, glutaredoxin; NTR, NADPH-thioredoxin reductase; TRX, thioredoxin; MDAR, monodehydroascorbate reductase; DHAR, dehy-

droascorbate reductase
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mitochondrial protein with oxidoreductase activity. It

actively regulates redox status and inhibits ASK1-induced

apoptosis in cells and mice, leading to significant apoptosis

in TRX2-deficient conditions [119, 155].

Glutaredoxin (GRX)

GRX was initially identified in Escherichia coli as a glu-

tathione-dependent electron donor for ribonucleotide

reductase [67]. In contrast to TRX, which utilizes NADPH,

glutathione reductase and glutathione, GRX directly uti-

lizes glutathione as a hydrogen donor. Mammals possess

three GRX proteins—GRX1, GRX2 and GRX5—while

Saccharomyces cerevisiae harbors GRX3 and GRX4 [136].

GRX1 and GRX2 exhibit oxidoreductase activity with

TCPYC and SCYSC catalytic motifs, respectively [70].

GRX5 is crucial for yeast and zebrafish viability, con-

tributing to mitochondrial biogenesis of Fe–S clusters

[137]. GRX2, which is mostly found in mitochondria and is

also partially found in the nucleus, is crucial for the syn-

thesis of Fe–S clusters and has a unique function in pro-

tecting cells against reactive oxygen species (ROS) [97].

TRX-Related Protein 14 and 32 (TRP14 and TRP32)

TRP14, comprising of a ROS-sensitive Cys residue and

WCPDC catalytic motif, exhibits TRX-like oxidoreductase

activity, directly neutralizing H2O2 [68]. Widely expressed

in tissues and cell lines, TRP14 plays a role in regulating

TNF-a-induced NF-jB signaling and apoptosis. Unlike

TRX, it does not bind ASK1, LC8/PIN, a dynein light

chain protein, and exhibits interactions with IbB and Bim

[132].

TRP32 was co-purified with a mammalian STE-20-like

(MST) catalytic fragment responsible for phosphorylating

FOXO, a transcription factor linked to cell proliferation

and longevity [92]. Despite the absence of co-immuno-

precipitation between TRP32 and MST, there is a potential

role for TRP32 in modulating MST kinase activity under

oxidative stress, possibly through the modulation of Cys

residues [93].

Protein Disulfide Isomerase (PDI)

PDIs constitute a substantial family of TRX-like proteins

involved in overseeing protein folding and oxidation in the

extracellular milieu. Comprising 18 members, PDIs play a

pivotal role in ensuring accurate protein folding and reg-

ulating endoplasmic reticulum (ER) reactions [40, 171].

Despite their significance, the complete spectrum of their

functions remains incompletely elucidated.

Sperm-Specific TRX (SpTRX)

Three SpTRX proteins, namely SpTRX1, 2 and 3, are

identified as TRX homologs exclusively expressed in the

testis. SpTRX1, characterized by 23 repeats of a 15-amino

acid sequence, demonstrates notable catalytic activity in

insulin reduction. In contrast, SpTRX2 features three NDP-

kinase domains but lacks detectable oxidoreductase or

TRX-like activity, suggesting a potential requirement for

cofactors for enzymatic function.

Nucleoredoxin (NRX)

Nucleoredoxin (NRX, NXN or Red-1) was initially iden-

tified by Kurooka and gropus [89]. The discovery of the

NRX gene occurred during an investigation around the

nude (Foxn1, Whn or Hfh11) gene locus. Though NRX is

functionally similar to conventional TRX, it possesses

slightly different TRX domain [104]. The primary dis-

tinction lies in their structural composition. Conventional

thioredoxin (TRX) comprises a single domain, whereas

NRX is a multidomain protein [146, 147, 168]. Given its

sequence similarity to TRX protein and its predominant

nuclear localization upon ectopic expression in COS-7

cells, it was aptly named as nucleoredoxin. Later its pres-

ence in cytosol and subcellular localization was confirmed

[51].

NRX-an Oxidoreductase

Nucleoredoxin (NRX) belongs to the superfamily thiore-

doxins (TRX) which includes thiol-oxidoreductase

enzymes crucial for cellular redox homeostasis by con-

verting thiol and disulfide reversibly [73].Table 3 repre-

sents the description of NRX sub families of plants. These

enzymes have two active cysteine (cys) molecules sepa-

rated by two amino acids (–CXXC–) and conserved active

sites, WCG/PPC [106]. Trp residues preceding the cat-

alyting cys molecules are important for TRX stability

[138].

During protein-to-protein interaction, the thiol group of

the cys residue at the N-terminal of NRX is deprotonated

and forms a disulfide bond with the cys residue of the

substrate protein through a nucleophilic attack on the

substrate protein known as dithiol mechanism

[104, 107, 167]. This is followed by the formation of an

intermediate NRX-substrate complex. The thiol group of

cys present on the C-terminal of NRX forms a disulfide

bond with its N-terminal cys residue thus releasing the

substrate protein. Subsequently, the disulfide bond within

NRX undergoes cyclic reduction facilitated by an enzyme

known as TRX reductase (TRXrd) with the help of
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NADPH [39, 52]. These cys residues in TRX domain are

very important in oligomerization of the protein that is

needed for structural switching [78, 124] (Fig. 5). Post-

translational modifications like reversible S-nitrosation

(attachment of nitroso group to cysteine thiols) of different

TRX proteins are also considered to have a profound effect

on protein structure and function in cellular signaling

pathways [75]. Involvement of NRX in modulating the

activity of phosphofructokinase 1 (PFK1) during glucose

metabolism leading to a balance in glycolysis and pentose

phosphate pathways has been established [50].

Structure of NRX

The NRX proteins, ubiquitously present in species like

humans and mice, exhibit a remarkable 99% identity and

consist of 435 amino acid residues. Orthologues are found

in diverse vertebrates, including dogs, rats and red mon-

keys. Notably, NRX’s TRX-like domain shares significant

similarity with tryparedoxin (TryX), an oxidoreductase

identified in trypanosomatid [118]. In mammalian NRX,

the N-terminal region harbors another TryX-homologous

segment, displaying higher homology to TryX than to

TRX. This region features the WCPPC motif, implicated in

TRX oxidoreductase activity. Furthermore, a conserved

Cys residue, forming a CXXXXXC motif preceding

LSAPC, distinguishes NRX, aligning with other proteins

involved in thiol-disulfide exchange reactions [45]. The

C-terminal region of mammalian NRX bears an acidic

region akin to the b-domain of PDI proteins, lacking cat-

alytic function but crucial for substrate recognition [84].

PDI domain is replaced by a divergent C1 (DC1) domain in

plant NRX.

In nematodes like Caenorhabditis elegans, a number of

NRX (TryX)-like proteins (WormBase:

www.wormbase.org) are thought to have a role in lifespan

regulation by redox-dependently regulating FOXO through

b-catenin. Common motifs include WCGPC and WCPPC

in both domains. These proteins share a single TryX-like

domain; distinct from the mammalian NRX structure, the

presence and function of oxidoreductase activity remain

undisclosed [42].

Laughner and his group [90] have documented the

presence of NRX in maize (Zea mays L.), viz. zNRX.

zNRX possess three TryX-like domains, each resembling

the two TryX-like domains observed in mammalian NRX.

The most closely related TryX-like domain in zNRX shares

49% similarity with the central TryX-like domain found in

human NRX. Both N-terminal and C-terminal TryX-like

domains of zNRX exhibit WCPPC motifs. Moreover,

zNRX demonstrates notable oxidoreductase activity

against insulin, albeit less potent compared to that of

Escherichia coli. Immunostaining of sections from maize

kernels using an anti-zNRX antibody revealed that zNRX

is primarily situated within the nucleus of the kernel.

Western and Northern blot analyses demonstrated that

zNRX is highly concentrated in maize kernels, while its

expression is relatively lower in leaves, epicotyls, stems

and roots. Besides zNRX, NRX-like proteins have been

identified in cork oak (Quercus suber), muskmelon

(Cucurmis melo), wheat (Triticum aestivum), cotton

(Gossipium sp), tomato (Solanum lycopersicum), cucumber

(Cucumis sativus), pumpkin (Cucurbita moschata) rice

(Oryza sativa) and Arabidopsis thaliana (Table 4). Due to

the distinct domain structures of zNRX as compared to

mammalian NRX, it might be more appropriate to classify

Table 3 Description of NRX subfamilies of plants

Category TRX domain

number

1st TRX domain 2nd TRX domain 3rd TRX domain

Type I 3 WCG/PPC (typical redox active

sites)

Atypical WCG/PPC(typical redox active

sites)

Type II 2 WYP/AK/PC (Atypical redox

active sites)

W/R/HCL/A/V/RPC/G (Atypical redox

active sites)

_

Type III 2 WCRPC (typical redox active sites) WCPPC/F/S (typical redox active sites) _

Fig. 5 Oxidoreductase activity of NRX
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them as separate proteins within the same family. A line

diagram of the NRX proteins of various species is shown in

Fig. 6 [104]. Given that zNRX is known to localize in the

nucleus, it is plausible that plant NRX-related proteins

could be involved in regulating transcriptional activity,

similar to the reported function of mammalian NRX.

Unlike mammalian NRX, plants like grapevine, rice or

poplar harbor multiple NRX which suggests multiple

duplications in the gene [91]. By studying the comparative

organization of NRX from most angiosperms, NRX of

plants can be categorized into three sub families based on

amino acid sequence and TRX domain number. Interest-

ingly, it was observed that all three NRX proteins possess

an intron located precisely 18 amino acids upstream of

each TRX active domain [104].

Role of NRX in Animal Cell

In animal body, reports suggest that NRX interacts with

several proteins—disheveled (DVL), protein phosphatase

2A (PP2A), phosphofructokinase-1 (PFK1), translocation

protein SEC63 homolog (SEC63), MYD88, flightless-I

(FLII) and calcium/calmodulin-dependent protein kinase II

type alpha (CAMK2A)-regulating crucial cellular pro-

cesses [163, 167]. Its involvement spans proliferation,

organogenesis, cell cycle, glycolysis, immunity, motility

and more. Associated with pathologies including cancer,

liver diseases, obesity and neurodegenerative disorders,

NRX emerges as a key redox regulator with implications in

diverse signaling pathways and associated diseases [73].

NRX Against Oxidative Stress in Plant Cells

Abiotic Stress

Enhanced expressions of NRX along with CAT genes

impart resistance to water stress in heterografts in cucum-

ber and pumpkin [28]. Maize NRX possesses three TRX-

like domains. Notably, the first and third domains contain

the characteristic active site WCPPC found in typical TRX-

like domains. Additionally, the third domain of NRX

demonstrates the capability to reduce disulfide bonds

in vitro [90]. The newly discovered NRX gene from wheat

(Triticum aestivum L.) was initially cloned and described to

have a role in conferring drought resistance by Zhang et al.

in 2014 [181]. Additionally, they reported molecular

markers associated with drought resistance. The various

domains of wheat NRX1-D (TaNRX1-D) have been com-

prehensively investigated. The TaNRX1-D protein from

wheat consists of three TRX domains. Specifically, domain

1 encompasses the WCPPC motif, domain 2 contains

GYPPV, and domain 3 contains WCGPC. However,

domain 2 does not possess a similar active site which

supports its weakest reducing capacity [21]. For elucidating

the molecular mechanism of TaNRX1 in drought resistance

of wheat, interaction of NRX1 with three candidate pro-

teins, protein disulfide isomerase (TaPDI), TaTRX-h and

protein phosphatase 2A catalytic subunit (TaPP2Ac) was

investigated and upon analysis they showed to have a

positive regulation over drought stress [156]. Contribution

of TaNRX1 to drought resistance was further explored by

developing transgenic lines by RNA interference (RNAi)

or NRX1 overexpression [183]. Antioxidant content like

catalase, superoxide dismutase and peroxidase, sugar,

proline, leaf chlorophyll content, carbon assimilation,

water retention capacity, etc., are enhanced in NRX1

overexpressing lines contributing to drought resistance.

Even multiple stress-related transcription factors like

WRKY, MYB and bHLH are also positively regulated in

the NRX1 overexpressing lines suggesting a strong corre-

lation and interaction among them [183]. Under tremen-

dous oxidative stress condition with increased amount of

H2O2, NRX1 protects major ROS-scavenging enzymatic

antioxidants like catalases. Thus, plants with wild-type

NRX1 always show resistance to oxidative stress whereas

mutants with nrx1 seem to be highly prone to it [86]. The

impact of cys residues in the TRX domain for oligomer-

ization of AtNRX1 has been examined by cys to ser sub-

stitution mutants at C55S, C58S, C375S and C378S

positions [79]. Impact of NRX1 on thermo tolerance in

tomato (Solanum lycopersicum L.) has been investigated

and through clustered regularly interspaced short palin-

dromic repeats (CRISPR/Cas9)-mediated mutations it has

been proved that the mutants exhibit a remarkable sus-

ceptibility to heat stress, resulting in elevated levels of

electrolyte leakage, malondialdehyde content and H2O2

concentration in comparison to the wild-type counterpart.

In addition, NRX1 also seems to be a major regulator of

antioxidant coding transcription factors and Heat Shock

Proteins (HSPs) under tremendous abiotic stress like crip-

pling heat [17]. Through bioinformatic analysis, a total of

35 TRX genes were detected in the entire genome of foxtail

millet (Setaria italica) [180]. Phylogenetic examination

categorized these 35 SiTRXs into 13 distinct types. Sub-

sequent characterization included the investigation of their

chromosome distribution, gene structure, cis-elements and

conserved protein motifs. A structural analysis of TRX

family members led to the identification of three nucleo-

redoxin (NRX) members. Assessment of the expression

patterns of foxtail millet’s SiNRX members under various

abiotic stresses revealed diverse stress-response behaviors.

Moreover, subcellular localization studies indicated that

SiNRXs were present in the nucleus, cytoplasm and

membrane. Further experiments showed that
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overexpression of SiNRX1 in Arabidopsis enhanced its

tolerance to drought and salt stresses, resulting in increased

survival rates and improved growth performance [180]

(Fig. 7).

Biotic Stress

In eukaryotes NRX is very common except unicellular

green algae (Ostreococcus) or yeast. The expression of

Table 4 Cropwise accession numbers of NRX

Crop Gene name Accession number

Arabidopisis lyrata AlNRX1 AFH64402

AlNRX2 EFH43567

Arabidopsis thaliana AtNRX1 AEE33684

AtNRX2 AEE85880

Cucumis melo CmNRX1 AAU04767

Gossypium hirsutum GhNRX1 CotAD_56209

Gossypium barbadense GbNRX1 KT372889

Medicago truncatula MtNRX1 ACJ85567

MtNRX2 XP_003603818

MtNRX3 XP_003603563

Oryza sativa OsNRX1a NP_001050329

OsNRX1b AAU89249

OsNRX1c EEC75442

OsNRX1d NP_001050331

OsNRX2 NP_001044503

OsNRX3 EEC77960

Picea sitchensis PsNRX1 ABK25413

PsNRX2-3 ABK25089

Populus trichocarpa PtNRX1a XP_002314537

PtNRX1b XP_002314534

PtNRX1c XP_002314533

PtNRX1d EEF00707

PtNRX1e, XP_002314535

PtNRX2 XP_002306954

PtNRX3 XP_002330779

Ricinus communis RcNRX1 XP_002525368

RcNRX2 XP_002510593

Sorghum bicolor SbNRX1 XP_002467709

SbNRX2 XP_002467708

SbNRX3 XP_002448495

Solanum lycopersicum SlNRX1 Solyc05g005470

SlNRX2 Solyc05g005460

Selaginella moellendorffii SmNRX1 EFJ30324

Vitis vinifera VvNRX1a XP_002263480

VvNRX1b CBI28536

VvNRX1c XP_002262828

VvNRX1d XP_002262857

VvNRX1e XP_002264954

VvNRX2 XP_002285895

VvNRX3 CBI20806

Zea mays ZmNRX1b NP_001130856

ZmNRX2 NP_001131397
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NRX-1 gene is induced by salicylate (SA) in grapevine

conferring resistance against downy mildew disease caused

by Plasmopara viticola [53]. Two distinct genes within the

nuclear genome of Arabidopsis thaliana, sharing less than

30% amino acid sequence similarity encoding AtNRX1

and AtNRX2 with disulfide reduction capacity were iden-

tified, categorizing them into the Type I and Type III

subgroups. Their presence has also been tested positive in

cytosol except the nucleolar region. NTRA thioredoxin

reductase is said to be the physiological reducer of native

NRX1 but not NRX2. While NRX1 has been shown to

impact pollen fertility, the involvement of NRX2 in this

process has not been substantiated [104]. The involvement

of AtNRX1 in the growth of pollen tubes within the pistil

has been reported. However, it appears that this role is

specific to the in vivo context, as the protein does not

exhibit the same effect in vitro suggesting that NRX1

functions by integrating signals from the maternal tissue

and providing guidance to the pollen tube as it progresses

toward the ovule [133]. AtNRX1 is also associated in the

defense mechanism against the fungal pathogen, Alternaria

brassicicola via jasmonic acid (JA) signaling through

affecting the major gene of this pathway PLANT

DEFENSIN 1.2 (PDF1.2). AtNRX1 has three TRX

domains and two of them harbor WC(G/P)PC in their

active site sequence. The third TRX domain has more

reduction capacity than the first one but they reduce the

substrate sequentially thus suggesting their reliance on

each other [86, 104]. In cotton plants (Gossypium bar-

badense) well established evident is available about the

contribution of NRX to plant immune response against

apoplastic oxidative burst accounted by NADPH oxidases

and class III peroxidases [12, 120]. Under tremendous

oxidative burst, as an early response to pathogen attack in a

plant body a numerous number of ROS production is seen

in cellular apoplast region to combat the attack of the

microbes through degenerating their nucleic acid, proteins

or lipid [159, 161]. Consequently, these apoplastic ROS

will either diffuse into the cell membrane leading to dif-

ferent signaling cascades [87, 115] or strengthen the cell

wall through oxidative glycoprotein crosslinking or lignin,

suberin production [72]. In GbNRX1, out of three TRX

active domains flanked by a signal peptide at N-terminal

end and cys rich C-terminal domain, first and third domains

have typical TRX sequence whereas second one harbors

atypical active site. First domain has highest reduction

capacity followed by third and second TRX domain. A

well-regulated system is indicated by rapid ROS produc-

tion and its fast dissipation. Reduced disease resistance

capacity due to knocking out GbNRX1 gene suggests

NRX1 to be a crucial component of maintaining apoplastic

redox homeostasis as it also regulates the expression of

defense related genes like PR1, PR4 and PR10 or genes

Fig. 6 Phylogenetic Tree of NRX. Aa, Aureococcus anophageffer-
ens; Ap, Acyrthosiphon pisum; As, Ascaris suum; Ae, Acromyrmex
echinatior; Al, Arabidopisis lyrata; At, Arabidopsis thaliana; Bs,

Bodo saltans; Bt, Bos taurus; Cg, Cricetulus griseus; Cm, Cucumis
melo; Cr, Chlamydomonas reinhardtii; Dr, Danio rerio; Ec, Equus
caballus; Es, Ectocarpus siliculosus; Hg, Heterocephalus glaber; Hs,
Homo sapiens; Md,Monodelphis domestica; Mm,Mus musculus; Mn,

Micromonas sp. RCC299; Mt, Medicago truncatula; Nve, Nematos-
tella vectensis; Nvi, Nasonia vitripennis; Os, Oryza sativa; Pht,

Phaeodactylum tricornutum CCAP 1055/1; Ps, Picea sitchensis; Pt,
Populus trichocarpa; Qs, Quersus suber; Rc, Ricinus communis; Rn,
Rattus norvegicus; Sb, Sorghum bicolor; Sm, Selaginella moellen-
dorffii; Ss, Salmo salar; Tg, Toxoplasma gondii; Ts, Trichinella
spiralis; Vc, Volvox carteri f. nagariensis; Vv, Vitis vinifera; Xl,

Xenopus laevis; Zm, Zea mais [104]

Fig. 7 Oxidoreductase activity of NRX1 against ROS production in

plant cell

410 Agric Res (September 2024) 13(3):400–418

123



related to carbon metabolism [96]. Evidently tomato NRX1

also affects biotic stress tolerance against bacterial diseases

caused by Pseudomonas syringae pv. maculicola (Psm)

ES4326 or fungal diseases caused by Alternaria brassici-

cola in tomato. Findings suggest the NRX1 is also a key

regulator of phytohormones like jasmonic acid (JA) and

salicylic acid (SA) levels in a cell via controlling the

expressions of the genes like ISOCHORISMATE SYN-

THASE 1 (SlICS1) and ENHANCED DISEASE SUS-

CEPTIBILITY 5 (SlEDS5) related to SA biosynthesis [18]

(Fig. 8).

Conclusion and Future Perspectives

Enzymatic and non-enzymatic ROS-scavenging mecha-

nisms are very crucial for maintaining cellular integrity

under oxidative stress induced by biotic and abiotic stres-

ses. Recent researches on the meta-analysis of publicly

accessible rice transcriptomes found that the most differ-

entially expressed genes under abiotic stress are ROS

detoxifiers (scavengers) [29]. Current breeding approaches

like molecular breeding have played a key role in speed

breeding. The most effective strategy for locating and

transferring the QTLs linked to the desired characteristic is

marker-assisted breeding. In QTL identification and sub-

sequent marker development programs, oxidative stress has

received less attention due to the trait’s complexity and

functional overlap with salt, drought and heat stress. Few

particular QTLs were found to be linked to oxidative stress,

but several QTLs and markers were found to be linked to

heat tolerance, which shares common genes for detoxifying

ROS produced by oxidative stress.

Contribution of NRX to regulate redox potential in a cell

has been furnished by different researchers in different

crops. Though data on plant NRX is scarce, the established

proof suggests NRX protein with two ‘‘cys’’ residues sep-

arated by two amino acids on active TRX domain is the

Fig. 8 Pathways followed by NRX1 against oxidative stress
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favorable form for breeding purpose [4, 55]. NRX func-

tions as a redox-sensor for overseeing the Wnt/b-catenin
signaling pathway. Reactive oxygen species (ROS) are

unavoidable byproducts of cellular respiration and neces-

sitate detoxification, yet cells both generate and utilize

ROS to manage diverse cellular functions. It’s noteworthy

that the Wnt/b-catenin pathway, known for regulating cell

proliferation and fate, also participates in ROS utilization.

Impact of NRX on different pathogen induced biotic

stresses and even in abiotic stresses has been established in

different research findings [17, 183]. Certainly a precise

integration of proteomics, genomics and molecular biology

for allele mining followed by introgression of the favorable

NRX allele in a variety will facilitate stress breeding with

more precision [24, 180]. Well established data about NRX

in animal cells especially in mammals and involvement of

mammalian NRX in signal transduction, metabolic path-

ways in neuron cells or NRX induced transcription factor

activation, complex protein to protein interaction also

stipulates ample research works to elucidate future studies

about plant NRX [66, 167]. Inclusion of more wild rela-

tives or landraces during allele mining and even mutation

breeding for creating genetic variation will be helpful for a

breeder [11]. Hybridization followed by selection through

easy to use molecular markers and high throughput phe-

notyping will optimize the breeding protocols and this can

be deployed in farmers’ field against hostile stress

situation.

However, research on NRX is still in its initial phase.

Many important aspects regarding NRX needs to be further

clarified. The specific molecular mechanisms remain

uncertain. The idea of redox-dependent regulation of the

Wnt/b-catenin pathway, wherein ROS function could be

elucidated by NRX, a protein with evolutionarily con-

served ROS-reactive cysteine residues that detect intra-

cellular redox states, is fascinating. Further exploration of

NRX promises to enhance comprehension of ROS

signaling.
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