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Abstract Analysis and interpolation of soil micronutrients are very important for site-specific management. The objective

of this study was to determine the spatial distribution of iron (Fe), manganese (Mn), zinc (Zn) and copper (Cu) in the forest

covered area of Chirang district, Assam, using statistics and geostatistics. A total of 607 soil samples from a depth of

0–25 cm at an approximate interval of 1 km were collected over the entire study area. The concentration of Fe, Mn, Zn and

Cu ranged between 0.10–263.5, 0.50–149.5, 0.01–3.4 and 0.64–14.6 mg/kg, respectively, with mean values of 45.3, 19.6,

0.4 and 5.0 mg/kg, respectively. Analysis of semivariogram indicated that the Fe and Mn were well described with the

spherical model, with the distance of spatial dependence being 5.83 and 1.95 km, respectively, while the Zn and Cu were

well described with exponential model, with the distance of spatial dependence being 5.24 and 3.95 km, respectively. To

define different classes of spatial dependence for the soil variables, the ratio of nugget and sill was used. Cu was strongly

spatially dependent, with the nugget/sill being 0.202 in this given region, while Fe, Mn and Zn were moderately spatially

dependent, with the nugget/sill being 0.347, 0.299 and 0.426, respectively. With the kriging analysis, the spatial distri-

bution maps of contents of these four micronutrients in the study area were drawn with the ArcGIS software. It was found

that the soils with higher content of Fe, Mn and Zn were mainly distributed in the upper area of the northern part of the

study area, while the soils with higher content of Cu were mainly distributed in the center, decreasing toward the south, east

and west.
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Introduction

Knowledge of the availability of plants with micronutrients

in soils is important for maintaining or improving forest,

crop production and food quality. Micronutrients are

required in small amounts by plants or animals for normal

nutrition and health, and yet high concentrations of these or

other trace elements can be toxic [24]. Zinc (Zn), copper

(Cu), iron (Fe) and manganese (Mn) are referred as cationic

micronutrients. Although micronutrients are required in

minute quantities but have the same agronomic importance

as macronutrients and play a vital role in the growth of

plants, micronutrients also increase plant productivity, leaf

and grain yield. Most of the micronutrients are associated

with the enzymatic system of plants [2]. The deficiency of

the micronutrients is one of the major limiting factors for
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crop production causing considerable yield losses of eco-

nomically important crops throughout the world [1].

Spatial heterogeneity is the complexity and variation

of systems or their attributes, and heterogeneity of soil

nutrients is ubiquitous in all natural ecosystems [3]. The

spatial distribution pattern of the concentration of an

element in soil is controlled by various geochemical

processes. Studies of the spatial patterns are beneficial

for further analysis of the processes, and as a result,

increased knowledge of such geochemical processes is

achieved. Meanwhile, describing the spatial patterns

quantitatively with soil indices is one way of going from

qualitative to quantitative analysis [5]. Soils are char-

acterized by a high degree of spatial variability, even in

intensively managed ecosystems [5, 9, 10]. Rational soil

management requires an understanding of how soil

properties vary across the land. By using soil sampling

and analysis of relevant soil properties, we can develop

maps that would help to identify areas of particular

interest and to plan suitable management plans for

increased productivity and quality of vegetation. Inher-

ent in this process is the assumption that a soil property

measured at a given point represents the surrounding

unsampled neighborhood [25]. The validity of this

assumption depends on the spatial variability of the soil

property.

Geostatistics provides the means to characterize and

quantify spatial variability, use this information for

rational interpolation and estimate the variance of the

interpolated values. Variance estimation provides valu-

able information on the sampling density and configu-

ration necessary to estimate a property to a specified

precision. Geostatistics has been used to characterize

spatial variability and map a variety of soil properties at

scales ranging from centimeters to kilometers, and it

may prove useful across even greater distances, at the

scale of the whole country [26]. There have been several

studies dealing with spatial variability of soil properties

based on GIS and geostatistics. Variography and kriging

have been used in India to study the distribution of soil

physical properties [17], soil chemical properties

[15, 16], boron [6] and soil salinity [14].

Estimation, characterization and comparison of spatial

variation of micronutrients of soil are important issues in

the site-specific crop management, precision farming and

sustainable agriculture. Hence, this paper deals with the

spatial variation of soil fertility factors in the plains of

Chirang district, Assam. Through analysis of variations of

soil available Zn, Cu, Mn and Fe, the study would reveal

the spatial variability of these micronutrient cations in the

study area and would help in taking suitable sampling size

and appropriate micronutrient management practices.

Materials and Methods

Site Characteristics

The area under study belongs to the forest covered area of

Chirang district of Assam (26�230-26�400N, 90�320-
91�530E) covering an area 911 km2. Topographically, it des-

cends slightly from north to south across the study area. Cli-

matically, this region belongs to the humid subtropical, with

an annual average precipitation of 3000 mm, annual mini-

mum temperature of 13 �C and maximum of 32 �C. The
vegetation of the region is predominately characterized by

dense semievergreen, evergreen and wet deciduous types

owing mainly to the impact of heavy monsoonal rainfall,

effective temperature and thick fertile soil cover. The princi-

pal varieties are Ikra (Sccharum arundinaceum), Nal

(Phragmites roxburghii), Sal (Shorea robusta), Khair (Acacia

catechu) and Sissu (Dalbergia sisso).According to soil survey

report [19], there are four broad soil subgroups in the study

area namely—Aeric Fluvaquents, Dystric Eutrochrepts,

Typic Haplaquents and Typic Haplaquepts.

Soil Sampling, Processing and Analysis

A total of 607 soil samples from the surface layer (0–25 cm)

at an approximate interval of 1 km grid (Fig. 1) were col-

lected with the help of handheld global positioning system

(GPS). Soil samples were air-dried and ground to pass

through a 0.5-mm sieve. Soil pH in 1:2 soil/water suspen-

sion was determined using pH meter. Organic carbon and

diethylenetriaminepentaacetic acid (DTPA) extractable mi-

cronutrients were determined by Walkley and Black [21]

and Lindasay and Norvell [11], respectively. The concen-

tration of micronutrients was determined by a Shimadzu

AA6300 atomic absorption spectrophotometer.

Data Analysis

Exploratory data analysis was performed with SPSS (version

16) software. The data distributions were analyzed by classi-

cal statistics (mean,maximum,minimum, standard deviation,

skewness, kurtosis and coefficient of variation). The Pearson

correlation coefficients were estimated for all possible paired

combinations of the response variables to generate a correla-

tion coefficient matrix. These statistical parameters were

calculated with EXCEL� 2007 and SPSS 15.0.
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Geostatistical Analysis Based on GIS

Spatial interpolation and GIS mapping techniques were

employed to produce spatial distribution maps for the

investigated DTPA-extractable micronutrients, and the

software used for this purpose was ArcGIS v.10.1 (ESRI

Co, Redlands, USA). In ArcGIS, kriging can express the

spatial variation and allow a variety of map outputs, and at

the same time minimize the errors of predicted values.

Moreover, it is very flexible and allows users to investigate

graphs of spatial autocorrelation. Kriging, as applied within

moving data neighborhoods, is a non-stationary algorithm

which corresponds to a non-stationary random function

model with varying mean but stationary covariance [8]. In

kriging, a semivariogram model was used to define the

weights of the function [23], and the semivariance is an

autocorrelation statistic defined as follows [13]:

c hð Þ ¼ 1

2N hð Þ
XN hð Þ

i¼1

½z xið Þ � z xi þ hð Þ�2 ð1Þ

where z xið Þ is the value of the variable z at location of xi,

h the lag and N(h) the number of pairs of sample points

separated by h.

During pair calculation for computing the semivari-

ogram, maximum lag distance was taken as half of the

minimum extent of sampling area. Anisotropic semivari-

ograms did not show any differences in spatial depen-

dence based on direction, for which reason isotropic

semivariograms were chosen. Circular, spherical,

exponential and Gaussian models were fitted to the

empirical semivariograms. Best-fit model with minimum

root-mean-square error (RMSE) were selected for each

soil property:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1
z xið Þ � bz xið Þ½ �2

r
ð2Þ

The spherical and exponential models were best fitted to

all the micronutrients. Expression for different

semivariogram models used in this study is given below.

Exponential model

c hð Þ ¼ C0 þ C1 1� exp � h

a

� �� �
for h� 0 ð3Þ

Spherical model

c hð Þ ¼ C0 þ C1 1:5
h

a
� 0:5

h

a

� �3
" #

; if 0� h� a

¼ C0 þ C1; otherwise

ð4Þ

Using the model semivariogram, basic spatial parameters

such as nugget (C0), sill (C ? C0) and range (A) were

calculated which provide information about the structure as

well as the input parameters for the kriging interpolation.

Nugget represents variation caused by stochastic factors,

such as error in measurement, sill is the lag distance between

measurements at which one value for a variable does not

influence neighboring values, and range is the distance at

which values of one variable become spatially independent

of another [12].

Fig. 1 Locations and grid map

of the area of Chirang district,

Assam, India
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Accuracy Assessment

Accuracy of the maps was evaluated through cross-validation

approach [7]. Among three evaluation indices used in this

study, mean absolute error (MAE) and mean squared error

(MSE)measure the accuracy of prediction, whereas goodness

of prediction (G) measures the effectiveness of prediction.

MAE is a measure of the sum of the residuals [20].

MAE ¼ 1

N

XN

i¼1

zðxiÞ � bzðxiÞ ð5Þ

where bzðxiÞ is the predicted value at location i. Small MAE

values indicate less error. The MAE measure, however,

does not reveal the magnitude of error that might occur at

any point, and hence, MSE will be calculated.

MSE ¼ 1

N

XN

i¼1

zðxiÞ � bzðxiÞ½ �2 ð6Þ

Squaring the difference at any point gives an indication

of the magnitude, e.g., small MSE values indicate more

accurate estimation, point-by-point. The G measure gives

an indication of how effective a prediction might be

relative to that which could have been derived from using

the sample mean alone [18].

G ¼ 1�
PN

i¼1½zðxiÞ � bzðxiÞ�2PN
i¼1½zðxiÞ � �z�2

" #
� 100 ð7Þ

where z is the sample mean. If G = 100, it indicates perfect

prediction, while negative values indicate that the predictions

are less reliable than using samplemean as the predictors. The

comparison of performance between interpolations was

achieved by using mean absolute error (MAE).

Results and Discussion

Descriptive Statistics of DTPA-

Extractable Micronutrients

Descriptive statistics for Fe, Mn, Zn and Cu were shown in

Table 1. The maximum and minimum concentration of Fe,

Mn, Zn and Cu were 263.5 and 0.10, 149.5 and 0.50, 3.4 and

0.01, and 24.6 and 0.64 mg/kg, respectively, with mean

values of 45.3, 19.6, 0.4 and 5.0 mg/kg, respectively. The

median of each micronutrient was lower than the mean,

which indicates that the effects of abnormal data on sampling

value were not great. All the soil properties exhibit a high

variation ([50 %) according to guidelines provided by

Warrick [22]. Skewness is the most common form of

departure from normality. If a variable has positive skew-

ness, the confidence limits on the variogram are wider than

they would otherwise be and consequently, the variances are

less reliable. A logarithmic transformation is considered

where the coefficient of skewness is greater than one [23].

Therefore, a logarithmic transformation was performed for

all micronutrients because their skewness was greater than 1.

Relationships of DTPA-Extractable Micronutrient

to Controlling Factors

To examine the relationships between the analyzed

micronutrients and controlling factors (pH and organic

carbon), a correlation table (Pearson correlation coeffi-

cients) was established. The maximum and minimum value

of pH was 6.6 and 4.0 with mean values of 6.1, and organic

carbon 3.06 and 0.29 % with mean value 1.16 %. As

shown in Table 2, between the soil pH value and these

micronutrient elements, there are significant and negative

correlations with Fe, Mn and Zn in the soils at the 0.01

level. The correlation coefficients were -0.65, -0.31 and

-0.17, respectively. Between the soil organic matter and

these micronutrient elements, there are (1) highly signifi-

cant and positive correlations with Mn at the 0.01 level,

and the correlation coefficient is 0.11 and (2) significant

and positively a correlation with Fe at the 0.05 level, and

the correlation coefficient is 0.08. Similar observations

were also reported by Chen et al. [4] for the Xiangcheng

tobacco planting area of Henan Province, China.

Semivariogram Analysis of Micronutrients

Semivariogram analysis was used to characterize and

quantify spatial variability and root-mean-square error

Table 1 Descriptive statistics of the DTPA-extractable micronutrients (n = 607)

Micronutrients Max Min Mean Median SD CV (%) Skewness Kurtosis Distribution pattern

Fe (mg/kg) 263.5 0.10 45.3 40.1 35.9 79 1.3 6.5 Log

Mn (mg/kg) 149.5 0.50 19.6 10.6 24.1 123 2.7 10.9 Log

Zn (mg/kg) 3.4 0.01 0.4 0.4 0.4 88 2.5 14.2 Log

Cu (mg/kg) 24.6 0.64 5.0 4.0 3.6 71 2.4 10.0 Log

Max maximum, Min minimum, SD standard deviation, CV coefficient of variation
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(RMSE) was used for different theoretical semivariogram

models to fit the experimental semivariogram values for

each micronutrient (Table 3). Analysis of the isotropic

variogram indicated that the Fe and Mn semivariograms

were well described with the spherical model, with the

distance of spatial dependence being 5.83 and 1.95 km,

respectively, while the Zn and Cu were well described with

exponential model, with the distance of spatial dependence

being 5.24 and 3.95 km, respectively.

Nugget (C0) usually expresses the variations caused by

experimental error or a smaller sampling scale. A bigger C0

value shows that a certain smaller scale process cannot be

ignored. Sill indicates the variation caused by the system

on the whole. The ratio of C0/sill indicates the percentage

of the variation caused by stochastic factors to the total

variation of the system. A higher value indicates that the

stochastic factor plays a major role in the variation. From

the point of view of structural factors, the ratio of C0/sill

can manifest the autocorrelation among many systematic

variables. If C0/sill \25 %, it means that there exists a

strong spatial autocorrelation; if C0/sill changes from 25 to

75 %, it suggests there exists a moderate spatial autocor-

relation; if C0/sill[75 %, it indicates that there is only a

weak spatial autocorrelation [25]. Cu was strongly spatially

dependent, with the C0/sill being 0.202, showing that

variations was controlled mainly by internal factors, and

that both the external factors (cropping system, fertiliza-

tion, etc.) and internal factors (climate, parent material,

topography, soil type, etc.) play important roles in the

variation, whereas Fe, Mn and Zn were moderately spa-

tially dependent, with the C0/sill being 0.343, 0.301 and

0.426, respectively, suggesting that the effects of structural

factors have been partly covered by the stochastic factors.

The anthropogenic activity weakened the spatial autocor-

relation of soil fertility factors, and both developed grad-

ually at the same time, which explained adequately that the

spatial variation of micronutrients is the synthetically result

of structural factors as well as stochastic factors [27].

Kriging Interpolation

Spatial distribution map of all the micronutrients prepared

through ordinary kriging is presented in Fig. 2. Kriging

interpolation showed that all of those four micronutrients

possessed obvious spatial heterogeneity. The mean content

of Fe and Mn were 45.3 and 19.6 mg/kg, respectively,

which are higher than the critical limits (4.5 and 3.5 mg/kg,

respectively) [11]. The soil with higher content of Fe and

Mn were mainly distributed in the upper part of the study

area. The mean content of available Zn was 0.4 mg/kg,

which is lower than the critical limit (0.6 mg/kg). The soil

with higher content of Zn was found in the upper parts of

the investigated area, while the soils with higher content of

Cu were mainly distributed in the center, and decreasing

toward the south, east and west. The higher content of Zn

in the upper parts may be due to higher organic matter

content and low pH in the upper parts in the study area.

Accuracy Assessment

Table 4 showed the evaluation indices resulting from

cross-validation of spatial maps of DTPA-

Table 2 Correlation matrix of micronutrients and controlling factors

pH OC Fe Mn Zn Cu

pH 1.00

OC -0.86** 1.00

Fe -0.65** 0.08* 1.00

Mn -0.31** 0.11** 0.45** 1.00

Zn -0.17** -0.02 0.16** 0.10* 1.00

Cu -0.15** 0.03 0.06 0.09* -0.05 1.00

** Correlation is significant at the 0.01 level (two-tailed), * Correlation is significant at the 0.05 level (two-tailed)

Table 3 Geostatistical parameters of the fitted semivariogram models for DTPA-extractable micronutrients

Micronutrients Fitted model Nugget (C0) Sill (C ? C0) Rangea (A) Nugget/sill (%) RMSEb

Fe Spherical 0.592 1.706 5.83 0.347 33.49

Mn Spherical 0.395 1.317 1.95 0.301 18.84

Zn Exponential 0.434 1.018 5.24 0.426 0.32

Cu Exponential 0.074 0.367 3.95 0.202 2.48

a Range in km, b root-mean-square error
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extractable micronutrients. It was observed that Zn had low

MAE and MSE than other micronutrients. The G value was

greater than 0, which indicates that spatial prediction using

semivariogram parameters is better than assuming mean of

observed value as the property value for any unsampled

location. This also shows that semivariogram parameters

obtained from fitting of experimental semivariogram val-

ues were reasonable to describe the spatial distribution.

Conclusions

Geostatistics and GIS are essential tools to analyze geo-

referenced information and advance our understanding of

spatial variability of soil nutrients. Information on spatial

variability is currently being exploited using techniques

such as precision farming to improve input use efficiency

and to decrease adverse environmental effects. The gen-

eration of maps for DTPA-extractable micronutrients is the

most important and first step in precision agriculture. These

maps will measure spatial heterogeneity and provide the

Fig. 2 Spatial distribution

maps of DTPA-

extractable micronutrients a Fe,

b Mn, c Zn and d Cu

Table 4 Evaluation performance of kriged map of soil properties

through cross-validation

Micronutrients Mean absolute

error

Mean square

error

Goodness of

prediction

Fe 11.44 1121.8 12.7

Mn 0.231 354.9 38.9

Zn 0.033 0.104 27.5

Cu 0.036 6.162 55.3
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basis for controlling spatial variability. The findings of this

study showed that all micronutrients namely, Fe, Mn, Zn

and Cu had spatial autocorrelations. In general, the geo-

statistical method on a large scale could be accurately used

to evaluate spatial heterogeneity of DTPA-extractable mi-

cronutrient cations in the plains of Northeastern India.
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