
In addition to many advantageous characteristics of lithium-ion batteries, one of their  

disadvantages lies in the degradation mechanism. By analyzing this aging behavior more  

precisely during development, improved performance and a greater range for electric vehicles 

can be achieved. FEV has developed several mathematical-physical approaches with which 

the lifetime of the batteries can be modeled and thus extended.

g  There are various approaches to 
modeling the lifetime of Lithium-ion Bat-
teries (LIBs) for Battery Electric Vehicles 
(BEVs). These approaches are used in 
different applications of monitoring and 
controlling battery cell design and bat-
tery system design. On the one hand, 
the aim is to optimize battery opera-
tion in real time and, on the other, to 
predict battery performance from the 
cell to the system. Accordingly, the 
choice of a suitable lifetime modeling 
approach depends on the special appli
cation context. FIGURE 1 illustrates 
a classification of approaches for life-

time modeling. The four models are 
based on the level of physical inter
pretation incorporated into the model, 
as well as the resulting complexity and 
computational effort.

DATA-DRIVEN 
MODELING APPROACH

The data-driven approach is based exclu-
sively on testing or fleet feedback requir-
ing specific boundary conditions. By 
using Bayesian optimization according 
to Frazier [1], it is possible to design a 
meaningful test plan, derived from the 

specified test range. Subsequently, the 
conduction of the lifetime tests based 
on the defined test matrix is followed by 
training the lifetime model on the result-
ing test data. The accuracy of the model 
is further enhanced through an iterative 
closed-loop process where the results 
are utilized to define a new set of tests 
or parameters from the fleet. The itera-
tive process can be realized by automa-
tion or in terms of machine learning.

The developed model enables the opti-
mization of the cell operating conditions 
in order to expand the lifetime. Since the 
model does not incorporate chemical or 
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physical influences and relies exclusively 
on the range of input data, the model 
prediction might differ from the mea-
sured aging rate if the LIB is operated 
beyond the tested range.

SEMI-PHYSICAL 
MODELING APPROACH

With the semi-physical approach, the 
physical-chemical interactions are real-
ized by the embedded mathematical 
formula to reflect the effect of degrada-
tion factors such as temperature, State 
of Charge (SOC), Depth of Discharge 
(DOD), and charge/discharge rate (C-rate). 
The mathematical correlations account 
for the effect of physical phenomena 
such as a growth of the passivation layer 
(Solid Electrolyte Interphase, SEI), lith-
ium plating and other reactions that take 
place in the battery during operation. 
Furthermore, contrary to fully physical 
model, there is no need for interior char-
acteristics of the battery cell to parame-
terize the semi-physical model. Accord-
ingly, the electrothermal behavior is ini-
tially calibrated based on Beginning of 
Life (BOL) tests such as Hybrid Pulse 
Power Characterization (HPPC). Hereaf-
ter the model is further characterized by 
calendric and cyclic aging tests for the 
different aging factors to account for the 
battery cell performance in various State 
of Health (SOH) conditions. These life-
time tests should be done for at least 
two cells with a reasonable time frame 
respectively cycle frame to cover all the 
relevant effects.

The described data processing of the 
tests is done model-based. Here, the 
results are analyzed, and unsuitable 
measuring points are removed. This 
enables the best possible model accu-
racy. In order to cover different applica-

tions, a difference is made between 
cyclical ageing (charging and discharg-
ing) and calendar ageing during calibra-
tion. The resulting ageing factors are 
implemented in the semi-physical model 
shown in FIGURE 2. This model is com-
posed of two different sub-models. While 
the electrothermal sub-model serves to 
predict the electrothermal performance 
of the battery, the aging sub-model pro-
vides the capacity fade and resistance 
increase over lifetime.

For the electrothermal behavior of the 
cell, the Thevenin equivalent circuit dia-
gram model is used with up to three 
Resistor-Capacitor branches (RC-ele-
ments) and combined with a differential 
equation for evaluating the SOC. For 
thermal behavior, lumped model ap
proach has been adopted in which ther-
mal point masses are connected via  
thermal resistances. Therefore, the cell  
is separated into thermal masses and 
resistances and, depending on the use 
case, connected to a cooling plate or 
directly to the coolant (direct cooling). 
The second sub-model describes the 
aging behavior of the battery based on 
the driving cycles over the lifetime. The 
input cycles are decomposed into charge, 
discharge, and storage (idle) periods and 
analyzed corresponding to the aging 
effects. Performing statistical analysis 
(histograms), the capacity fade and 
impedance rise with the aging factors 
are calculated and then integrated over 
time for the total aging.

This model can be used to predict life 
and to analyze the influence of parame-
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FIGURE 1 Classification of battery lifetime modeling approaches (© FEV Europe GmbH)
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ters by comparing the frequency of dif-
ferent temperatures, C-rate and SOC 
levels. To make the model easy to use, 
a  Graphical User Interface (GUI) was 
developed, FIGURE 2. With the described 

input an accuracy of ±2 % can be 
archived for an aging of up to 80 % SOH. 
FIGURE 3 shows a comparison for C-rate 
and temperature dependences of the 
model results compared to countering 

real test values based on Preger et al. [2]. 
As observed, the model results exhibit 
an accuracy of 2 % in end of life. Out 
of these results it is visible that the ini-
tial exponential drop in capacity (due 
to SEI formation) is captured and pre-

dicted by the model. After this 
drop, a linear behavior is modelled. 
This model enables the most effi-
cient analysis of the driving pro-

files with the following optimization.

PHYSICAL APPROACHES

The physical model consists of mass con-
servation and charge conservation equa-
tions within distinct region borders of 
the battery. Consequently, this approach 
provides the highest predictability with 
the drawback of a slower computational 
speed compared to other approaches. 
The models developed can be divided 
into three categories: Single Particle 
Model (SPM), continuum model and het-
erogeneous model. While the latter two 
are denoted as physical models, the for-
mer one is labeled as a reduced physical 
modeling approach. FIGURE 4 illustrates 
the schematics of the physical modeling 
approaches for batteries.

REDUCED PHYSICAL  
MODELING APPROACH

The fundamental assumption in the  
SPM is that active material particles 
within each electrode exhibit similar 
behavior. Therefore, each electrode is 
approximated by a single representa-
tive particle in which lithiation and 
delithiation occur. In the SPM a uniform 
current across the electrodes is assumed 
while the dynamics within the electro-
lyte are ignored. Therefore, in contrast 
to the other physical models, there are 
no partial differential equations for elec-
trolytes, which results in less computa-
tional effort. However, such a model re
duction restricts the applicability of the 
conventional SPM to low C-rates. To ad
dress this limitation the model intro-
duced in this work incorporates electro-
lyte effects into the SPM framework re
ferred to as SPMe. Such a reduced model 
enables to resolve battery’s kinetics more 
accurately upon cycling at high rates as 
compared to the conventional SPM. In 
addition, the thermal behavior is intro-
duced into the model (SPMeT) to consider 
temperature-dependent aging effects.

S
O

H
[%

]

S
O

H
[%

]

Equivalent full cycles [-] Equivalent full cycles [-]

1C test 

1C model

3C test 

3C model

25-°C test 

25-°C model

15-°C test 

15-°C model

(a) (b)100

95

90

85

80

100

95

90

85

80
0 200 400 600 0 200 400 600

FIGURE 3 Validation of the semi-physical model with testing data [2] for different C-rates (a) and  
temperature dependencies (b) (© FEV Europe GmbH)

FIGURE 2 Description of the semi-physical model approach (a) and representation of the developed 
model graphical user interface (b) (© FEV Europe GmbH)
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Aging of LIBs is caused by complex 
reactions occurring concurrently at 
different locations in the battery. The 
rate of degradation varies across differ-
ent stages of a load cycle, depending 
on the potential, local concentration, 
temperature, and the direction of the 
current. To allow a prediction of the 
impedance rise and the capacity fade 
followed by the degradation the kinet-
ics of the reactions are mathemati-
cally defined and coupled to the dyn
amics of the battery. Finally, the 
model i s parameterized in terms 
of kinetic variables, enabling a pred
iction of the lifetime under different 
operating conditions, like for example 
fast charging.

FULLY PHYSICAL 
MODELING APPROACH

The fully physical model presented here 
includes two approaches: the continuum 
model and the heterogeneous model. 
The former one describes the underlying 
electrochemical mechanisms along the 
electrode’s thickness (x-coordinate) and 
r-coordinate of the active material parti-
cle and is therefore also referred to as a 
Pseudo-Two-Dimensional model (P2D). 
The continuum model can be further 
upscaled to include the in-plane direc-
tions (y- and z-coordinates) which is 
then specified as P4D model. While the 
P4D model allows the inhomogeneities to 
be resolved across the correct collector 

(a)
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FIGURE 4 Schematic  
representation (a) to (c)  
of physical modeling approaches  
(© FEV Europe GmbH)
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plane in addition to the thickness direc-
tion, the choice of the appropriate con-
tinuum approach is made according to 
the existing computational resources in 
each case study. Referring to the P2D 
continuum approach as benchmark, the 
precision of the developed SPMeT and 
conventional SPM can be compared 
associated to the US06 drive cycle, repre-
senting highway driving comprising of 
rapid acceleration and high velocity. 
Accordingly, FIGURE 5 indicates the cell 
currents, cell voltages and electrolyte 
potentials (​Δ ​ϕ​ e​​​), calculated by P2D 
approach, SPMeT and SPM. As observed, 
the cell voltages and electrolyte poten-
tials predicted by SPMeT are sufficiently 
accurate and match the prediction by the 
P2D approach.

Despite a fully physical description 
of the LIB in the continuum approach, 
it simplifies the complex electrode 
microstructure and treats it as a con
tinuum using approximation methods, 
for example the Bruggeman formula-
tion. The simplified representation 
using the continuum approach has 
advantages in terms of computational 
effort but does not fully represent the 
complex processes.

In contrast, the heterogeneous app
roach involves a more complex physi-
cally based modeling of the LIB. Virtual 
3-D microstructural spatial domains 
are incorporated to address the porous 
electrode’s morphology. While the het-
erogeneous approach offers the highest 
accuracy, the computational speed is 
reduced. To account for the degrada-
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FIGURE 6 Study of the mechanical behavior: devel-
opment of the digital morphology of an NMC cath-
ode electrode (a); calculated deformation of the 
NMC electrode microstructure (b); resulting 
detachment of NMC particles and carbon-binder 
domain (c); degradation of the electrochemical 
impedance spectrum impacted by mechanical 
degradation (d) and through fatigue cycling (e)  
(© FEV Europe GmbH)
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tion phenomena, the parasitic reac-
tions are spatially defined and cou-
pled to the electrochemical dynamics 
of the battery. This provides the ability 
to resolve the inhomogeneities in degra-
dation rate across the battery, which 
become more pronounced under criti-
cal operating conditions such as fast 
charging and low temperatures.

FIGURE 6 (a) shows an example of 
themorphology of a Nickel-Manganese-
Cobalt (NMC) cathode electrode for 
investigating the mechanical defor
mation of the electrode during lithia-
tion, FIGURE 6 (b). Following that, 
the occurrence of mechanical degra
dation has been visualized by calcu
lation of the detachment between the 
NMC particles and the carbon-binder 
domain in cycled state, FIGURE 6 (c). 
The mechanical deterioration of the 
electrode has been also realized in 
terms of electrochemical impedance 

spectroscopy to attain a deep under-
standing on the mechanics-induced 
effects on electrochemical performance 
of LIBs, FIGURE 6 (d) and FIGURE 6 (e).

SUMMARY

In order to map the battery lifetime for 
BEVs more accurately, FEV has devel-
oped a set of modeling approaches. 
The introduced models fulfill the exist-
ing requirements of the BEV market in 
terms of various applications, ranging 
from the on-board design to the battery 
development process as well as from 
cell level up to system level. Conse-
quently, significant time and cost bene-
fits are achieved by strongly reducing 
expensive experimental aging testing. 
Since all the presented models are able 
to predict the battery aging accurately 
enough, the decision on the required 
model approach and its calibration 

method is cautiously made by account-
ing for the existing boundaries in each 
project to realize driving range extension 
and fast charging ability in BEVs.
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