
Engineering with Computers (2001) 17: 339–353
 2001 Springer-Verlag London Limited

EFDEX: A Knowledge-Based Expert System for Functional Design of
Engineering Systems

W. Y. Zhang, S. B. Tor, G. A. Britton and Y.-M. Deng
Design Research Center, School of Mechanical & Production Engineering, Nanyang Technological University, Singapore

Abstract. This paper presents a knowledge-based system,
‘EFDEX’, the Engineering Functional Design Expert, which
was developed using an expert system shell, CLIPS 6.1, to
perform intelligent functional design of engineering systems.
On the basis of a flexible, causal and hierarchical functional
modeling framework, we propose a knowledge-based func-
tional reasoning methodology. By using this intelligent func-
tional reasoning strategy, physical behavior can be reasoned
out from a desired function or desired behavior, and inter-
connection of these behaviors is possible when there is
compatibility between the functional output of one and the
corresponding functional requirement (e.g. driving input) of
the next one. In addition, a complicated, desired function
which cannot be matched with the functional output of any
behavior after searching the object-oriented behavior base,
will be automatically decomposed into less complex sub-
functions by means of relevant function decomposition rules.
An intelligent system for the functional design of an auto-
matic assembly system provides an application of this intelli-
gent design environment, and a demonstration of its method-
ology. In this paper, a knowledge-based functional
representation scheme which integrates two popular AI rep-
resentation techniques (object-oriented representation and
rule-based representation) is also proposed as a prelude to
a knowledge-based functional design system.

Keywords. Expert system; Functional design; Func-
tional modeling; Functional reasoning; Knowledge-
based; Object-oriented

1. Introduction

For years, Computer-Aided-Design (CAD) has pro-
vided the industry with advanced geometric mode-
ling and capturing techniques, relieving designers
and engineers from the mundane tasks of modeling

Correspondence and offprint requests to: S. B. Tor, School of
Mechanical and Production Engineering, N3 Nanyang Technologi-
cal University, Nanyang Avenue, Singapore 639798. E-mail:
msbtor�ntu.edu.sg

and drafting, while improving accuracy, consistency
and productivity. CAD has proved to be an invalu-
able tool to designers, and is well suited for the
downstream stage of design. However, what is more
critical is the upstream stage of design, i.e. the
initial and most abstract stage of the design process,
starting with a desired specification and resulting in
concept variants. This is the area where CAD tech-
nology is still not well developed. Conceptual
design, being the early stage of design, is character-
ised by information that is often imprecise, inad-
equate and unreliable. More importantly, a poorly
conceived design concept can never be compensated
for by a good, detailed design. Essentially, this stage
is function-driven and function-oriented, because the
main design focus at this stage is to find a design
solution that is able to achieve the required func-
tions. Functional design is a new perspective on
research into this design process.

The major drawback of traditional CAD tech-
nology is that it cannot perform functional design
efficiently, because it doesn’t have the built-in intel-
ligence to perform functional reasoning, and lacks
the knowledge to draw conclusions from inadequate
and approximate information that is available. With
recent advances in the field of Artificial Intelligence
(AI), particularly symbolic representation and related
problem-solving methods, intelligent functional
design techniques have now become possible.

The main objective of our research project
EFDEX is to develop an intelligent functional
reasoning methodology based on an appropriate
functional modeling framework, so that computers
can play a more active role in the functional
design process.

In this project, we develop a flexible, causal and
hierarchical functional modeling framework, on the
basis of which we propose a knowledge-based func-
tional reasoning strategy to reason out the physical
behavior from a desired function or behavior. Inter-

340 W. Y. Zhang et al.

connection of these behaviors is possible when there
is compatibility between the functional output of
one and the corresponding functional requirement of
the next one. Of course, connectivity must strin-
gently satisfy all the functional constraints imposed
on the problem domain. The behavior representation
is then used to select and arrange embodiments
(abstractions of physical artifacts) to develop a set
of potential concept variants.

In this paper, a knowledge-based functional
representation scheme which integrates two popular
AI representation techniques, object-oriented rep-
resentation and rule-based representation, is also pro-
posed as a prelude to a knowledge-based functional
design system.

In EFDEX a distinct solution search strategy is
adopted. The inference engine always scans the
object-oriented behavior base to search for the
matching behavior whose functional output matches
the desired function as a starting point. Only if no
matching behavior can be found will the desired
function be automatically decomposed into less com-
plex sub-functions, by means of a certain domain-
specific function decomposition rule. This search
strategy can prevent the domain problem from being
decomposed ‘too fine’, which may cause combina-
torial explosion.

EFDEX was developed using an expert system
shell CLIPS (C Language Integrated Production
System) [1], which was developed by the Software
Technology Branch, NASA/Lyndon B. Johnson
Space Center. A case study for intelligent functional
design of the automatic assembly system for manu-
facturing electronic connectors is used to demon-
strate the methodology and application of EFDEX.

2. Function and Functional Design

2.1. Definition of Function

There is no uniform definition of function, with
different researchers [2–4] attributing different
meaning either to indicate the purpose or the action
of a design. However, almost all of them indicate
that there is a tight coupling between function and
behavior. In general, function is what a design is
going to do, while behavior is how a design will
do it. Thus, we present the following understanding
of function:

The function of a design system is its purpose and
intention in some context, and is often expressed as
functional requirements and restrained by functional

constraints. Function characterizes the abstracts of
behavior.

Here we also impose the functional constraint in
the functional definition, which is a kind of function-
related design constraint, and should be stringently
satisfied in the functional design process.

2.2. Specification of Function

Functions can be formulated as pairs of a transitive
verb and a noun, and sometimes a complement is
also necessary. The task to be carried out is determ-
ined by the combined verb-noun pair and its comp-
lement. The verb is used to describe the action
relating to the function, e.g. ‘insert’, ‘change’, etc.
The noun is used to describe the target of the
action. The complement is used to provide additional
information to the verb-noun pair, e.g. ‘greatly’, ‘to
a great extent’, etc.

A functional vocabulary thesaurus technique [5]
is employed to build a functional vocabulary library
consisting of commonly used or domain-specific
verbs, nouns and complements. A hierarchical and
flexible FMF classification scheme [6] provides a
basis for the organization (structuring) and mani-
pulation (creating, indexing and retrieving) of func-
tional terms. That is, each function category corre-
sponds with some commonly used functional
vocabularies, either general- or domain-specific.
These functional vocabularies are compiled and
stored in the functional vocabulary library, which
will be used whenever the designer needs to specify
function throughout the design process.

Each instantiable function may be accessed via a
number of associated keywords – the common usage
terms by which they are generally known. The
keywords in turn will appear in the functional
vocabulary library containing a synonym table of
those keywords. Using these facilities, it is possible
to help the designer, by means of prompts and
iteration, to establish the context of the design, and
the desired functions.

2.3. Functional Design

The design process which achieves functional
requirements and stringently satisfies functional con-
straints are referred to by us as ‘functional design’.
The objective of functional design is to provide
computer-aided tools to link design functions with
the structural (physical) embodiments used to realize
the function [7].

341EFDEX

Realizing that environment is also an important
design characteristic during functional modeling,
some researchers [8,9] argue that a product can only
function in a certain (intended) working environ-
ment. Thus, in our proposed functional design pro-
cess, we also capture aspects of the working
environment so as to develop a complete functional
modeling framework.

With the above understanding of function and
its related design characteristics (behavior, structure,
environment and constraint), we can summarize that
during functional design, we may not consider any
of them independently because all of them relate
tightly with each other in a unified design system.
Functional design (Fig. 1) starts from functional
requirements and functional constraints, via
behaviors which fulfil the functions and interact with
the working environment, and results in mapping
potential physical structures. Here, function corre-
sponds to the abstract stated behavior, and structure
corresponds to the concrete stated behavior. The
potential physical structures are then evaluated and
ranked to generate a best final solution concept.

3. Extended FEBS Functional Modeling
Framework

As a design task can be defined as transforming the
function of an artifact into its physical product
description, functional modeling exists ubiquitously
to model a design and requirements from its func-
tional aspects so as to allow reasoning about its
function for various activities. During functional
modeling, there should be a relationship framework

Fig. 1. Basic flow of functional design process.

between function and other design characteristics
(e.g. structure, behavior and environment). Using
an appropriate functional modeling framework, the
system can further perform a functional reasoning
process on the basis of predetermined relationships.

In EFDEX, we have extended Deng’s [9]
dual-step Function-Environment-Behaviour-Struc-
ture (FEBS) modeling framework, which was
initially developed for an interactive functional
design environment, to develop our proposed
Extended FEBS modeling framework, which will be
suitable for an intelligent functional design environ-
ment. The initial dual-step FEBS model has involved
diverse design characteristics (function, behavior,
structure and environment) in a unified design
environment, and proved to be suitable for an inter-
active functional design environment. However,
when applied in an intelligent functional design
environment, its dual-step modeling strategy which
means the first step (initial function decomposition
and conversion) and the second step (causal
behavioral process generation) is inflexible due to
its fixed up-down sequence. Any problem encoun-
tered in the second step has to be solved within
that level, and cannot be returned to the previous
level for further function decomposition. Hence, we
develop an Extended FEBS modeling framework to
solve this problem.

In our proposed Extended FEBS model, the inter-
relationships among various design characteristics
will be elaborated and stressed. Behaviour is mainly
represented in terms of driving input, functional
output and side effect, as adapted from the initial
dual-step FEBS modeling framework [9]. Before
analyzing it, we adopt the notation specified by
Kusiak and Szczerbicki [10], which is shown in
Figure 2.

According to this notation, Fig. 3 shows an
illustrative example of the Extended FEBS modeling
framework, which consists of three layers: the func-
tion, behavior and environment layers. A continuous
directed line indicates an internal relationship in the
same layer. A dashed directed line means an external
relationship between different layers.

The highest layer is a function layer, in which
the overall functional requirement is usually decom-
posed into sub-functions hierarchically in such a
way that its representation gradually becomes con-
crete and fine. For example, function F1 is decom-
posed into sub-functions F11 and F12; function F11
is decomposed into its sub-functions F111, F112
and F113. However, one problem is at which level
the function decomposition should be carried out,
or what the starting or stopping points of the

342 W. Y. Zhang et al.

Fig. 2. Graphical and literal representation of AND/OR clauses
[10] Copyright  1990 by ASME.

Fig. 3. Extended FEBS functional modeling framework.

decomposition should be. The relevant problem solv-
ing strategy will be illustrated in Section 5.3 with
the aid of knowledge engineering.

The middle layer is a behavior layer. Because
structure is the concrete spatial configuration of
behavior, if the behavioral configuration of an over-
all design object is acquired, the structural configur-
ation is also determined. Hence, structure is actually
involved in the behavior layer implicitly. In the
behavior layer, a set of behaviors is interconnected
with each other, with one’s functional output achiev-
ing the other’s functional requirement (e.g. driving
input), so as to achieve the external function in the
function layer. Of course, all the connected
behaviors must stringently satisfy the imposed func-
tional constraints. For example, behavior B3’s func-
tional output and behavior B4’s functional output
can mutually achieve behavior B2’s functional
requirement (e.g. driving input), while behavior B2’s
functional output can achieve behavior B1’s driving
input. Finally, behavior B1’s functional output achi-
eves the external function F11 in the function layer.
In summary, function F11 is achieved by behavior
B1, whose functional requirement is achieved by its
interconnected behaviors. In addition, all these selec-
ted behaviors, such as B1, B2, B3 and B4, must
stringently satisfy the imposed functional constraints.

We can see that there is a tight relationship
between function and behavior. For example, func-
tion F11 in the function layer can be achieved by
behavior B1 in the behavior layer. The driving input
of behavior B3 in the behavior layer can be pro-
jected onto the function layer to be functional
requirement F21, which can be broken down into
sub-functions F211 and F212 by means of function
decomposition. However, one problem is when a
function in the function layer should be fulfilled by
a behavior in the behavior layer, and when the
functional requirement of a behavior in the behavior
layer should be projected onto the function layer
for further function decomposition. The relevant
problem solving strategy will be illustrated in Sec-
tion 5.3 with the aid of knowledge engineering.

The lowest layer is an environment layer. A
working environment can enable the functional out-
put to achieve the functional requirement of behavior
in the behavior layer. For example, the functional
output of environment E1 in the environment layer
provides the driving input of behavior B4 in the
behavior layer. The point at which to match the
functional requirement of behavior in the behavior
layer to the functional output of the environment in
the environment layer will be discussed in Section
5.3 with the aid of knowledge engineering.

343EFDEX

In this Extended FEBS modeling framework,
function, behavior and environment are respectively
modeled in three layers with hierarchical, interactive
and causal relationships, and its modeling strategy
is in a flexible, two-way mode which is quite
different from that of the initial dual-step FEBS
model [9]. For example, a function in the function
layer can be achieved by a behavior in the behavior
layer, as is the transformation from the function
layer to the behavior layer; on the other hand, a
complicated functional requirement of a behavior in
the behavior layer can be projected onto the function
layer to be broken down into sub-functions, as is
the transformation from the behavior layer to the
function layer. The flexible modeling strategy of
this Extended FEBS model will be quite useful in
developing an intelligent functional design environ-
ment.

In the Extended FEBS modeling framework, we
have developed the functional relationships among
function, behavior, constraint, structure and environ-
ment, especially the hierarchical and causal relation-
ships among function, behavior and environment.
Based on this flexible, causal and hierarchical mode-
ling framework, an intelligent functional reasoning
process can be performed successfully with the aid
of knowledge engineering, as will be introduced in
Section 5.3.

4. Knowledge-Based Functional
Representation

As an important branch of AI, knowledge-based
techniques for the function-oriented upstream stage
of the design process have been an active area of
research for the past decade, and many research
papers have been published. In the functional design
domain, a knowledge-based system is mainly used
to solve modeling and reasoning problems. The most
common forms of knowledge representation include
rules, frames and objects. The rule-based paradigm
was adopted by Li et al. [11] to automate the
computational synthesis of the conceptual design of
mechanisms. The design algorithm employs best-
first heuristic searches in a library of mechanical
devices, represented and classified qualitatively.
Moulianitis et al. [12] presented a rule-based system
for the conceptual design of grippers for handling
fabrics, with its reasoning strategy based upon a
combination of a depth-first search method and a
heuristic method. The heuristic search method finds
a final solution from a given set of feasible solutions,
and can synthesize new solutions to accomplish the

required specifications. Besides rule-based represen-
tation, frame-based representation is also widely
used. Tong and Gomory [13] used a frame-based
structure to model parts of standard kitchen
appliances. They use a goal-driven strategy. An
increasingly popular modeling representation is the
object-oriented representation. Akagi and Fujita [14]
used an object-oriented architecture for supporting
the functional design process. The model for the
design process is constructed using networks
composed of knowledge elements, which are rep-
resented modularly in objects. This modeling results
in the determination of design variables flexibly in
the conceptual design process. Gorti et al. [15]
developed an object-oriented representation for pro-
duct and design processes, with which design oper-
ators update and transform design contexts, and
support a range of design automation, extending
from manual design all the way to automated design
(with various reasoning mechanisms, e.g. inherit-
ance, rules, constraints and so on).

In our research project, as a prelude to a knowl-
edge-based functional design system, we propose a
knowledge-based functional representation scheme,
in which rule-based and object-oriented knowledge
representation are integrated to represent the func-
tion-related design characteristics in an intelligent
design environment.

4.1. Rule-Based Knowledge Representation

A rule-based system allows the intuitive expression
of relationships among data items (through rules),
and facilitates symbolic processing of those rules to
determine what conclusions may be drawn from the
data. In EFDEX, the rule paradigm is very important
in performing the intelligent functional reasoning
process. Some rules in the rule base can be treated
as a rule subset to be attached to an independent
entity or design object. The attached rule subset can
control the design procedure directly relating to
this design object, and expresses causal knowledge
involving different design objects. This mechanism
also allows the design object to be defined without
repetition of a basic rule subset. How the rule subset
is attached to a design object will be discussed in
Section 4.2. In this section, we present two kinds
of production rules classified into domain-specific
and general rules.

4.1.1. Domain-Specific Rules
Domain-specific rules refer to a set of rules that are
used to solve domain dependent problems. In

344 W. Y. Zhang et al.

EFDEX, we have used the proposed methodology
to perform a functional design of an automatic
assembly system for manufacturing electronic con-
nectors. In this application domain, 255 domain-
specific rules have been developed, some of which
are formulated in Table 1.

In the case that a desired domain-specific function
(overall functional requirement or the functional
requirement of any retrieved behavior) is too compli-
cated to be matched with the functional output of
any behavior, the desired function should be broken
down into fewer complex sub-functions by means
of some domain-specific function decomposition
rules, like the rules mentioned in Table 1, to facili-
tate the subsequent search for causal matching
behaviors.

4.1.2. General Rules
General rules refer to a set of rules that are used
to solve general problems. EFDEX can be applied
to various application domains after changing the
domain-specific behavior base and domain-specific
rules. We formulate the examples of some general
production rules as follows:

Rule Anti Loop
IF last matching behavior object found

belongs to a previously selected list of
present searching branch

THEN discard this searching branch
AND start searching next branch

Table 1. Examples of domain-specific rules

Rule Name IF (condition) THEN (conclusion)

Decompose1 a desired function is Insert terminal into decompose it into Clamp housing after locating
housing housing

AND Insert terminal after holding terminal
Decompose2 a desired function is Clamp housing after decompose it into Locate housing

locating housing AND Clamp housing
Decompose3 a desired function is Insert terminal after decompose it into Hold terminal

holding terminal AND Insert terminal
Decompose4 a desired function is Transmit torque decompose it into Apply torque

AND Receive torque
Decompose5 a desired function is Provide translational decompose it into Provide translational motion

motion with a certain range AND Control moving range
Decompose6 a desired function is Compensate offset decompose it into Compensate radial offset by

AND precision constraint is high applying a sliding element
AND Compensate axial offset by applying a
sliding element

Decompose7 a desired function is Compensate offset decompose it into Compensate radial offset
AND precision constraint is not high without using a sliding element

AND Compensate axial offset without using a
sliding element

Decompose8 a desired function is Bend terminal after decompose it into Hold terminal
holding terminal AND Bend terminal

This is an anti-looping rule, without which some
behavior objects may be called recursively. This
rule is applied each time a behavior object is found.

Rule Search Branch End
IF all driving inputs of behavior objects are

available in environment
AND side effects of behavior objects are suc-

cessfully prevented
THEN terminate this branch
AND start searching next branch

This rule is used to a terminate a searching branch
and put it in the configuration list. This rule is
applied each time a behavior object is retrieved to
working memory.

4.2. Knowledge-Based Functional
Representation Scheme

4.2.1. Knowledge-Based Functional
Representation Scheme and Object-Oriented
Behaviour Base
In Section 2, we described various design character-
istics related to functional design (i.e. function,
behavior, structure, environment and constraint). In
Section 4.1, we presented production rules whose
subsets can be attached to the intelligent functional
objects. In this section, we present the knowledge-
based functional representation scheme, in which
behaviors are defined as intelligent functional objects

345EFDEX

encompassing various design characteristics and rule
subsets, and saved in the object-oriented behavior
base.

Here the object-oriented behavior representation
we originally presented [16] is refined, and the rule
subset and functional constraint satisfaction attri-
butes are encapsulated explicitly in the behavior
object. These important enhancements will enable
us to successfully implement the methodology in a
computer program, which can perform functional
design more intelligently.

Object-orientation is usually both a language fea-
ture and a design methodology [17]. An object is
an entity that combines its data structure and its
methods into one. We define a behavior object as
an intelligent functional object. The most generic
behaviors can be represented as the top-most generic
class object. This class object is defined as follows:

Class Behaviour {
Basic design attributes:

Name:
Structure:
Driving Input:
Functional Output:
.

Functional constraint satisfaction attributes:
Precision:
.

Rule subset:
Anti Loop;
Search Branch End;
.

Methods:
Input Data ();
Output Data ();
.

}

As shown in the above pseudo-code, the generic
class Behaviour encapsulates basic design attributes,
functional constraint satisfaction attributes, the rule
subset and methods all of which will be illustrated
in detail in the following.

The basic design attributes Name, Structure, Driv-
ing Input and Functional Output are (respectively)
the name, meeting structure, driving input and func-
tional output of defined behavior. Because function
is embodied with behavior, and behavior is met
with structure, we encapsulate the driving input (a
kind of functional requirement), functional output
and structure in the behavior object. Note that the
design attribute Structure does not mean that only
the structure name can be incorporated. In fact, it
is the schematic geometric structure. Figure 4 shows

Fig. 4. Schematic geometric structures of some behaviours.

the schematic geometric structures of some
behaviors in a case-specific domain. Driving Input
and Functional Output are the causal attributes of
behavior. They are specific kinds of functional
terms, which can be manipulated by means of a
functional vocabulary library introduced in Section
2.2. They are very useful for intelligent causal
reasoning techniques, which automatically search for
an unknown behavior object based on the known
functional description or known behavior object.

The functional constraint satisfaction attributes
(e.g. Precision) are the attributes to satisfy relevant
functional constraints. Precision can be assigned
with three alternative concrete values: high, middle
and low. It will be an unsuccessful functional design
only to achieve functional requirements without con-
sidering functional constraints simultaneously.

The rule subset includes some attached rules,
such as Anti Loop and Search Branch End, which
have been introduced in Section 4.1.2 and are
(respectively) used for anti-looping and ending the
search branch. The attached rule subset can control
the relevant design procedure relating to this
behavior object.

The methods such as Input Data () and Output
Data () are also encapsulated as procedural pro-
grams. This mechanism allows the behavior objects
to be defined without repetition of some basic pro-
cedural programs. The method Input Data () will
help the user to input the required concrete values
to all of the design attributes. The method Output
Data () will return the relevant values of design
attributes to the working memory.

346 W. Y. Zhang et al.

4.2.2. Inheritance Property of Knowledge-Based
Functional Representation Scheme
The inheritance mechanism from object-oriented
technology makes the data structure of this represen-
tation tight, concise and easy to manipulate, thus
making it possible to avoid any repetition of com-
mon data. With this mechanism, the other kind of
behavior class, which includes the extra basic design
attribute Side Effect, can be represented as the child
class object of the generic class Behaviour. It can
inherit the latter’s attributes, rule subset and
methods, and also add specific attributes, rule subset
or methods pertinent to itself. For example, the child
class can be represented as:

Class Behaviour With Side Effect
{

Inherit: Behaviour
Basic design attributes:

Side Effect:
.

Method:
Prevent Side Effect ();
.

}

Here, the basic design attribute Side Effect defines
the side effect of the defined behavior object. It is
a specific kind of functional term which can be
manipulated by means of the functional vocabulary
library, introduced in Section 2.2. The method Pre-
vent Side Effect () can prevent this side effect by
searching for and retrieving another behavior object
whose functional output can prevent the former
behavior’s side effect.

A good functional design system should support
seamless transformation from the functional design
phase to the detailed design phase. Our proposed
knowledge-based functional representation scheme
can facilitate the capture of both abstract and
detailed knowledge, and allows mapping from one
kind of knowledge to another. This is because all
of the detailed design-related data such as various
parameters (properties) of function-related design
characteristics can also be incorporated in this rep-
resentation scheme. In the generic behavior class
object (introduced in Section 4.2.1), the basic design
attributes such as driving input, structure, and func-
tional output, are only expressed qualitatively,
exclusive of detailed design parameters which should
be expressed quantitatively. For example, the Func-
tional output of a mechanical device Cylinder is only
expressed as Provide translational motion, while the
detailed design parameters such as speed or load
are not illustrated. Owing to the inheritance mech-

anism and object structure, a lower-level detailed-
behavior class object which encapsulates all the
quantitative detailed design parameters, and also
inherits the qualitative design attributes from the
functional design phase, can be produced to aid in
the seamless integration between the functional
design phase and the detailed design phase. Its
concrete representation scheme is ignored in this
paper.

The above behavior objects are represented by
class. A class is only a template for the structure
of objects, which only encapsulates attributes, rule
subset and methods, not concrete data. We can
instantiate a behavior class by assigning concrete
data to its attributes, to result in a behavior instance.
When a new behavior object is added to the object-
oriented behavior base, it is compared with the
objects that are already in the behavior base. If it
is the same as a behavior class that already exists,
it can be represented as an instance of that class.
If it is similar to a class but has different parts, it
is necessary to build a new object. In this case, the
different parts are described in the new class, while
the similar parts are derived from the class of the
higher level by inheritance. Thus, object-oriented
representation is very convenient for maintaining
and modifying the behavior base.

5. Architecture of EFDEX

We have proposed an Extended FEBS modeling
framework in Section 3 to build the functional
relationships among function, behavior, constraint,
structure and environment, and a knowledge-based
functional representation scheme in Section 4 to
allow intelligent communication with the computer
software. On the basis of these, we now introduce
the EFDEX expert system.

5.1. Overview of EFDEX

There are three main components that constitute
EFDEX: a user interface, a knowledge base and an
inference engine:

1. The user interacts with EFDEX through a user
interface. The design of the user interface
employs user-friendly features such as ‘question-
and-answer’, being menu-driven and with a GUI
to guide the user throughout the consultation
session.

2. The heart of EFDEX is a hybrid knowledge base
which integrates the rule base and object-oriented

347EFDEX

behavior base effectively. Rules can be used to
express causal knowledge involving one or sev-
eral design objects, and objects can also encapsu-
late rules. How we perform the integration of the
object-oriented behavior base and rule base in a
hybrid knowledge base has already been intro-
duced in Section 4.

3. The inference engine is the interpreter for the
knowledge base. The problems under examination
during functional design involve both goal- and
data-driven processes, and therefore backward
chaining and forward chaining inference are used.
In the section that follows, we introduce the
inference engine in detail.

5.2. Formalizing the Knowledge

Knowledge formalization refers to refining the func-
tional design knowledge into a form suitable for
direct implementation in a computer system. In the
present work, CLIPS [1], from the Software Tech-
nology Branch at the NASA/Lyndon B. Johnson
Space Center, was used as the development tool.

Other than just one mode of knowledge represen-
tation (i.e. Rules), knowledge representation is also
available through Objects using COOL (CLIPS
Object Oriented Language) and Deffunctions (CLIPS
Functions). Hence, three modes of knowledge rep-
resentation are available in CLIPS. These features
are suitable for our proposed prototype knowledge-
based system.

Take the domain-specific function decomposition
rule Decompose2, introduced in Section 4.1.1, as an
example. Below is its source code in CLIPS:

(defrule Decompose2 Line 1
(declare (salience 50)) Line 2
?parent-function�-(function

(Verb clamp)(Noun housing)
(Complement after locating housing) Line 3
(Matched no)(Decomposed no))

=�
(modify ?parent-function Line 4

(Decomposed yes))
(assert (function (Verb locate)

(Noun housing)
(Complement NULL)(Matched no)
(Decomposed no))) Line 5

(assert (function (Verb clamp)
(Noun housing)
(Complement NULL)(Matched no)
(Decomposed no)))) Line 6

Line 1 is the rule name. In line 2, a salience of

50 is declared in this rule. This feature is used to
set the order of rule activation and execution. Line
3 denotes the left-hand side (condition) of the rule,
and lines 4, 5 and 6 denote the right-hand side
(conclusion) of the rule. Line 3 shows that a desired
function clamp housing after locating housing is
needed to fire the rule. Refer to Section 2.2: a
function is formulated as ‘Verb + Noun + Comp-
lement’. In this left-hand side of the rule, Verb =
clamp, Noun = housing, Complement = after locat-
ing housing. Verb and Noun are single-slots, while
Complement is a multi-slot. To fire the rule, the
desired function should also be one that has not yet
been matched by a behavior object, or decomposed.
Line 4 shows that the desired function has already
been decomposed. Lines 5 and 6 are respectively the
generated sub-functions locate housing and clamp
housing. Similar explanation as for line 3 is given
for lines 5 and 6, except that these two sub-functions
have no complement.

5.3. Inference Engine and Intelligent
Functional Reasoning Strategy

The inference engine applies the knowledge in the
knowledge base to the case-specific data to arrive
at some solution or conclusion. With the inference
engine, Deng’s [9] Causal Behavioral Process (CBP)
reasoning framework, which was initially developed
for interactive functional design, was extended by
us to implement the intelligent causal behavioral
reasoning strategy aiming at intelligent functional
design. In EFDEX, the intelligent functional reason-
ing strategy of the inference engine includes data-
driven and goal-driven approaches. The procedures
that implement the control cycle are separated from
the knowledge base. During analysis of the intelli-
gent functional reasoning strategy, we adopt the
notation shown in Fig. 2.

Figure 5 illustrates an example of the intelligent
functional reasoning strategy of EFDEX. Recall
from Section 4.1 that there are some domain-specific
rules and general rules for knowledge representation,
some of which are quoted here. The starting point
of the inferencing strategy is to put the overall
functional requirement F1 into the working memory,
and scan the behavior base to seek the behavior
whose functional output can match functional
requirement F1. Of course, all the retrieved
behaviors must stringently satisfy the imposed func-
tional constraints, and this statement will not be
repeatedly described in the following discussions. In
practice, functional constraints should be considered
together with functional requirements.

348 W. Y. Zhang et al.

Fig. 5. Search tree of EFDEX.

If no matching is found after scanning the entire
behavior base, then the inference engine scans the
rule base to search for the problem solving pro-
duction rules so as to break down the desired func-
tion into less complex sub-functions. Now if the
premise of one domain-specific function decompo-
sition rule is satisfied by overall functional require-
ment F1, then this rule will be fired, and its con-
clusion puts functions F11, F12 and F13 in the
working memory as sub-functions. Here, the search
strategy for function decomposition employs a data-
driven control regime.

For sub-function F11, the starting point of the
inferencing strategy is to scan the behavior base to
search for the matching behavior whose functional
output can achieve this desired sub-function F11. It
is supposed that either functional output of behavior
B111 and B113 can achieve F11. Then behaviors
B111 and B113 are retrieved to the working mem-
ory, and their driving inputs are taken to be the
new functional requirements. Suppose that behavior
B111 has two driving inputs: Driving Input1 and
Driving Input2. Because Driving Input1 is available
in environment E1, the general rule Search Branch-

End is fired to terminate this branch. Supposing
that the functional output of behavior B112 can
match the Driving Input2 of behavior B111 when
the inference engine continues to scan the behavior
base, behavior B112 is also retrieved to the working
memory. Because the driving input of behavior B112
is available in environment E2, the general rule
Search Branch End is fired to terminate this branch.
This search strategy for the causal behavioral reason-
ing process employs a goal-driven control regime.
The strategy retrieves B111 and B112 to achieve

F11. Similarly, behaviors B113, B114 and B115
could also be found to achieve F11.

Similarly, it is supposed that behavior B121 is
retrieved to achieve sub-function F12, and its driving
input is now taken to be the new functional require-
ment. The inference engine continues to scan the
behavior base to seek the behavior whose functional
output can match the driving input of behavior
B121. It is supposed that no matching is found after
scanning the entire behavior base. Then the inference
engine scans the problem solving production rule
base to search for the matching rule. Suppose that
one domain-specific function decomposition rule is
fired, and its premise is exactly the driving input
(functional requirement F14) of B121, and its con-
clusions are sub-functions F141 and F142. The pro-
cess continues, and behaviors B1411 and B1412 are
developed to achieve sub-function F141, and
behavior B1421 is developed to achieve sub-func-
tion F142.

Similarly, it is supposed that the behavior B131
is retrieved to achieve sub-function F13, and its
driving input is now taken to be the new functional
requirement. The process continues, and behavior
B132, whose functional output can match the driving
input of behavior B131, is developed. However,
besides providing a functional output, behavior B131
also produces an unexpected side effect, SE1. Then
the new functional requirement to prevent side effect
SE1 of behavior B131 needs to be achieved. Thus,
the inference engine continues to scan the behavior
base to seek the behavior whose functional output
can prevent side effect SE1 of behavior B131, and
retrieves the matching behavior B133.

During the above exhaustive functional reasoning
strategy, after every search step, the inference engine
will check the environment to decide whether to
terminate the processing search branch and check if
there are any unexplored branches. If all the func-
tional requirements have been explored, the run is
terminated. A list of potential concept variants pro-
duced by the run will be listed. Behaviours in a
pair of parentheses can achieve a certain external
goal function or sub-function, with their end driving
inputs satisfied by the environment. The resulting
concept variants for the above example are shown
below:

Variant #1→ (B111 + B112) + (B121 + B1411 +
B1412 + B1421) + (B131 + B132
+ B133)

Variant #2→ (B113 + B114 + B115) + (B121 +
B1411 + B1412 + B1421) + (B131 +
B132 + B133)

349EFDEX

Figure 6 shows both behavioral configurations of
the above illustrated potential concept variants. Both
can achieve overall functional requirement F1 and
the imposed functional constraints.

In the above intelligent functional reasoning strat-
egy, the emphasis is that the system always searches
for a matching behavior in the object-oriented
behavior base, whose functional output matches the
desired function, and that also stringently satisfies
the functional constraints as a starting point. When
no matches exist, the system allows for the auto-
matic decomposition of the desired function into
sub-functions, by means of relevant domain-specific
function decomposition rules in the rule base. The
search strategy reduces the possibility of combina-
torial explosion, that can occur during function
decomposition.

6. Case Study

In this section, we study one design case so as to
test the applicability of EFDEX. During our illus-
tration, the intelligent functional design process of
the automatic assembly system for manufacturing
electronic connectors will be studied. The automatic
assembly system comprises of a vibrator bowl feed-
ing unit, housing singulator, walking beam unit,
terminal inserting unit, terminal cutting unit, terminal
bending unit, and so on. Among them, the terminal
inserting unit is the main and most complicated unit,

Fig. 6. Behavioural configuration of potential concept variants.

compared with the other units, so this case study
will focus on the functional design for the terminal
inserting unit of this automatic assembly system.

6.1. Problem Description and User Input

Suppose the following design specifications are
given:

1. Design the terminal inserting unit whose overall
functional requirement is Insert terminal into
housing.

2. The environment can provide the following func-
tional outputs:
E1’s functional output: Provide pneumatic air;
E2’s functional output: Provide electric power;
E3’s functional output: Fix the device.

3. The following functional constraint applies: The
inserting position tolerance � 0.1mm. (which
means High precision is needed).

6.2. Intelligent Functional Reasoning Process
and System Output

Recall from Section 4.1 that there are some domain-
specific rules and general rules for knowledge rep-
resentation, some of which are quoted here. Refer-
ring to Fig. 7, the logical steps of the inferencing
strategy are as follows:

1. The starting point of the inferencing strategy is
to put the overall functional requirement F1 in
the working memory, and scan the behavior base
to seek the behavior whose functional output can
match the overall functional requirement F1. Of
course, all the retrieved behaviors must strin-
gently satisfy the imposed functional constraint:
high precision (in other words, the value of the
functional constraint satisfaction attribute Pre-
cision should be high for all the retrieved
behaviors), and this statement will not be repeat-
edly described in the following discussions. Sup-
posing that no matching is found after scanning
the whole behavior base; the inference engine
starts to scan the rule base to search for the
problem solving rules. Then with its desired func-
tion F1 satisfied, domain-specific rule Decom-
pose1 is fired to decompose function F1 into
sub-functions F11 and F12, where:

F1: Insert terminal into housing;
F11: Clamp housing after locating housing;
F12: Insert terminal after holding terminal.

350 W. Y. Zhang et al.

Fig. 7. Search tree of EFDEX in case study.

2. Similarly, F11 is decomposed into F111 and
F112 with rule Decompose2 activated, where:

F111: Locate housing;
F112: Clamp housing.

3. For F111, the starting point of the inferencing
strategy is to scan the behavior base to search
for the matching behavior whose functional out-
put can match the desired sub-function F111. It
is found that either behaviors B1111 or B1116
can achieve F111, but B1116 is discarded
because its value of the functional constraint
satisfaction attribute Precision is low, and it can
not satisfy the imposed functional constraint.
Then, only behavior B1111, which also satisfies
the functional constraint High precision, is
retrieved to the working memory, and its driving
input is taken to be the new functional require-
ment. Similarly, behavior B1112 is developed
with its functional output Provide translational
motion matching behavior B1111’s driving input
Provide translational motion. Now B1112’s driv-
ing input Provide pneumatic air becomes the
new functional requirement. Because environment
E1 can satisfy Provide pneumatic air, the general
rule Search Branch End is fired, and this search-
ing branch is terminated and put in the configur-
ation list, where:

B1111: Housing insert-locating device;
B1112: Cylinder device;
B1116: Housing house-locating device.

4. Similarly, the alternative causal behavioral branch
to achieve the driving input of behavior B1111
can be developed, where:

B1113: Cam device;
B1114: Gear pair device;
B1115: Motor device.

Now the causal behavioral searching process
for realising function F111: Locate housing has
been finished with two feasible branches
developed.

5. The alternative causal behavioral branches for
achieving function F112 can be developed,
where:

B1121: Housing slide-clamping device;
B1122: Cylinder device;
B1123: Cam device;
B1124: Gear pair device;
B1125: Motor device;
B1126: Housing lever-clamping device;

6. F12 can be decomposed into F121 and F122
with rule Decompose3 activated, where:

F121: Hold terminal;
F122: Insert terminal.

7. The causal behavioral branches for F121 and
F122 can be developed, where:

B1211: Terminal row-holding device;
B1212: Cylinder device;
B1213: Terminal side-holding device;
B1221: Terminal inserting device;
B1222: Cylinder device;

351EFDEX

B1223: Cam device;
B1224: Gear pair device;
B1225: Motor device.
B1226: Stopper.

The explanation for the side effect SE1: Ter-
minal moves too much is noted below: The
behavior B1221 is developed to achieve the
function F122, but the behavior B1221 simul-
taneously produces the side effect SE1, which
should be prevented. So the inference engine
scans the behavior base to search for the
behavior whose functional output can prevent
behavior B1221’s side effect SE1. Then
behavior B1226 is retrieved with its functional
output being Prevent terminal moving too
much.

8. Check if there are any unexplored branches. If
there are none, terminate the run. A list of 24
theoretically feasible concept variants produced
by the above run is shown in Fig. 8.

9. According to Pahl and Beitz [18], we evaluate
all the resulting concept variants to narrow the
choice. This final decision-making phase is the
phase of concept evaluation and selection, where
all the concept variants generated are evaluated
based on technical and economic criteria, and the
highest scoring variant is selected as the best
concept variant. In this example, Concept variant
#23 can be chosen as the final solution concept,
and all its retrieved interconnected behaviors are
shown as follows:

Variant 23: (Housing insert-locating device
+ Cylinder device) + (Housing lever-clamping
device) + (Terminal row-holding device +
Cylinder device) + (Terminal inserting device +
Cylinder device + Stopper)

Figure 9 shows the graphical representation of this
final solution concept.

Fig. 8. User interface for potential concept variants.

Fig. 9. Graphical representation of concept variant #23 for
terminal inserting unit.

7. Related Research

Functional reasoning as a design approach has been
around for at least 30 years now, and has attempted
to support design in the conceptual stage by methods
and approaches to describe function, to establish
function structures, to satisfy these sub-functions
and combine them into concept alternatives, and
to evaluate them [19]. In recent years, behavior
representation has formed the foundation of various
functional reasoning techniques [20]. A behavioral
reasoning model linking function and structure has
been presented by Gero et al. [21].

In the context of motion transmission mechanism
design, Hoover and Rinderle [22] adopted a
behavior-assisted synthesis strategy by transforming
design specifications in a function-preserving manner
to obtain function structures which correspond
closely to collections of available components.
Chakrabarti and Bligh [23–25] suggested a func-
tional synthesis approach using a set of functional
elements (primitives) as building blocks. The syn-
thesis process involves finding various transform-
ations of the input-output characteristics of flow
variables (kind, orientation, sense, position and
magnitude) for a set of basic structures, and combin-
ing them to find transformations which are the
requirements of a particular design problem. The
proposed input-output synthesis approach can be
regarded as a kind of behavior-assisted reasoning
approach, because an input-output flow is in effect
a kind of system behavior. Li et al. [26] used the
configuration space as the basis on which to rep-
resent the behaviors of kinematic pairs, which are
the basic building blocks from which more complex
design is synthesised. Design solutions that consist

352 W. Y. Zhang et al.

of either a chain or a network of multiple kinematic
pairs can be generated.

Some other researchers use a bond graph approach
to deal specifically with the flow of energy. Bond
graphs provides a convenient and uniform represen-
tation of the dynamic behavior of a broad class of
physical systems. Ulrich and Seering [27] used a
bond graph for the synthesis of schematic descrip-
tions in mechanical design. Bracewell and Sharpe [5]
developed a conceptual design environment called
Schemebuilder using bond graphs. Rules for func-
tional decomposition have been provided for assist-
ing functional reasoning, based on the bond graph
principles for the embodiment of energetic systems.
Welch and Dixon [28] developed behavior graphs
(derived from bond graphs) to facilitate behavioral
reasoning, so that the functional requirements can
be transformed into a behavioral representation,
which is then further used to guide the early stage
of embodiment design.

Two streams of research work have influenced us
most: the Function-Behaviour-State (FBS) modeler
developed by Umeda et al. [4, 29], and Deng’s [9]
dual-step Function-Environment-Behaviour-Structure
(FEBS) modeling framework. The FBS modeler uses
physical state transition and physical phenomena to
represent the behavioral process. It reasons about
function by means of two approaches: causal and
task decomposition. With this distinction, they clar-
ify that the decomposition knowledge in the function
prototype includes only the task decomposition. Cau-
sal decomposition of function is used in reasoning
out candidates of additional physical features that
are to satisfy the conditions for the physical features
identified from the function-behavior relationship.
Deng [9] argued that causal decomposition of func-
tion should be more appropriately extended by the
behavioral process generation task. In addition, a
product can only function in a certain (intended)
working environment. Hence, Deng suggests a dual-
step FEBS modeling procedure, consisting of initial
function decomposition and causal behavioral pro-
cess generation.

The knowledge-based functional reasoning strat-
egy presented in this paper is based on the above
function decomposition and causal behavioral pro-
cess, but differs from previous research in the fol-
lowing ways:

1. Functional reasoning is based on a flexible, causal
and hierarchical functional modeling framework
(Extended FEBS modeling framework), whose
modeling strategy is in flexible, two-way mode,
which is quite different from that of the initial

dual-step FEBS model [9]. Environment is rep-
resented explicitly in an environment layer to
provide the functional output, which then achi-
eves the functional requirement of behavior in the
behavior layer. This enhancement will facilitate
developing a complete and flexible functional
design model.

2. Given a desired function, the inference engine
first scans the object-oriented behavior base to
search for a behavior with a functional output
that matches the desired function. Only if no
matching behavior can be found will the desired
function then be automatically decomposed into
sub-functions, using a domain-specific function
decomposition rule. This search strategy differs
from most other works [4, 9, 29], in that function
decomposition is not used as a starting point of
a functional reasoning strategy, hence reducing
the possibility of combinatorial explosion that
can occur during function decomposition.

8. Conclusion

This paper describes our proposed system EFDEX,
which applies a knowledge-based approach to the
functional design of engineering systems so that
functional design can be performed intelligently.
We have developed an Extended FEBS functional
modeling framework in which the functional
relationships among function, behavior, constraint,
structure and environment (especially the causal and
hierarchical relationships among function, behavior
and environment) are developed. With this flexible,
hierarchical and causal functional modeling frame-
work, our proposed knowledge-based functional
reasoning strategy can automatically reason out
physical behavior from a desired function or desired
behavior. In addition, complicated desired functions
which cannot be matched with the functional output
of any behavior after searching the object-oriented
behavior base, will automatically be decomposed
into sub-functions by means of relevant function
decomposition rules. In this paper, a knowledge-
based functional representation scheme which inte-
grates two popular AI representation techniques
(object-oriented representation and rule-based
representation) is also proposed, to allow intelligent
communication with computer software.

EFDEX was developed using CLIPS, a declarative
programming language. The work also demonstrates
the potential of developing similar knowledge-based
expert systems for other practical applications.

353EFDEX

References
1. Giarratano, J., Riley, G. (1998) Expert Systems: Prin-

ciples and Programming, 3rd ed. Boston, PWS
2. Schemekel, H. (1989) Functional models and design

solutions. Annals of the CIRP, 38(1), 129–132
3. Fink, P. K., Lusth, J. C. (1987) Expert systems and

diagnostic expertise in the mechanical and electrical
domains. IEEE Transactions on System, Man and
Cybernetics, 17(3), 340–349

4. Umeda, Y., Takeda, H., Tomiyama, T., Yoshikawa,
H. (1990) Function, behavior and structure. In: Gero,
J. S. (Editor), Applications of Artificial Intelligence
in Engineering V, 177–193

5. Bracewell, R. H., Sharpe, J. E. E. (1996) Functional
descriptions used in computer support for qualitative
scheme generation – ‘Schemebuilder’. Artificial Intelli-
gence for Engineering Design, Analysis and Manufac-
turing (AIEDAM), 10(4), 333–345

6. Deng, Y.-M., Britton, G. A., Tor, S. B. (1998) A
design perspective of mechanical function and its
object-oriented representation scheme. Engineering
with Computers, 14, 309–320

7. Tor, S. B., Britton, G. A., Chandrashekar, M., Ng, K.
W. (1998) Functional design. In: Usher, J., Utpal, R.,
Parsaei, H. (Editors), Integrated Product and Process
Development: Methods, Tools and Technologies. New
York, Wiley, 29–58

8. Prabhakar, S., Goel, A. (1998) Functional modeling
for enabling adaptive design of devices for new
environments. Artificial Intelligence in Engineering,
12, 417–444

9. Deng Y.-M. (2000) Functional Design of Mechanical
Products: Design Model and Modeling Framework.
PhD thesis, Nanyang Technological University, Singa-
pore

10. Kusiak, A., Szczerbicki, E. (1990) A formal approach
to design specifications. In: Ravani, B. (Editor),
Advances in Design Automation, ASME, Vol. 1,
311–316

11. Li, C. L., Tan, S. T., Chan, K. W. (1996) A qualitative
and heuristic approach to the conceptual design of
mechanisms. Engineering Application of Artificial
Intelligence, 9(1), 17–31

12. Moulianitis, V. C., Dentsoras, A. J., Aspragathos, N.
A. (1999) A knowledge-based system for the concep-
tual design of grippers for handling fabrics. Artificial
Intelligence for Engineering Design, Analysis and
Manufacturing (AIEDAM), 13, 13–25

13. Tong, C., Gomory, A. (1993) A knowledge based
computer environment for the conceptual design of
small electromechanical appliances. Computers, 26(1),
69–71

14. Akagi, S., Fujita, K. (1990) Building an expert system
for engineering design based on the object-oriented

knowledge representation concept. Journal of Mechan-
ical Design, 112, 215–222

15. Gorti, S. R., Gupta, A., Kim, G. J., Sriram, R. D.,
Wong, A. (1998) An object-oriented representation for
product and design process. Computer-Aided Design,
30(7), 489–501

16. Zhang, W. Y., Britton, G. A., Tor S. B. (2000) A
prototype knowledge-based system for the conceptual
synthesis of design process. International Journal of
Advanced Manufacturing Technology, 17(8), 549–557

17. Meyer, B. (1988) Object-Oriented Software Construc-
tion. New York, Prentice-Hall

18. Pahl, G., Beitz, W. (1996) Engineering Design – A
Systematic Approach. London, Springer-Verlag

19. Chakrabarti, A., Blessing, L. (1996) Special issue:
representing functionality in design. Artificial Intelli-
gence for Engineering Design, Analysis and Manufac-
turing (AIEDAM), 10(4), 251–253

20. Umeda, Y., Tomiyama, T. (1997) Functional reasoning
in design. IEEE Intelligent Systems & Their Appli-
cations, 12(2), 42–48

21. Gero, J. S., Lee, H. S., Tham, K. V. (1992) Behaviour:
a link between function and structure in design. In:
Intelligent CAD. Amsterdam, Elsevier, 193–220

22. Hoover, S. P., Rinderle, J. R. (1989) A synthesis
strategy for mechanical devices. Research in Engineer-
ing Design, 1, 87–103

23. Chakrabarti, A., Bligh, T. P. (1994) An approach to
functional synthesis of solutions in mechanical concep-
tual design. Part I: introduction and knowledge
representation. Research in Engineering Design, 6(3),
127–141

24. Chakrabarti, A., Bligh, T. P. (1996) An approach to
functional synthesis of solutions in mechanical concep-
tual design. Part II: kind synthesis. Research in Engin-
eering Design, 8(1), 52–62

25. Chakrabarti, A., Bligh, T. P. (1996) An approach to
functional synthesis of solutions in mechanical concep-
tual design. Part III: Spatial configuration. Research
in Engineering Design, 2, 116–124

26. Li, C. L., Chan, K. W., Tan, S. T. (1999) A configur-
ation space approach to the automatic design of mul-
tiple-state mechanical devices. Computer-Aided
Design, 31(10), 621–653

27. Ulrich, K. T., Seering, W. P. (1980) Synthesis of
schematic descriptions in mechanical design. Research
in Engineering Design, 1, 3–18

28. Welch, R. V., Dixon, J. R. (1994) Guiding conceptual
design through behavioral reasoning. Research in
Engineering Design, 6, 169–188

29. Umeda, Y., Ishii, M., Yoshioka, M., Shimomura, Y.,
Tomiyama, T., (1996) Supporting conceptual design
based on the function-behavior-state modeler. Artificial
Intelligence for Engineering Design, Analysis and
Manufacturing (AIEDAM), 10(4), 275–288

