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Abstract
Background A considerable number of patients who contracted SARS-CoV-2 are affected by persistent multi-systemic 
symptoms, referred to as Post-COVID Condition (PCC). Post-exertional malaise (PEM) has been recognized as one of the 
most frequent manifestations of PCC and is a diagnostic criterion of myalgic encephalomyelitis/chronic fatigue syndrome 
(ME/CFS). Yet, its underlying pathomechanisms remain poorly elucidated. 
Purpose and methods In this review, we describe current evidence indicating that key pathophysiological features of PCC 
and ME/CFS are involved in physical activity-induced PEM.
Results Upon physical activity, affected patients exhibit a reduced systemic oxygen extraction and oxidative phosphorylation 
capacity. Accumulating evidence suggests that these are mediated by dysfunctions in mitochondrial capacities and microcir-
culation that are maintained by latent immune activation, conjointly impairing peripheral bioenergetics. Aggravating deficits 
in tissue perfusion and oxygen utilization during activities cause exertional intolerance that are frequently accompanied by 
tachycardia, dyspnea, early cessation of activity and elicit downstream metabolic effects. The accumulation of molecules 
such as lactate, reactive oxygen species or prostaglandins might trigger local and systemic immune activation. Subsequent 
intensification of bioenergetic inflexibilities, muscular ionic disturbances and modulation of central nervous system functions 
can lead to an exacerbation of existing pathologies and symptoms.
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Introduction

The persistence of long-term symptoms of COVID-19 is a 
common phenomenon among those who contracted a SARS-
CoV-2 infection. A meta-analysis of 31 studies revealed that 
43% experience lingering or newly appearing symptoms one 
month post-infection [1]. Symptoms that persist longer than 
three months post-infection are subsumed under the term 
Post-COVID Condition (PCC) [2]. Based on population-
based studies from the United States, the number of peo-
ple suffering from PCC is estimated to be around 6.9% [3]. 
In this context, it bears noting that acute disease severity 

has an impact on the risk of developing PCC [4]. Specifi-
cally, patients who have been hospitalized are more likely to 
experience residual symptoms compared to non-hospitalized 
individuals [5], with asymptomatic cases exhibiting the low-
est risk of having PCC [6]. Yet, the mechanisms of PCC 
may differ following a severe versus mild infection. In addi-
tion to that, the risk of persistent symptoms is significantly 
lower in vaccinated compared to unvaccinated subjects [7, 
8]. Whether the risk differs between variants and depend-
ent on medication treatment during acute illness remains 
controversial [9–13].

The clinical spectrum of PCC comprises a variety of 
different symptoms affecting multiple organ systems, with 
fatigue, headache, shortness of breath, cognitive impairment, 
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exercise intolerance and post-exertional malaise (PEM) 
being among the most commonly reported symptoms 
[14–18]. The latter refers to an inadequate exacerbation of 
symptoms and a prolonged recovery phase, most frequently 
triggered by physical exertion [15]. PEM is a debilitating 
clinical manifestation and it has been reported that at least 
68% of individuals with PCC experience it [15, 19]. Moreo-
ver, it is considered a hallmark symptom for the diagnosis of 
myalgic encephalomyelitis/chronic fatigue syndrome (ME/
CFS). Although PEM can occur in other chronic diseases, 
the severity and length of PEM allows to distinguish ME/
CFS from other diseases with similar clinical spectrums 
such as fibromyalgia or multiple sclerosis [20]. An overlap-
ping clinical picture and the fact that more than one year 
post-infection 19–58% of PCC patients meet the diagnostic 
criteria for ME/CFS suggests a common etiology of both 
syndromes [21–24]. Beyond that, the onset of ME/CFS is 
most commonly described to be preceded by infection-like 
episodes [25]. However, the spectrum of PCC is more het-
erogenous compared to post-acute infection syndromes trig-
gered by other pathogens. Specifically, the severity and dura-
tion of PEM in PCC varies, with a subset of PCC patients 
having episodes that last only for several hours or that are 
not severe enough to fulfill the Canadian or IOM criteria for 
ME/CFS [24]. Even though COVID-19 is not more likely to 
be associated with ME/CFS than other infections [26], this 
points towards potential virus-specific mechanisms underly-
ing PEM in PCC.

However, there is still no unifying understanding of the 
pathophysiology of these conditions and the mechanisms 
that elicit episodes of PEM following acute and regular 
physical activities. In this review, we aim to conceptualize 
the evidence that has emerged on PCC and ME/CFS patho-
physiology which has improved our understanding of the 
processes that lead to the development of PEM.

PEM symptom characterization 
across the post‑acute infection syndrome 
spectrum

PEM is characterized by a disproportional clinical deteriora-
tion of one or multiple symptoms that can occur up to 72 h 
following exertional activities that were tolerated prior to 
the illness [27, 28]. This state can last for several days or 
weeks and is barely alleviated by rest or sleep [15]. The most 
common trigger of such “crashes” is physical exertion [27]. 
Other potential triggers include cognitive and emotional 
exertion, insufficient sleep, temperature extremes or ortho-
static stress [29]. Reflecting its proposed pathophysiology 
and the fact that many patients experience a worsening of 
immune or nervous system related symptoms [30], PEM is 

also referred to as post-exertional neuroimmune exhaustion 
or simply post-exertional symptom exacerbation.

A characteristic decrease in function following physical 
exertion in patients with ME/CFS has been objectified by 
studies conducting two-day cardiopulmonary exercise test-
ing (CPET). Patients with ME/CFS declined significantly in 
measures of aerobic capacity and workload on the second 
day of testing while controls improved in these performance 
instances [31]. In line with that, patients with ME/CFS 
showed greater declines in hand grip strength than healthy 
controls upon repeated testing, which correlated with higher 
PEM scores [32].

Importantly, PEM is clinically often accompanied by 
fatigue and profound exercise intolerance. Yet, while being 
pathogenically connected, they constitute separate entities of 
the post-infectious disease manifestations. In fact, exercise 
intolerance refers to the inability to uphold acute exercise 
due to lack of energy, or rapid development of palpitations, 
tachycardia, or breathlessness. On the other hand, PEM 
describes an inadequate delayed regulatory response that 
elicits the aggravation of symptoms such as fatigue, pain or 
cognitive impairment and a decrease in the physical capacity 
level. Importantly, this can occur after exercise as well as 
after moderate physical activity and activities of daily liv-
ing [30]. [25]. In severe ME/CFS, already minor activities 
such as sitting up or brushing teeth can trigger PEM. For the 
context of this paper and in accordance with previous defi-
nitions, we refer to physical activity as any muscle-induced 
bodily movement that increases energy expenditure above 
resting conditions and to exercise as planned and structured 
forms of physical activity [33].

Hypoxic metabolic response profile to acute 
physical activity stimuli

The understanding of physical activity-induced symptom 
exacerbations requires consideration of the acute metabolic 
response to exercise stimuli and elicited regulatory pro-
cesses in affected patients. Among others, findings estab-
lished by studies conducting CPET using incremental cycle 
ergometry revealed a response pattern that suggests aber-
rant cell metabolism under hypoxic environments in PCC. 
Accordingly, patients with persistent symptoms exhibited 
a reduced aerobic capacity and attained their anaerobic 
threshold earlier compared to controls. Specifically, multi-
ple studies reported a lower peak oxygen uptake  (VO2peak) in 
PCC patients, regardless of acute disease severity [34–37]. 
In line with that, a meta-analysis of nine studies with 464 
subjects showed that the mean difference in  VO2peak of PCC 
subjects was 4.9 mL/kg/min lower than that of individuals 
that completely recovered from infection [38]. Correspond-
ingly, an analysis of surrogates of mitochondrial function 
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during exercise testing revealed that in addition to higher 
blood lactate concentrations, at peak exercise subjects with 
PCC showed significantly lower levels of β-oxidation of fatty 
acids compared with control subjects, which might serve as 
an indication for a premature switch to anaerobic glycolysis 
[35].

The mechanisms underlying reduced aerobic capacity are 
still lacking conclusive evidence, with some studies inter-
preting the observed limitations as muscular deconditioning 
[39]. Durstenfeld et al. concluded that 80% of studies that 
attributed deconditioning to diminished exercise capacity 
included subjects that were previously hospitalized with 
acute COVID-19 and thus potentially immobilized for 
extended periods of time [38]. Moreover, there exist stud-
ies that included non-hospitalized subjects that exhibited 
diminished aerobic capacity compared with healthy con-
trols, while physical activity levels before infection and at 
examination did not differ significantly, which makes the 
contribution of deconditioning less likely [34]. In line with 
that, the functional limitations observed in PCC exceed the 
decline in oxygen uptake that would be expected from bed 
rest only [40, 41]. Beyond that, although it has to be noted 
that there is evidence that cardiovascular impairments exist 
among PCC patients [42, 43], cardiac and ventilatory limi-
tations of exercise performance are rather uncommon [38].

In contrast, more profound analyses gave indications for 
loss of oxygen transport and metabolism pathway integ-
rity [34, 44] (Fig. 1). Specifically, findings from invasive 
hemodynamic assessments combined with CPET revealed 
decreased systemic and peripheral oxygen extraction at peak 
exercise in PCC subjects which was attributed to reduced 
oxygen diffusion in the peripheral microcirculation [44–46]. 
This was particularly supported by findings from a study 
using near-infrared spectroscopy that revealed a reduced 
fractional oxygen extraction at the muscular level as well as 
a lower oxidative capacity [34].

Thus, reduced oxygen extraction is found in both ME/
CFS and PCC [47]. Evidence accumulates that mechanisms 
underlying impairments in peripheral oxygen consumption 
may include dysregulated microcirculation and mitochon-
drial dysfunction, as outlined below.

Muscular mitochondriopathy in PCC and ME/
CFS

Evidence that mitochondrial function can be diverted 
in PCC comes from studies conducting histochemical 
analyses of muscle biopsy samples. Morphologically, his-
tological staining of vastus lateralis samples revealed a 
significantly lower percentage of succinate dehydrogenase 
(SDH) positive and higher percentage of SDH-negative 
fibers in PCC patients compared to recovered controls 

[34]. With SDH being an essential enzyme of the tricar-
boxylic acid (TCA) cycle, these findings point towards 
decreased content of oxidative and increased content of 
glycolytic fibers [34], a finding that was also observed in 
patients specifically experiencing episodes of PEM [48]. 
Notably, muscle mitochondrial enzyme activity was shown 
to further decrease one day after the induction of PEM in 
PCC patients [48]. Further implications for a shift away 
from oxidative metabolism were provided by the observa-
tion that key metabolites of the TCA cycle (i.e. glutamate, 
α-ketoglutarate, citrate) and the citrate: lactate ratio are 
lower in skeletal muscle samples of PCC patients as com-
pared to healthy subjects [48] (Fig. 1b).

In line with that, citrate synthase protein and mRNA lev-
els were lower [34] and genetic pathways related to oxidative 
phosphorylation and cell respiration were downregulated in 
patients with persistent symptoms [49]. These findings are 
also reflected by impaired function of mitochondrial com-
plexes. Specifically, high-resolution respirometry revealed 
a significantly reduced oxygen flux for mitochondrial com-
plex II, and I and II together [34, 50]. Additionally, a loss 
of cytochrome c oxidase (complex IV) activity has been 
reported [51] (Fig. 1b). The significant increase of Wiskott-
Aldrich Syndrome Protein Family Member 3 (WASF3) pro-
tein in muscle cells of ME/CFS patients has been implicated 
to be a molecular explanation for these functional mitochon-
drial disruptions [52]. Accordingly, the overexpression of 
WASF3 induced by stress to the endoplasmic reticulum has 
been demonstrated to lead to decreases in subunits of com-
plex IV and thus to impair the assembly of supercomplex 
 III2 + IV in mouse muscles. This disruption subsequently 
caused decreased muscular oxidative metabolism, a reduc-
tion in maximal running capacity and higher blood lactate 
levels. Conversely, knocking down WASF3 in myoblasts 
improved respiration capacity [52].

Beyond that, previously discussed indications for 
impaired fatty acid oxidation during CPET have been sub-
stantiated by a study finding higher levels of plasma carni-
tine-conjugated and free fatty acids in rest in PCC compared 
to control subjects [53]. On the other hand, a decrease in 
plasma acetylcarnitine may be associated with neurocogni-
tive symptoms [54]. A virus-induced shift towards extra-
mitochondrial metabolism has been suspected to inhibit 
antiviral signaling pathways and to promote viral particle 
formation for the purpose of replication enhancement [53, 
55].

In summary, these findings point towards mitochon-
drial dysregulation with subsequent impairment of func-
tion, e.g. oxidative phosphorylation capacity and a switch 
towards glycolytic pathways (Fig. 1b). Consequently, altera-
tions in mitochondrial structure and function could lead to 
lower oxygen pressure. This might also explain why PCC 
patients exhibit slower decline in tissue oxygenation upon 
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Fig. 1  Potential drivers of PEM include microvascular alterations and 
mitochondriopathy that can functionally culminate in reduced sys-
temic oxygen extraction and oxidative phosphorylation capacity upon 
physical activities (a–b). Altered bioenergetics limit the patients’ 
ability to be physically active and induce the accumulation of lactate, 
reactive oxygen species and cations (c). Overexertion could manifest 
as delayed symptom exacerbation and systemic fatigue through sub-

sequent immune activation that might aggravate bioenergetic inflex-
ibilities and modulate CNS functions (d) (Figure created with bioren-
der.com) ATP adenosine triphosphatem, CNS central nervous system, 
eNOS endothelial nitric oxide synthase, ETC electronic transport 
chain, FMD flow-mediated dilation, NO nitric oxide, ROS reactive 
oxygen species, TCA  tricarboxylic acid
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occlusion-induced ischemia than subjects without persistent 
symptoms [56].

Hemodynamic and microvascular 
contribution to bioenergetic alterations

Dysfunctional microcirculation and organ perfusion dis-
turbances are proposed to be key features of PCC. Patho-
genically, they are supposed to be induced by several inter-
dependent mechanisms that might further compromise a 
compensation of tissue oxygenation deficits emerging upon 
exertional activities.

Centrally involved in the development of COVID-19 
complications is an endotheliopathy [57] that can outlast 
the acute illness and is associated with the persistence of 
symptoms [58]. Correspondingly, PCC patients exhibit 
elevated levels of circulating endothelial cells, endothe-
lial colony-forming cells, and reduced ADAMTS-13: von 
Willebrand factor (vWF) ratio, implying ongoing cell dam-
age [59, 60]. Beyond that, a lower flow-mediated dilation 
(FMD) in patients with PCC suggests a maladaptive capacity 
of the endothelium to adjust the vascular tone, which has 
been directly related to symptom persistence [58, 61]. Of 
note, both a reduced FMD and ADAMTS-13: vWF ratio are 
additionally associated with a lower exercise capacity, sug-
gesting a potential contribution of endothelial dysfunction 
to peripheral oxygenation deficits [62, 63]. Of note, a recent 
MRI study showed that PCC patients exhibit widespread 
decreased brain oxygen levels in grey and white matter, indi-
cating increased cerebral metabolism [64].

A major cause of compromised endothelial function is 
proposed to be an inadequate nitric oxide production of the 
endothelial isoform of nitric oxide synthase (eNOS) that is 
related to low bioavailability of essential substrates, such as 
arginine [65, 66]. Consistent with that, it has been shown 
that endothelial cells cultured in the plasma of ME/CFS 
patients produce less nitric oxide upon exposure to acti-
vating substances than in the presence of healthy control 
serum [67]. The fact that the supplementation of L-arginine 
improved FMD, physical performance and perception of 
effort and fatigue, proves that endothelial cell function might 
be a central disease pathway [66, 68, 69]. Moreover, poten-
tial disturbances in the regulation of molecule release by 
endothelial cells involved in NO availability and angiogen-
esis in PCC and ME/CFS compared to healthy donors could 
also impact the endothelial functionality [70]. Additional 
structural changes, such as a thickened capillary base mem-
brane might further impair oxygen diffusion into peripheral 
tissues [51, 71] (Fig. 1a).

Secondly, PCC and ME/CFS are characterized by a 
thromboinflammatory state [59]. In particular, the discussed 
endothelial cell dysfunction and immune system activation 

likely trigger ongoing clotting activity [72]. Specifically, 
the formation of fibrinolysis-resistant microclots has been 
documented in PCC patients, which might be related 
to increased levels of antiplasmin [73] (Fig. 1a). Further 
analyses revealed that thrombogenicity is also a result of 
increase in platelet binding capacity that inversely correlated 
with ADAMTS-13 activity [74]. Of note, research on ME/
CFS showed that the increase in clotting proteins (fibrino-
gen chain proteins FGA and FGB) 15 min after CPET until 
volitional exhaustion positively correlated with PEM that 
subjects were experiencing 24 h post-exercise [75]. A dys-
regulated hemostasis with microthrombi leading to small 
vessel occlusion could consequently lead to hypoperfu-
sion and ischemia–reperfusion injury, for example to the 
mitochondrion through sodium and calcium overload [76, 
77]. The pathogenic role of ischemia and reperfusion in the 
development of muscular mitochondriopathy is strengthened 
by the fact that patients with peripheral arterial occlusive 
disease present with similar morpho-functional changes 
like the previously discussed in PCC [78]. Yet, there is no 
evidence of overt microthrombosis formation from muscle 
histology studies [48, 50, 51, 71].

Lastly, evidence exists suggesting that perfusion and oxy-
genation deficits may be linked to altered erythrocyte func-
tional morphology and oxygen affinity. Specifically, reduced 
MCV and MCH as well as structural membrane damages of 
erythrocytes that limit cell deformability have been demon-
strated in COVID-19 convalescents and ME/CFS patients 
[79, 80]. Consequences of morpho-functional changes for 
peripheral oxygen homeostasis remain to be determined but 
diminished capillary trafficking properties and increased 
peripheral oxygen affinity are discussed [79, 81].

Further mechanisms underlying impairments in micro-
circulation may include autonomic dysfunction which may 
be mediated by sympathetic overactivity, autoantibodies or 
small fiber neuropathy [82]. Autoantibodies binding to adr-
energic and muscarinic acetylcholine receptors were shown 
to correlate with symptoms of impaired peripheral micro-
circulation and cognitive impairment [83]. Also, a renin-
angiotensin system dysfunction occurs as a consequence of 
COVID-19 and may result in a functional alteration of ACE2 
favoring vasoconstriction [84].

Dysregulated immune activation imposes 
allostatic load

There is accumulating evidence suggesting that the eti-
ology of microcirculatory and mitochondrial dysfunc-
tions is, to a significant extent, induced by immunologi-
cal dysregulation. Certain immune signatures indicating 
a dysregulated immune response to acute SARS-CoV-2 
infection have been associated with the risk of developing 
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PCC [85–89]. In this context, a subsequent persistence 
of viral antigen might be the pathophysiological link to 
an ongoing immune activation that distinguishes PCC 
patients from recovered subjects [86, 90]. Indeed, the 
persistence of spike protein components and viral RNA 
has been documented in the circulation and tissue res-
ervoirs in a subset of PCC patients [91, 92] and directly 
attributed to ongoing antigen-specific cellular immune 
responses [86]. The latter is for instance indicated by a 
persistent IFN-γ secretion [87], higher levels of circulating 
SARS-CoV-2-specific antibodies and exhaustion of anti-
gen-specific T cells [90]. Beyond that, high systemic levels 
of pro-inflammatory cytokines such as IL-1β, IL-6 and 
TNF-α relate to activation of coagulation pathways and 
metabolic disruptions [93]. Equally important, dysfunc-
tional immune activity may also facilitate reactivation of 
harbored viruses that were previously checked by compe-
tent immune surveillance. Correspondingly, PCC patients 
demonstrate higher antibody responses against viruses 
such as Epstein-Barr virus [94, 95]. An explanation for a 
potential reduced capacity to respond to pathogens may be 
altered immunometabolism. Consistent with the discussed 
aberrant muscular energy metabolism, blood immune cells 
exhibit functional aberrations that may similarly alter 
effector functions. Specifically, compared to healthy con-
trols, immortalized ME/CFS patient-derived lymphoblasts 
showed mitochondrial deficiency of ATP synthesis due 
to an isolated complex V inefficiency [96]. Lower ATP-
linked respiration rates in PBMCs further underline this 
energy-generating deficiency [97]. Other studies provide 
evidence for a metabolic shift in favor of oxidation of fatty 
acids and protein degradation, as indicated by elevated 
levels of enzymes and transport proteins involved in these 
pathways [98, 99], as well as increased utilization of lipids 
upon activation [99].

In line with these findings, it has been proposed that 
constant immune activation and the fight against latent 
viral infections could induce a maladaptive behavio-
ral response to limit energy allocation to processes less 
important to host survival, leaving no spare resources for 
e.g. activities of daily living [100].

Beyond that, direct pathogenic effects of the spike pro-
tein have been demonstrated. In particular, the induction of 
vWF, adhesion molecule and pro-inflammatory cytokine 
production by endothelial cells in an NF-κB and NLRP3 
inflammasome-depended fashion promotes endotheliopa-
thy and clotting pathology [101, 102]. Spike-mediated 
thrombogenicity is also caused by its interaction with 
fibrin(ogen) and prothrombin [103]. Moreover, a potential 
pathomechanistic role of spike persistence in a subset has 
been implied by a report of three PCC cases that experi-
enced a rapid remission of symptoms after treatment with 

a monoclonal antibody cocktail (casirivimab/imdevimab) 
directed against the receptor binding domain [104].

Potential downstream effects of anaerobic 
metabolism

Under exercise conditions, patients with PCC and ME/
CFS exhibit metabolic patterns that imply energy produc-
tion through anaerobic pathways. The previously described 
microcirculatory impairments and mitochondrial dysfunc-
tion might be a mechanistic explanation for the disturbances 
in peripheral oxygen delivery and utilization.

Remarkably, the discussed metabolic alterations are char-
acterized by elevated levels of lactate in rest and upon exer-
cise [93, 105]. Additionally, anaerobic metabolism causes a 
deprivation of cellular energy sources, as pyruvate can no 
longer be oxidized in the TCA cycle and is thus converted 
to lactate at the expense of ATP that would otherwise be 
produced via mitochondrial respiration. As a result, local 
lactate acidosis and energy deprivation likely cause exercise 
intolerance and demand early cessation. Equally important, 
in conjunction with other accumulating products of mito-
chondrial dysfunction, lactate initiates a cascade of down-
stream effects. Evidence implying its significance in PEM 
comes for instance from an investigation that showed that 
ME/CFS patients with elevated lactate levels (≥ 2 mmol/L at 
rest) were more likely to experience severe PEM than those 
with normal levels [106].

Beyond that, cellular oxygen deprivation and mitochon-
drial dysfunction promotes the formation of reactive oxygen 
species (ROS) and vasodilatory tissue mediators (e.g., pros-
taglandins, bradykinin, adenosine) [76]. Mechanistically, 
this could be linked to PEM development by local and sys-
temic immune activation, as the aforementioned substances 
possess diverse immunomodulatory effects. Specifically, 
there exists a vicious cycle between redox imbalance, inflam-
mation, and mitochondrial dysfunction in which higher 
levels of ROS caused by mitochondria and eNOS induce 
cell damage and immune activation that in turn impair cell 
organelle function [107, 108]. Similarly, lactate can induce 
cytokine secretion, cell migration and nuclear translocation 
of NF-κB subunits [109]. In this context, it bears noting that 
physical exercise per se stimulates immunomodulation via 
metabolic and neuroendocrine pathways [110, 111]. From 
the described evidence it can be assumed that in PCC and 
ME/CFS, the threshold of activation is shifted in a way that 
activities of daily living are sufficient to trigger these path-
ways in some patients. Meanwhile, latent baseline immune 
activity and dysfunctional oxygenation reduce the regulatory 
window of homeostatic adaption.

The induction of PEM may include local and systemic 
mechanisms, reflecting that PEM has been proposed to be 
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composed of muscle-specific fatigue and generalized sys-
temic fatigue as two different experiences [112]. On the skel-
etal muscle level, the accumulation of immunoregulatory 
substances by the intensification of metabolic dyshomeosta-
sis during physical activity may cause immune cell recruit-
ment and local activation of inflammatory pathways that 
aggravate mitochondrial dysfunction [113]. For instance, 
NF-κB reduces muscle oxidative capacity [34], which may 
further decrease activity tolerance in the hours or days fol-
lowing activity. As a further consequence of hypoperfusion 
and mitochondrial dysfunction, the ionic homeostasis in 
muscles is severely impaired, leading to sodium and calcium 
overload and secondary muscle and mitochondrial damage 
[114, 115] (Fig. 1c). This mechanism can explain the devel-
opment of delayed and prolonged symptom exacerbation and 
disease aggravation upon repeated PEM (detailed in [115]).

Neurological symptoms of PCC have been proposed to 
be associated with a blood–brain barrier (BBB) dysfunc-
tion that enables extravasation of blood components into the 
brain tissue [116]. In line with that, recent evidence dem-
onstrated that brain fog is associated with increased BBB 
permeability, likely driven by systemic inflammation [117]. 
The spillover of cytokines and chemokines from tissues into 
the systemic circulation amid exertional activities may cor-
respondingly contribute to the experience of generalized 
fatigue and aggravation of neurological symptoms due to 
a modulation of central nervous system (CNS) functions 
that resembles sickness behavior or overtraining syndrome 
[100, 118] (Fig. 1d). Accordingly, it has been reported in 
ME/CFS that the severity of symptom flare after moderate 

exercise is linked to cytokine activity [119]. Beyond that, it 
has been demonstrated that exosome-associated mitochon-
drial DNA that significantly increases after exercise in ME/
CFS patients and potentially reaches the CNS by crossing 
a disrupted BBB stimulates cultured human microglia to 
secrete IL-1β [120].

Potential treatment options targeting PEM 
pathophysiology

Reflecting the still evolving understanding of their patho-
physiology, the treatment of ME/CFS and PCC is currently 
limited to the management of individual symptoms. There is 
a paucity of causative treatment options for both conditions 
in general and for PEM specifically. In this context, pacing 
has been promoted to prevent the aggravation of bioener-
getic capacities. This includes to avoid overexertion, allow 
adequate recovery periods, divide activities of daily living 
into smaller tasks that can be spread out over the day and 
to rest before symptoms arise [93, 121]. Beyond that, the 
discussed mechanisms may provide new starting points 
for therapeutic trials (Table 1). In particular, investigating 
options to improve microcirculation may prove to be pivotal 
to ensure adequate adaption of blood supply during physical 
activities. This could include the use of vasodilators and NO 
substrates to improve FMD as well as immunoadsorption to 
deplete vasoactive autoantibodies.

Just as important is the consideration of the bidirectional 
relationship between mitochondrial and immunometabolic 

Table 1  Potential treatment options targeting proposed drivers of PEM

PEM pathophysiology Treatment targets Potential treatment options Reference

Microvascular alterations Flow-mediated dilation and nitric 
oxide synthase

Substrate and cofactor supplementa-
tion (e.g., L-arginine) and molecu-
lar modulation

Vasodilators (e.g., nebivolol, silde-
nafil)

[66, 68, 69, 122], NCT00598585

Fibrin amyloid microclots and plate-
let pathology

Anticoagulation [123]

Vasoactive autoantibodies Immunoadsorption
Apheresis

[124, 125]

Sympathetic overactivity Parasympathetic activation (e.g., 
meditation, breathing techniques)

[126]

Dysregulated immune activation Viral antigen component persistence
Latent viral infections
Pro-inflammatory pathways
T cell exhaustion

Antiviral therapies (e.g., Paxlovid, 
Ritonavir, Temelimab)

Anti-inflammatory drugs (e.g., corti-
costeroids, antihistamines)

Immunomodulators (e.g., kinase 
inhibitors, rintatolimod)

[104, 127–130], NCT05576662, 
NCT05497089

Mitochondrial dysfunction Respiratory complex function
Oxidative and inflammatory stress

Redox balancer (e.g., vitamin E, 
glutathione, ubiquinol, NADH, 
selenium)

Supplementation of magnesium

[131–133]
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alterations in pursuit of new therapeutic targets. Wang 
et al. demonstrated that alleviating stress to the endoplas-
mic reticulum decreased WASF3 and thus improved mito-
chondrial respiration [52]. Yet, they did not investigate how 
these molecular improvements related to clinical symptoms. 
It can be suspected that long-term improvements in oxida-
tive capacity can only be achieved when immune activa-
tion and oxidative stress is concomitantly reduced. Hence, 
it may additionally be effective to look further into treatment 
options targeting viral reservoirs and inflammatory path-
ways. On the whole, several treatment candidates already 
proved to be effective in some regards (Table 1). However, 
more randomized controlled studies with clinically relevant 
endpoints are necessary, as case studies and case series have 
yielded contradictory results and do not provide sufficient 
evidence for individual use outside of studies.

Conclusions

In this literature review we discuss evidence that several 
homeostatic functions and regulatory mechanisms that are 
involved in physiological adaption to exercise are dysfunc-
tional in patients experiencing PEM in PCC and ME/CFS. 
The accumulation of lactate, ROS, and the deprivation of 
cellular energy sources upon increased metabolic demand 
contributes significantly to lower exercise capacity. The 
complex dynamics of immunometabolic downstream effects 
may also lead to delayed and prolonged symptom exacerba-
tions and dysregulated recovery. In particular, the disturbed 
metabolic homeostasis and consecutive ionic imbalance can 
lead to secondary muscle and mitochondrial damage and 
immune activation. Hence, exceeding their already reduced 
activity capacities enters affected patients into a recurrent 
and self-propagating loop. Considering the results of this 
review, it bears noting that we narratively synthesized and 
contextualized the results of multiple separate studies with 
different research focuses. There has not been a study that 
provided conclusive evidence for one disease etiology, which 
means that the described pathophysiological observations do 
not necessarily coexist. For that reason, future studies should 
look deeper into pathophysiological connections between 
herein highlighted systems, such as immunometabolic sig-
natures that are associated with the development of PEM. 
Beyond that, activity prescriptions should take the patho-
physiological mechanisms of PCC and ME/CFS into account 
to attenuate the risk of provoking PEM.
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