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Abstract

Purpose The COVID-19 pandemic has altered the infection dynamics of numerous pathogens. This study aimed to elucidate
its impact on Streptococcus pneumoniae (S. pneumoniae) infections in children with community acquired pneumonia (CAP).
Methods A retrospective analysis was conducted in pediatric CAP patients admitted before (2018-2019) and during (2020—
2022) the COVID-19 pandemic. The epidemiology and antimicrobial resistance (AMR) patterns of S. pneumoniae were
compared to reveal the impact of the pandemic.

Results A total of 968 S. pneumoniae-associated pediatric CAP patients were enrolled. Although the positivity rate and
gender of patients were stable across both periods, the age notably increased in 2021 and 2022. Additionally, significant
changes were observed in the co-infections with several pathogens and the resistance rates to certain antibiotics during the
COVID-19 pandemic. The resistance rate to clindamycin and quinupristin-dalfopristin increased, whereas the resistance rate
to tetracycline, trimethoprim-sulfamethoxazole, telithromycin, and proportion of multi-drug resistant isolates decreased.
The number of S. pneumoniae strains and resistant isolates exhibited similar seasonal patterns in 2018 and 2019, peaking
in November or December with another minor peak in March or April. During the COVID-19 pandemic, there was a sharp
decrease in February 2020 and no resurgence was observed at the end of 2022. Additionally, the minor peak was absent in
2020 and shifted to other months in 2021 and 2022.

Conclusions The COVID-19 pandemic has markedly altered the infection spectrum of S. pneumoniae in pediatric CAP
patients, as evidenced by shifts in the age of patients, respiratory co-infections, AMR patterns, and seasonal trends.
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Introduction

Community acquired pneumonia (CAP) remains a signifi-
cant cause of morbidity and mortality globally, particularly
affecting children under 5 years old and adults over 65 [1].
The advent of the pneumococcal conjugate vaccine (PCV)
has markedly reduced the prevalence of Streptococcus pneu-
moniae (S. pneumoniae) and related hospitalizations [2]. In
China, PCV7 became available in 2009 but was removed
from the market in 2015. It was not until 2017 that PCV13
was introduced. The two-year gap in vaccine availability
nullified the advantages gained from the previous PCV vac-
cination for pneumococcal disease [3]. Additionally, PCV
vaccination has not been included in the national immuni-
zation program of China, leading to low vaccine coverage
[4]. Notably, S. pneumoniae continues to be a prevalent
pathogen in pediatric CAP and is a leading cause of lower
respiratory infection deaths [5, 6]. In many healthcare set-
tings, empirical antimicrobial therapy forms the bedrock of
pediatric CAP management, often due to the unavailability
of bacterial culture and antibiotic sensitivity test results [7].
Thus, the surveillance of antimicrobial resistance (AMR)
patterns in common pathogens is crucial, as it aids in the
informed empirical selection of antibiotics.

The infection spectrum and AMR trends of many patho-
gens have changed significantly since 2020 due to the
COVID-19 pandemic. Notably, infections caused by S.
pneumoniae, including both invasive pneumococcal dis-
eases and non-invasive infections, have decreased in many
countries during this period [8—12]. Additionally, the sea-
sonal distribution of S. pneumoniae isolates and their AMR
to certain antibiotics have evolved, as indicated by several
studies [13—16]. However, most existing research has only
covered a brief period within the pandemic and has not
extensively focused on S. pneumoniae strains isolated from
pediatric patients with CAP.

In light of this, the current study aims to assess the impact
of the COVID-19 pandemic on the bacterial epidemiology
and AMR patterns of S. pneumoniae strains isolated from
pediatric CAP patients. Our study covers the period from
2018 to 2019 (pre-pandemic) and 2020-2022 (during the
pandemic).

Materials and methods

Study population

The study was conducted retrospectively at Yongchuan
Hospital of Chongqing Medical University from January

2018 to December 2022. Pediatric patients diagnosed with
CAP were identified using a comprehensive approach that
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encompassed clinical features, chest imaging, and labora-
tory tests. The inclusion criteria covered patients aged from
1 month to 18 years. The exclusion criteria were: (1) Onset
of pneumonia>48 h after hospital admission. (2) Chest
radiography findings indicative of interstitial infiltrate, alve-
olar infiltrate, lobar pneumonia, or pleural effusion>72 h
after admission. (3) Lung infiltrate or interstitial changes
interpreted as pulmonary tuberculosis, pulmonary edema,
or atelectasis. (4) Patients with incomplete medical records
or absent bacterial culture results. The ethics committee
of Yongchuan Hospital approved the study protocol (No.
2023-KeLunShen-76).

S. pneumoniae strains isolation and antimicrobial
susceptibility testing

Sputum samples were collected upon admission and sub-
mitted for microbiological testing according to established
clinical protocols. For patients unable to expectorate spu-
tum, samples were obtained either from the nasopharynx
or by deep suction under negative pressure. Adequate spu-
tum quality was defined as containing > 25 leukocytes and
<10 epithelial cells under low magnification. The speci-
mens were cultivated on MacConkey, blood, and chocolate
agar, and incubated at 37°C in a 5% CO2 environment for
18-24 h. S. pneumoniae identification was performed using
the Vitek-2 Compact system from BioM¢érieux, France and
the minimum inhibitory concentrations (MICs) were deter-
mined using ATB identification cards. This study tested
14 antibiotics, including tetracycline, clindamycin, trime-
thoprim-sulfamethoxazole, erythromycin, telithromycin,
chloramphenicol, quinupristin-dalfopristin, cefotaxime,
amoxicillin, rifampicin, levofloxacin, moxifloxacin, line-
zolid, and vancomycin. S. pneumoniae isolates were clas-
sified as susceptible, intermediate, or resistant according to
the MIC breakpoints of the Clinical and Laboratory Stan-
dards Institute (CLSI) criteria. This study included only
unique S. pneumoniae isolates, excluding repeated isolates
from the same patient during the same hospitalization epi-
sode. Multi-drug resistant (MDR) isolates were defined as
resistance to three or more antibiotic classes [17]. Quality
control was ensured using the S. pneumoniae ATCC49619
strain.

Identification of respiratory co-infections

Our research explored respiratory co-infections that involve
bacteria, Mycoplasma pneumoniae (M. pneumoniae), and
viruses in children suffering from S. pneumoniae-associated
CAP. We specifically assessed bacterial co-infections for
three isolates: Moraxella catarrhalis (M. catarrhalis), Hae-
mophilus influenzae (H. influenzae), and Staphylococcus
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aureus (S. aureus). Co-infections were identified through
sputum specimens that tested positive for S. pneumoniae and
at least one other bacterial species. To ascertain M. pneu-
moniae co-infections, venous blood samples were collected
for serum isolation. Detection of M. pneumoniae was car-
ried out by identifying Immunoglobulin M (IgM) antibodies
in the serum using either an indirect immunofluorescence
assay (IFA) or a passive particle agglutination test (Fujire-
bio, Japan), as per the manufacturer’s guidelines. An anti-
body titer of >1:160 in the passive agglutination test was
considered confirmatory of an M. pneumoniae infection.

Viral co-infections were determined by obtaining venous
blood or nasopharyngeal swab samples from patients at
admission. Our examination targeted five primary respi-
ratory viruses: influenza virus A (IVA), influenza virus B
(IVB), parainfluenza virus (PIV), respiratory syncytial
virus (RSV), and adenovirus (ADV). Serum IgM antibod-
ies for these viruses were measured using [FA from venous
blood samples. Additionally, nasopharyngeal swab samples
underwent analysis via a multiplex direct immunofluores-
cence assay kit (Diagnostic Hybrids, Athens, Ohio, USA),
adhering to established procedures. The identification of
viral co-infections was based on positive test results from
either serum or nasopharyngeal swabs.

Statistical analysis

The assessment of the normality of quantitative data was
performed using the Kolmogorov—Smirnov test. Data adher-
ing to a normal distribution were presented as mean + stan-
dard deviation (SD), and comparisons between groups were
conducted using Student’s t-test. Data not following a nor-
mal distribution were expressed as medians and interquar-
tile ranges, with group comparisons performed using the
Mann—Whitney U test. According to the actual frequency
and theoretical frequency, categorical variables were com-
pared via two-tailed chi-square test, Fisher’s exact test, or
Yates’ continuity corrected chi-square test. Analyses of co-
infections were conducted after the exclusion of patients
who lacked corresponding pathogenic results. All statistics
analyses were performed by using GraphPad Prism 9.0
Software (GraphPad Software, Inc., San Diego, CA, USA).
P <0.05 was considered to be statistically significant.

Results

Comparison of positivity rates, demographic
characteristics, and respiratory co-infections
in children withS. pneumoniae-associated CAP
before and during the COVID-19 pandemic

Among 6115 children hospitalized for CAP, respiratory
specimens were obtained from 5941 upon admission for
bacterial culture. This process resulted in the identification
of 968 non-duplicate S. pneumoniae isolates, all derived
from sputum specimens. Despite a reduction in the number
of isolates during the COVID-19 pandemic from 2020 to
2022, the positivity rate for S. pneumoniae remained stable.
Patients with S. pneumoniae-associated CAP had a median
age of 26 months, with 58.3% being males. The distribu-
tion of S. pneumoniae infections across various age groups
was as follows: 27.4% (265 cases) in children under 1 year,
33.4% (323 cases) in children aged 1 to less than 3 years,
35.3% (342 cases) in children aged 3 to less than 6 years,
3.0% (29 cases) in children aged 6 to less than 10 years, and
0.9% (9 cases) in children aged 10 years and older. During
the COVID-19 pandemic, the median age in 2021 and 2022
was significantly higher compared to that in 2018; however,
no significant changes were observed in the gender distribu-
tion, as indicated in Table 1.

The most common symptoms of enrolled patients
included cough (97.2% of patients), fever (41.1%), and
wheezing (27.3%). In cases of bacterial co-infections, the
incidence rates of S. pneumoniae-associated CAP patients
co-infected with M. catarrhalis, H. influenzae, and S. aureus
were 16.3%, 12.4%, and 1.4%, respectively. Notably, the
co-infections with M. catarrhalis increased in both 2019
and 2020 compared to 2018. Similarly, H. influenzae co-
infections exhibited significant fluctuations, with a lower
rate in 2020 than 2019, but a higher rate in 2021 compared
t0 2018 (P <0.05). Regarding other pathogens, 33.5% of the
patients had co-infections with M. pneumoniae, and there
were 155 cases of viral co-infections, predominantly with
RSV. Despite a noticeable increase in M. pneumoniae co-
infections in 2019, these rates significantly declined in the
subsequent three years, with notably lower rates in 2021
and 2022 compared to 2019 (P<0.05). In 2021, the co-
infections with IVA were significantly reduced compared to
2019, and PIV co-infections decreased significantly com-
pared to 2018 and 2019. Compared to pre-pandemic levels,
RSV co-infections notably increased in 2020 but fell to the
lowest level in 2022, all statistically significant (P <0.05).
However, the co-infections of S. aureus, IVB, and ADV did
not exhibit significant changes during the COVID-19 pan-
demic, as detailed in Table 1.
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Table 1 Comparison of positivity rates, demographic characteristics, and co-infection patterns in S. pneumoniae-associated CAP patients before

and during the COVID-19 pandemic

Variables Total 2018 2019 2020 2021 2022
S. pneumoniae-positives [No. (%)] 968 (16.3) 246 (16.3) 264 (16.2) 146 (16.7) 180 (17.4) 132 (14.7)
Age (months) 26 (10.25-43)  21(10-39)  26(11-42.75)  23.5(9-41.25)  32(11.25-47)* 37 (12-50) ®
Male patients [No. (%)] 564 (58.3) 149 (60.6) 154 (58.3) 80 (54.8) 97 (53.9) 84 (63.6)
Respiratory co-infections [No. (%)]
M. catarrhalis 158 (16.3) 29 (11.8) 49 (18.6) * 31(21.2)* 30 (16.7) 19 (14.4)
H. influenzae 120 (12.4) 25(10.2) 38 (14.4) 8(5.5)° 32(17.8)® 17 (12.9)
S. aureus 14 (1.4) 4(1.6) 4 (1.5) 2(1.4) 3(1.7) 1(0.8)
M. pneumoniae 287 (33.5) 62 (29.5) 99 (41.9)* 47 (35.6) 47(28.3)° 32 (28.6)°
IVA 14 (1.5) 4.7 8(3.0) 1(0.7) 0(0.0)® 1(0.8)
IVB 7(0.7) 2(0.8) 1(0.4) 4(2.8) 0(0.0) 0(0.0)
PIV 34 (3.6) 9(3.8) 12 (4.6) 10 (6.9) 0(0.0) P 3(2.8)
RSV 101 (10.6) 25 (10.5) 25(9.5) 26 (18.1) »P 22 (12.2) 3(2.4)>P
ADV 1(0.1) 0(0.0) 1(0.4) 0(0.0) 0(0.0) 0(0.0)

Continuous variable was presented as the median (25-75th percentiles); a: P <0.05 Versus 2018; b: P<0.05 Versus 2019

Table 2 Comparison of resistance rates of S. pneumoniae isolates before and during the COVID-19 pandemic

Antibiotics No. (%) of resistant isolates

Total (n=968) 2018 (n=246) 2019 (n=264) 2020 (n=146) 2021 (n=180) 2022 (n=132)
Tetracycline 838 (86.6) 226 (91.9) 220 (83.3)* 132 (90.4) 154 (85.6) * 106 (80.3) *
Clindamycin 942 (97.3) 240 (97.6) 252 (95.5) 143 (97.9) 179 (99.4)® 128 (97.0)
Trimethoprim-sulfamethoxazole ~ 747 (77.2) 207 (84.1) 201 (76.1)* 110 (75.3) ® 138 (76.7) 91 (68.9)*
Erythromycin 959 (99.1) 244 (99.2) 262 (99.2) 145 (99.3) 179 (99.4) 129 (97.7)
Telithromycin 33(3.4) 15 (6.1) 8(3.0) 4(2.7) 2(L.1)® 4(3.0)
Chloramphenicol 101 (10.4) 24 (9.8) 29 (11.0) 15 (10.3) 13(7.2) 20 (15.2)
Quinupristin-dalfopristin 40 (4.1) 5(2.0) 5(1.9) 23 (15.8) »P 6(3.3) 1(0.8)
Cefotaxime 10 (1.0) 8(3.3) 1(04)*% 0(0.0) 1(0.6) 0(0.0)
Amoxicillin 7(0.7) 2(0.8) 1(0.4) 1(0.7) 2 (1.1) 1 (0.8)
Rifampicin 3(0.3) 2(0.8) 0(0.0) 0(0.0) 1(0.6) 0(0.0)
Levofloxacin 3(0.3) 0(0.0) 0(0.0) 2(1.4) 0(0.0) 1(0.8)
Moxifloxacin 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0)
Linezolid 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0)
Vancomycin 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0) 0(0.0)
MDR isolates 886 (91.5) 233 (94.7) 240 (90.9) 137 (93.8) 162 (90.0) 114 (86.4) *

a: P<0.05 Versus 2018; b: P<0.05 Versus 2019

Comparison of drug resistance rates ofS.
pneumoniaeisolates in pediatric CAP patients
before and during the COVID-19 pandemic

As indicated in Table 2, the total resistance rates of S. pneu-
moniae to various antibiotics were as follows: tetracycline
(86.6%), clindamycin (97.3%), trimethoprim-sulfamethox-
azole (77.2%), erythromycin (99.1%), telithromycin (3.4%),
chloramphenicol (10.4%), quinupristin-dalfopristin (4.1%),
cefotaxime (1.0%), amoxicillin (0.7%), rifampicin (0.3%),
and levofloxacin (0.3%). There were no isolates resistant
to moxifloxacin, linezolid, and vancomycin. MDR isolates
represented 91.5% (886 out of 968) of the cases. The pre-
dominant MDR pattern, exhibiting resistance to macrolides,
lincosamides, tetracyclines, and sulfonamides, accounted
for 66.4% of the MDR isolates. Notably, the resistance
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rates to tetracycline, trimethoprim-sulfamethoxazole, and
cefotaxime significantly decreased in 2019 compared to
2018 (P<0.05). During the COVID-19 pandemic, there
were significant reductions in the resistance rates to tetra-
cycline in 2021 and 2022, trimethoprim-sulfamethoxazole
in 2020 and 2022, telithromycin in 2021, and the proportion
of MDR isolates in 2022. Conversely, the resistance rate to
clindamycin significantly increased in 2021 compared to
2019, and the resistance rate to quinupristin-dalfopristin in
2020 was significantly higher than the pre-pandemic levels
(P <0.05). The resistance rates to other antibiotics remained
unchanged during the COVID-19 pandemic.
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Changes in the seasonal patterns ofS.
pneumoniaestrains and drug resistant isolates
during the COVID-19 pandemic

As illustrated in Fig. 1, the number of S. pneumoniae isolates
displayed seasonal trends in 2018 and 2019, with marked
increases in October, peaking in November or December,
and then declining to lower levels by February of the fol-
lowing year. The isolates experienced a minor surge in
April, followed by a drop to the annual low in August or
September. However, these seasonal distributions shifted
during the COVID-19 pandemic. Notably, the isolates expe-
rienced a sharp decline in February 2020, and the typical
resurgence observed between October and December was
absent in 2022. Furthermore, the minor peak that usually
occurred was missing in 2020 and shifted to May in 2021
and June in 2022. The seasonal trend of the positive rate of
S. pneumoniae paralleled that of the isolates in most months
of 2018 and 2019. However, from 2020 to 2022, the posi-
tive rate fluctuated and did not follow the usual seasonal
patterns.

The S. pneumoniae isolates resistant to tetracycline,
clindamycin, trimethoprim-sulfamethoxazole, and erythro-
mycin also demonstrated seasonal distribution in 2018 and
2019. The pattern for these resistant isolates was similar
to that of the total isolates. An exception occurred in 2018
when the minor peak for trimethoprim-sulfamethoxazole-
resistant isolates shifted to March. During the COVID-19
pandemic, the seasonal patterns of resistant isolates under-
went disruptions similar to those observed in total isolates,
characterized by a sharp decrease in February 2020, an
absence of resurgence at the end of 2022, and disappearance
or shifts in minor peaks. Conversely, the seasonal patterns
of drug resistance rates remained atypical throughout the
five-year period, as depicted in Fig. 2A, B and C, and 2D.
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Discussion

This study provides a comprehensive analysis of the impact
of the COVID-19 pandemic on S. pneumoniae infections
among pediatric CAP patients. The positivity rate and gen-
der composition of the patients remained relatively consis-
tent during the pandemic. However, there was a noticeable
increase in patient age in 2021 and 2022 compared to 2018.
Significant changes were also observed in the co-infections
with certain pathogens. The S. pneumoniae isolates exhib-
ited high resistance rates to tetracycline, clindamycin, trim-
ethoprim-sulfamethoxazole, and erythromycin. During the
COVID-19 pandemic, significant alterations were noted in
the resistance rates to specific antibiotics and the propor-
tion of MDR isolates. Moreover, the seasonal patterns of S.
pneumoniae strains and resistant isolates shifted.

S. pneumoniae can colonize the nasopharynx of children
asymptomatically, a crucial step in its transmission and
subsequent infection. Apart from causing invasive diseases
like bacteremia and meningitis, it more commonly affects
the lower respiratory tract, leading to pneumonia [18]. In
our study, 16.3% of pediatric CAP patients tested positive
for S. pneumoniae in bacterial culture. This rate is lower
than that observed in a Chinese cohort [19], but higher than
those reported in two other studies [20, 21]. The COVID-19
pandemic has significantly altered the infection landscape
of various pathogens in recent years. In our study, the num-
ber of S. pneumoniae isolates from pediatric CAP patients
decreased notably between 2020 and 2022. Nonetheless,
the positivity rate of S. pneumoniae isolates in bacterial
cultures showed no significant changes during this period.
Similar trends have been noted in other populations affected
by invasive or non-invasive pneumococcal diseases during
the pandemic [8—11, 22—-24]. Non-pharmaceutical interven-
tions (NPIs) implemented to control COVID-19, such as
social distancing, mask-wearing, and school closures, are
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Fig. 1 Seasonal patterns in the number and positive rate of S. pneumoniae isolates from 2018 to 2022
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{ Fig. 2 Seasonal patterns in the number and rate of S. pneumoniae iso-
lates with drug resistance from 2018 to 2022. (A) Seasonal patterns in
isolates with resistance to tetracycline. (B) Seasonal patterns in iso-
lates with resistance to clindamycin. (C) Seasonal patterns in isolates
with resistance to trimethoprim-sulfamethoxazole. (D) Seasonal pat-
terns in isolates with resistance to erythromycin

thought to have reduced the transmission of S. pneumoniae
and decreased the number of isolates [25-28]. Despite these
measures, the rates of pneumococcal carriage and den-
sity among children and adults have remained relatively
stable both before and during the pandemic [29-32]. In
contrast, the incidence of pneumococcal CAP significantly
decreased, mirroring the suppression of respiratory viruses
such as RSV and influenza, which are critical in the patho-
genesis of S. pneumoniae infections [29, 33, 34]. Notably,
the rates of IVA and PIV co-infections in our study mark-
edly declined in 2021. While there was a notable increase in
2020, RSV co-infections fell to their lowest level in 2022.
Consequently, the reduction in S. preumoniae-associated
CAP cases is likely more influenced by the decreased inci-
dence of co-infections with these viral agents than by the
indirect effects of NPIs on carriage rates.

Except for a reduction in S. pneumoniae isolates, shifts
have been observed in the age stages of infected patients
during the COVID-19 pandemic [13]. In our study, the age
of children with S. pneumoniae-associated CAP notably
increased in2021 and 2022 compared to 2018, aphenomenon
that was absent in 2020. However, the gender composition
did not significantly change throughout the pandemic. The
adverse impact of respiratory co-infections on the severity
and outcomes of pneumococcal pneumonia has been dem-
onstrated [35]. Consistent with previous findings [19, 36],
S. pneumoniae-M. pneumoniae and S. pneumoniae-RSV co-
infection patterns were prevalent in pediatric CAP patients
in our study. Additionally, M. catarrhalis and H. influenzae
were common pathogens in bacterial co-infections, reveal-
ing distinct co-infection patterns of S. pneumoniae among
children in the community setting. The pattern of co-infec-
tions in CAP patients has been affected by the COVID-19
pandemic [36]. In our study, aside from dramatic changes
in viral co-infections, M. pneumoniae co-infections under-
went significant decreases in 2021 and 2022. Contrary to the
notable increase of M. catarrhalis co-infections in 2020, the
H. influenzae co-infections exhibited a specific pattern, with
a significant decrease in 2020 but an increase in 2021. These
findings suggest that the effects of the COVID-19 pandemic
might vary by pathogens.

AMR represents a significant threat to global health,
contributing substantially to mortality worldwide. In 2019,
bacterial AMR was associated with 4.95 million deaths, of
which 1.27 million were directly attributable to bacterial
AMR, with S. pneumoniae being a leading pathogen [37]. In

our study, the resistance rates of S. pneumoniae isolates to
tetracycline, clindamycin, trimethoprim-sulfamethoxazole,
and erythromycin were alarmingly high at 86.6%, 97.3%,
77.2%, and 99.1% respectively, indicating a significant
resistance to tetracyclines, lincosamides, sulfonamides, and
first-generation macrolides in strains isolated from pediatric
CAP patients. Conversely, no resistance to moxifloxacin,
linezolid, and vancomycin was observed throughout the
study’s five-year duration, aligning with previous findings in
pediatric populations [38—41]. Furthermore, the high preva-
lence of MDR isolates in our study, which echoes findings
from another study in China [42], can be attributed to factors
like inappropriate antibiotic practices and patient self-med-
ication. In our study, the resistance rates of S. pneumoniae
to specific antibiotics exhibited significant alterations dur-
ing the COVID-19 pandemic. Noteworthy reductions in
resistance were observed for tetracycline, trimethoprim-
sulfamethoxazole, telithromycin, and in the proportion of
MDR isolates. In contrast, resistance to clindamycin and
quinupristin-dalfopristin significantly increased in certain
years. These pandemic-related shifts in AMR trends of
S. pneumoniae have also been reported in various patient
demographics [15, 16, 43—45]. Importantly, the introduction
of PCV inoculation has markedly influenced the serotypes
and AMR patterns of S. pneumoniae [46, 47]. Concurrently,
there have been rises in the prevalence of potentially dis-
ease-causing AMR serotypes not covered by the vaccine
[48]. Despite disruptions in PCV vaccination schedules, no
significant changes in the serotype distribution of S. pneu-
moniae isolates were observed during the COVID-19 pan-
demic [16, 29]. Thus, the alterations in AMR patterns of S.
pneumoniae during the pandemic may not be attributable to
changes in serotypes.

Concerning seasonal patterns, S. pneumoniae infec-
tions are more common in cold season [49]. This pattern
is possibly linked to colder temperatures, crowding, and
increased respiratory viral infections in these months [18].
Similarly, S. pneumoniae isolates in our study peaked in
November or December, but exhibited the lowest levels
in August or September of 2018 and 2019. Additionally, a
smaller peak was observed in April. However, the seasonal
patterns underwent a shift in 2020 due to a pronounced
decrease in February, and in 2022 due to the absence of a
resurgence between October and December. These altera-
tions coincided with local COVID-19 outbreaks in Chongg-
ing. Furthermore, the April peak was not observed in 2020
and shifted to different months in 2021 and 2022. This shift
was possibly due to stringent NPIs against COVID-19,
which also prompted significant changes in the seasonality
of S. pneumoniae isolates in other populations as well [13,
14, 30]. In our study, the positivity rate of S. pneumoniae
exhibited a seasonal trend similar to that of isolates in most
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months between 2018 and 2019, but fluctuated erratically
without seasonal patterns from 2020 to 2022. The number of
S. pneumoniae isolates resistant to tetracycline, clindamy-
cin, trimethoprim-sulfamethoxazole, and erythromycin also
displayed a seasonal distribution, nearly paralleling the pat-
terns observed in total isolates during 2018 and 2019. More-
over, disruptions in the seasonal patterns of resistant isolates
during the COVID-19 pandemic largely mirrored those of
total isolates. However, the seasonal trends in the rate of
resistant isolates remained atypical throughout the five-year
period. These findings address the gaps in understanding S.
pneumoniae infections among pediatric CAP patients dur-
ing the COVID-19 pandemic and establish a baseline for
future surveillance efforts.

This study, while insightful, is subject to several limita-
tions. Firstly, PCV has not been included in China’s national
immunization program, and the serotypes of S. pneumoniae
are not routinely detected in hospitals. As a retrospective
study, the vaccine status of patients and the serotypes of the
S. pneumoniae isolates remain unreported. This limitation
hinders our ability to fully assess the influence of these fac-
tors on the AMR trends during the COVID-19 pandemic.
Secondly, MICs are commonly employed parameters in
the antimicrobial susceptibility studies [50]. While broth
micro-dilution is the standard for determining MICs in anti-
microbial susceptibility testing [17], our study utilized the
Vitek-2 Compact system’s automated dilution method [51].
This discrepancy might introduce measurement variations.
Thirdly, the absence of detailed clinical data regarding dis-
ease severity, treatment approaches, and patient outcomes
restricts our capacity for an in-depth analysis of disease
dynamics. Fourthly, our study may be affected by survivor-
ship bias. Some pediatric CAP patients might have recov-
ered after receiving treatment in community hospitals. The
S. pneumoniae strains in our study were isolated from a
large tertiary hospital, which could potentially overstate the
actual resistance rates found in broader community settings.
Moreover, as a single center study, the findings regarding
the bacterial epidemiology and AMR trends of S. pneu-
moniae may not be entirely representative of other regions.

Conclusions

In summary, this study analyzes the impact of the COVID-
19 pandemic on S. pneumoniae infections in children with
CAP. During the pandemic, despite the stable positivity rate
and gender composition, there was a notable increase in the
age of patients in 2021 and 2022. Significant changes were
also observed in the co-infections with multiple respiratory
pathogens, resistance rates of S. pneumoniae to certain anti-
biotics, and the proportion of MDR isolates. Moreover, the

@ Springer

typical seasonal patterns of S. pneumoniae strains and drug-
resistant isolates shifted during the pandemic. These find-
ings reveal that the infection spectrum of S. pneumoniae in
pediatric CAP patients has dramatically changed during the
COVID-19 pandemic. A multicenter study involving more
participants is essential to continuously monitor S. pneu-
moniae infections in the post-COVID-19 era.
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