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Abstract
Purpose  Standard dosing and intermittent bolus application (IB) are important risk factors for pharmacokinetic (PK) target 
non-attainment during empirical treatment with β-lactams in critically ill patients, particularly in those with sepsis and septic 
shock. We assessed the effect of therapeutic drug monitoring-guided (TDM), continuous infusion (CI) and individual dosing 
of piperacillin/tazobactam (PIP) on PK-target attainment in critically ill patients.
Methods  This is a retrospective, single-center analysis of a database including 484 patients [933 serum concentrations (SC)] 
with severe infections, sepsis and septic shock who received TDM-guided CI of PIP in the intensive care unit (ICU) of an 
academic teaching hospital. The PK-target was defined as a PIP SC between 33 and 64 mg/L [fT > 2–4 times the epidemio-
logical cutoff value (ECOFF) of Pseudomonas aeruginosa (PSA)].
Results  PK-target attainment with standard dosing (initial dose) was observed in 166 patients (34.3%), whereas only 49 
patients (10.1%) demonstrated target non-attainment. The minimum PK-target of ≥ 33 mg/L was overall realized in 89.9% 
(n = 435/484) of patients after the first PIP dose including 146 patients (30.2%) with potentially harmful SCs ≥ 100 mg/L. 
Subsequent TDM-guided dose adjustments significantly enhanced PK-target attainment to 280 patients (62.4%) and sig-
nificantly reduced the fraction of potentially overdosed (≥ 100 mg/L) patients to 4.5% (n = 20/449). Renal replacement 
therapy (RRT) resulted in a relevant reduction of PIP clearance (CLPIP): no RRT CLPIP 6.8/6.3 L/h (median/IQR) [SCs 
n = 752, patients n = 405], continuous veno-venous hemodialysis (CVVHD) CLPIP 4.3/2.6 L/h [SCs n = 160, n = 71 patients], 
intermittent hemodialysis (iHD) CLPIP 2.6/2.3 L/h [SCs n = 21, n = 8 patients]). A body mass index (BMI) of > 40 kg/m2 
significantly increased CLPIP 9.6/7.7 L/h [SC n = 43, n = 18 patients] in these patients. Age was significantly associated with 
supratherapeutic PIP concentrations (p < 0.0005), whereas high CrCL led to non-target attainment (p < 0.0005). Patients 
with target attainment (33–64 mg/L) within the first 24 h exhibited the lowest hospital mortality rates (13.9% [n = 23/166], 
p < 0.005). Those with target non-attainment demonstrated higher mortality rates (≤ 32 mg/L; 20.8% [n = 10/49] ≥ 64 mg/L; 
29.4% [n = 79/269]).
Conclusion  TDM-guided CI of PIP is safe in critically ill patients and improves PK-target attainment. Exposure to defined 
PK-targets impacts patient mortality while lower and higher than intended SCs may influence the outcome of critically ill 
patients. Renal function and renal replacement therapy are main determinants of PK-target attainment. These results are only 
valid for CI of PIP and not for prolonged or intermittent bolus administration of PIP.
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Introduction

Background

Early effective antibiotic treatment is a fundamental main-
stay in sepsis therapy and should be initiated as soon as 
possible [1, 2] to reduce patient mortality [2–4]. β-lactams 
like PIP are frequently used antibiotics for empiric treat-
ment of severe infections in the ICU [5]. Attaining defined 
pharmacokinetic targets within the first 24–48 h of treat-
ment repeatedly crystallized as an important predictor of 
treatment success in sepsis [6–8]. Consistently, intermittent 
bolus applications (IB) of standard doses are recognized as 
a main contributor for target non-attainment and potentially 
unfavorable patient outcome [9, 10]. Given their hydrophilic 
properties, β-lactams and PIP especially are prone to rapid 
changes in renal function and volume of distribution both 
of which frequently occur in patients with sepsis and septic 
shock [11]. Zander et al. [12] found only recently infrequent 
target attainment during IB application of PIP, especially in 
patients with a high CrCL. CI infusion represents a reason-
able approach of customized drug dosing in the ICU as to 
extend the time that the unbound fraction of PIP remains 
above the pathogen-specific minimum inhibitory concentra-
tion (MIC) (fT>MIC) [6, 7, 13, 14] up to 100% of the dosing 
interval [10, 12, 15]. Several studies demonstrated positive 
effects (clinical cure and survival rates) of CI compared to 
IB in the context of sepsis [16–22]. As evidence increases, 
the demand for dose optimization and TDM-guided indi-
vidual dosing strategies grows [12, 23, 24]

Objectives

We analyzed a PK database of 484 patients with overall 933 
SCs covering a period of 4 years of CI of β-lactams in an 
ICU. We primarily assessed PIP target attainment within 
the first 24 h of treatment and further investigated the effect 
of subsequent TDM-guided dose adjustments on PK-target 
attainment to support existing data regarding the safety of CI 
of β-lactams. Secondly, the influence of renal function, renal 
replacement therapy and obesity on PIP-PK was analyzed. 
Moreover, ICU- and hospital mortality data were evaluated 
in relation to PIP SCs.

Methods

Study setting and population

We retrospectively analyzed TDM-data of 484 patients 
(≥ 16 years) admitted to an interdisciplinary German ICU 

of an academic teaching hospital between December 2008 
and October 2012. Patients were admitted for treatment of 
severe infections, (severe) sepsis or septic shock. RRT was 
not an exclusion criterion. The study was approved by the 
ethics commission of the University of Ulm, Germany (Pro-
posal number 351/14; 12/2014).

Sampling and bioanalysis

Patients received TDM-guided CI of PIP according to the 
following standardized protocol that derived from years 
of clinical experience and the routine use of PK simula-
tions. An initial piperacillin/tazobactam bolus [2.25 g fixed 
(according to PK simulation data), 30-min infusion] was 
followed by immediate CI of piperacillin/tazobactam. The 
initial CI doses were determined according to the patients’ 
renal function. The total amount of PIP within the first 24 h 
was 12 g [4 g;2–16 g] for all patients and never exceeded 
16 g within the first 24 h of treatment. In the presence of sep-
tic shock, PIP was supplemented with ciprofloxacin. Initial 
TDM (referred to as day1) was performed under steady-state 
conditions (> 4 halftimes; minimum > 12 h after treatment 
initiation). PIP doses were subsequently adapted according 
to the results of PIP TDMs with PIP SCs of 33–64 mg/L 
being the primary PK-target (fT>2–4 ECOFF PSA). TDM-guided 
dose adjustments and consecutive TDMs were advised and 
supervised by clinical pharmacists. Adjustment to microbio-
logical data and resistance testing was performed as soon as 
information was made available. PIP concentrations were 
measured using high-performance liquid chromatography 
(HPLC), as published before [25]. TDM-data were avail-
able and reported 2–4 h after the blood sample arrived in 
the laboratory (blood sample: 6–8 a.m., TDM-data report-
ing: 10–12 a.m.). The interpretation as well as dose adjust-
ment recommendations were supervised by trained clinical 
pharmacists.

Definitions

Although using the combination of piperacillin and tazobac-
tam (PIP/TAZ), HPLC detection was restricted to the total 
PIP fraction which is why we use the abbreviation PIP in the 
present manuscript. The difference between measured (total) 
and unbound fractions seems of interest only in the highly 
protein bound β-lactams [26]. The ECOFF of PIP for PSA 
is 16 mg/L. Hence, we assumed a PK-target of > 2–4 times 
the ECOFF of PSA (fT>2–4 ECOFF PSA = 33–64 mg/L) as a 
rational compromise between effective bacterial killing and 
possibly harmful SCs. PIP concentrations of 65–99 mg/L 
were defined as moderately high. The definitions of sepsis/
severe sepsis and septic shock were based on the meanwhile 
revised SEPSIS-2 definition [27]. Patients were assigned 
to distinct BMI groups (≤ 25, 25–30, > 30, ≥ 40 kg/m2) to 
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analyze effects on PIP-PK. Creatinine clearance (CrCL; mL/
min) was calculated using the Cockcroft–Gault formula [28]. 
The PIP clearance (CLPIP; L/h) was derived using the fol-
lowing equation:

with c(PIP) being the measured PIP SC. In the absence of a 
universal definition, a CrCL of ≥ 130 mL/min was defined 
as an augmented renal clearance (ARC) [29]. Five different 
PIP SC groups (< 16, 16–32, 33–64, 65–99 and ≥ 100 mg/L) 
were formed to depict SC distribution and to investigate the 
effects of PIP on outcome parameters.

Statistical analysis

PK-, TDM- and patient data were processed anonymously 
and included into a Microsoft Excel database (Microsoft 
Corp., Version 15.41). Statistical analysis was performed 
with IBM SPSS (IBM Corporation, Armonk, New York, 
Version 25). Descriptive statistics were reported as median 
(interquartile range (IQR); [range]), numbers and relative 
frequencies, or as means ± standard deviations (SDs). Fig-
ures are given as box (median, IQR) and whisker (90th and 
10th percentile) plots. Pearson correlation coefficients were 
used to elucidate correlations between clinical and PK-
related parameters. We used logistic regression analysis, 
variance analysis (ANOVA) and post hoc ANOVA where 
indicated to evaluate the effects of PK-target attainment. 
Kruskal–Wallis test, Pearson Chi square test and Fisher’s t 
test were performed to evaluate statistical significance. Sig-
nificance was considered with p ≤ 0.05.

Results

Baseline epidemiological data and clinical 
characteristics

Between December 2008 and October 2012, 484 patients 
(933 TDMs) were eligible for analysis (baseline charac-
teristics given in Table 1). The 933 TDM measurements 
were mainly distributed over the first 6 days of treat-
ment (day 1: n = 484; day 2: n = 86; day 3: n = 129; day 
4: n = 80; day 5: n = 58; ≥ day 6: n = 96). The median PIP 
dose administered within the first 24 h of treatment was 
12 g for all SC groups (< 16 mg/L: 12 g; 16–32 mg/L: 12 g 
(4 g;[2–16 g]); 33–64 mg/L: 12 g (4 g;[4–16 g]); > 64 mg/L: 
12 g (4 g;[4–12 g]). 38.6% of patients (n = 187/484) pre-
sented with sepsis or severe sepsis and 38.1% (n = 184/484) 
with septic shock (Table 2). The primary sites of infection 
included lung/pneumonia (n = 256/484; 53%) and abdomen/

CLPIP[L h−1] =
dose

[

mg
]

24h
⋅ c(PIP)−1 [mg L−1]

Table 1   Patient characteristics

Values given in absolute numbers (N) and relative incidence (%), 
median and interquartile range (IQR) or mean and standard deviation 
of the mean (SD), respectively
ARC​ augmented renal clearance, creatinine clearance > 130 mL/min, 
BMI body mass index, CrCL creatinine clearance, PIP Piperacillin-
Tazobactam

N (%)
Male 301 (62.2)
ARC​ 41 (8.5)
Mean (SD)
Age (years) 73 (17)
Height (cm) 170 (12)
Weight (kg) 73 (17)
Median (IQR)
BMI (kg/m2) 26.1 (6.0)
Creatinine (mg/dL) 1.22 (1.26)
CrCL (mL/min) 46.3 (47.9)
Antimicrobial treatment (days) 6.0 (3.0)
Steady-state PIP serum concentration (mg/L) 57.0 (44.0)
PIP dose per 24 h (g) 8.0 (4.0)

Table 2   Baseline clinical data

Values given in absolute numbers (N) and relative incidence (%) or as 
median and interquartile range (IQR)
SSTI skin and soft tissue infection, BSI bloodstream infection, 
CVVHD continuous veno-venous hemodialysis, iHD intermittent 
hemodialysis, ICU intensive care unit

Diagnosis N (%)

Sepsis/severe sepsis 187 (38.6)
Septic shock 184 (38.1)
Severe infection 113 (23.3)
Focus/site of infection
Lung/pneumonia 256 (53)
Peritonitis 114 (23.6)
Urosepsis 38 (7.7)
SSTI 17 (3.5)
Empyema 18 (3.7)
BSI 13 (2.7)
Other 28 (5.6)
Renal replacement therapy
Overall 79 (16.3)
CVVHD 71 (89.9)
iHD 8 (10.1)
Mechanical ventilation
Overall 317 (65.5)

Median (IQR)
Duration 169 (377)
Mortality

N (%)
ICU 93 (19.3)
Hospital 112 (23.2)



1004	 D. C. Richter et al.

1 3

peritonitis (n = 114/484; 23.6%). Of the 16.3% (n = 79/484) 
of patients receiving RRT, continuous veno-venous hemodi-
alysis (CVVHD, citrate anticoagulation) was predominantly 
applied (n = 71/79; 89.9%) (Table 2). Augmented renal 
clearance was detected in only 8.5% of patients (n = 41/484). 
Overall mortality rates were 19.2% (n = 93/484) in the ICU 
and 23.2% (n = 112/484) in hospital (Table 2). 

Primary objectives

PK‑target attainment within 24 h after treatment initiation

The minimum PK-target of ≥ 33 mg/L was realized in 89.9% 
(n = 435/484) of patients within 24 h of treatment whereas 
34.3% (n = 166/484) exactly met the designated PIP target 
range of 33–64 mg/L and 55.6% (n = 269/484) exceeded 
the upper target of 64 mg/L. Of these potentially overdosed 
patients, 25.4% (n = 123/484) exhibited moderately high 
PIP SCs (65–99 mg/L). However, 30.2% (n = 146/484) of 
patients showed considerably high PIP SCs of ≥ 100 mg/L 

that may increase the possibility of neuro- and/or nephro-
toxicity with sustained exposure. Only 10.1% (n = 49/484) 
of all  patients showed low PIP SCs (< 16  mg/L, 0.2% 
[n = 1/484], and 16-32 mg/L, 9.9% [n = 48/484]) after the 
initial dose (Fig. 1).

Effects of TDM‑guided dose adjustment measures

Beyond the first 24 h, 449 TDMs were performed to adjust 
PK-target attainment through customized PIP dosing. While 
the number of patients in the low PIP SC group did not con-
siderably change (< 16 & 16–32 mg/L: 15.8%, n = 71/449), 
TDM-based dose adjustments profoundly increased the 
fraction of patients with PK-target attainment to 62% 
(n = 280/449) with median PIP SCs of 46 mg/L (16 mg/L; 
[33–64 mg/L]), Table 3). Moreover, TDM-guided indi-
vidual dosing reduced the fraction of patients with moder-
ately elevated PIP SCs (≥ 64 ≤ 100 mg/L) by 32% to 17.4% 
([n = 78/449], Table 3) and led to a major reduction of 
patients with potentially toxic concentrations (≥ 100 mg/L) 

Fig. 1   Distribution of PIP serum concentrations within the first 
24  h of treatment. Median PIP serum concentrations by group 
(median [IQR; range]): 16–32  mg/L (red): 29.0  mg/L [6.5  mg/L; 
16–32  mg/L]. 33–64  mg/L (green): 49.0  mg/L [16.0  mg/L; 
33–64  mg/L]. 65–99  mg/L (orange): 80  mg/L [16.0  mg/L; 
65–99  mg/L]. > 100  mg/L (violet): 128  mg/L [41.0  mg/L; 100–

300 mg/L]. Values given as absolute numbers (N) and relative inci-
dence (%) or median (M), interquartile range (IQR) and range (mini-
mum to maximum value). Statistical analysis was assessed using 
cross tables and Chi2 test. Significance level 5% (p < 0.05). IM inten-
sive care unit mortality, HM hospital mortality, IQR interquartile 
range
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by 85–4.5% (n = 20/449, Table 3). Overall, TDM effectively 
enhanced target attainment while reducing potential toxic 
PIP SCs at the same time.

Secondary objectives: effects of renal function and RRT 
on PIP‑PK

With a coefficient of r = 0.57, overall correlation of CrCL 
and CLPIP was good and comparable to existing literature 
[30–32]. However, Fig. 2 clearly shows increasing varia-
tion of CLPIP with CrCL values of above 80-100 mL/min. 
This finding demonstrates the difficulty of predicting drug 
clearance of PIP as a sole function of CrCL in critically ill 
patients, particularly in those with sepsis and septic shock. 
Binary logistic regression further revealed high CrCL to sig-
nificantly increase the odds for insufficiently low PIP SCs 
within the investigated study cohort (< 16 mg/L: p < 0.0005; 
OR 1.022 95% CI [1.011–1.034] and 16–32  mg/L: 
p < 0.0005; OR 1.017 95% CI [1.013–1.022]). These data 
highlight the role of renal function on drug clearance. 

Particularly, increased renal function can be presumed as a 
main risk factor for target non-attainment.

Regardless of the technique used, RRT in general was 
accompanied by a marked, however not significant, reduc-
tion of CLPIP (Fig. 3a). Although the median PIP dose did 
not profoundly change (CVVHD: 8 g (2 g;[3–12 g]) vs iHD: 
4 g (4 g;[2–12 g]) compared to patients without RRT (8 g 
(4 g;[3–20 g]), evaluation of the respective boxplots showed 
a clear tendency to lower doses and less pronounced vari-
ations during RRT (Fig. 3b). Interestingly, although CLPIP 
during RRT and PIP doses applied was lower during RRT, 
PIP SCs in this group were strikingly higher compared to 
non-RRT patients. CVVHD was associated with an 46.3% 
increase (98.0 mg/L (63 mg/L;[21–244 mg/L]) and iHD 
appeared to account for an elevation of PIP SCs by 51.7% 
(129.5 mg/L (76.5 mg/L;[75–240 mg/L]).

Effect of BMI on PIP‑PK

In our study cohort, the group of morbidly obese 
(patients ≥ 40  kg/m2, n = 18/484 [3.7%], SC n = 43/933 
[4.6%]) patients showed a significantly higher CLPIP (9.6 
L/h (7.7 L/h;[1.4–27.8 L/h]); p < 0.0001) compared to all 
other BMI groups (Fig. 4). As increased renal blood flow is 
discussed to contribute to elevated CLPIP in obese patients 
[33], we assessed and compared CrCL in the different 
BMI groups. Interestingly, morbidly obese patients did not 
show significantly higher values for CrCL as compared to 
other BMI groups (Fig. 5). Our data do not support that an 
increase in renal clearance accounts for elevated CLPIP in 
morbidly obese patients. 

Effect of target attainment on ICU‑ and hospital mortality 
(Fig. 1, Table 4)

ICU mortality (12.0% [33–64 mg/L] vs. 14.6 [16–32 mg/L], 
16.3 [65–99 mg/L] and 31.5% [≥ 100 mg/L]; p = 0.009) 
and hospital mortality (13.9% [33–64  mg/L] vs. 20.8 
[16–32 mg/L], 20.5 [65–99 mg/L] and 37.6% [≥ 100 mg/L]; 
p = 0.005) were significantly lower in patients with 
exposure to the defined PK-target concentration of 
33–64 mg/L within the first 24 h (Fig. 1). Exposure to PIP 

Table 3   Effect of TDM-guided 
dose adjustment measures on 
PK-target attainment

Comparison of PK-target attainment within the first 24 h (n = 484) of treatment and after TDM-guided cus-
tomized PIP dosing in the course of treatment (n = 449 TDMs)
Values given in absolute numbers (N) and relative incidence (%)
PIP SC Piperacillin serum concentration, TDM therapeutic drug monitoring, PK pharmacokinetics

Subgroup > 64 mg/L

PIP SC (mg/L) < 16 16–32 33–64 > 64 65–99 ≥ 100
24 h, % (N) n = 484 0.2 (1) 9.9 (48) 34.3 (166) 55.6 (269) 25.4 (123) 30.2 (146)
TDM-guided,  % (N) n = 449 1.1 (5) 14.7 (66) 62.4 (280) 21.8 (98) 17.4 (78) 4.5 (20)

Fig. 2   Association of CrCL and CLPIP. Correlation of renal function 
(CrCL) and CLPIP in the analyzed cohort of ICU patients. Values 
given as absolute numbers. Correlation was assessed by calculating 
a Pearson correlation coefficient. CrCL creatinine clearance, CLPIP 
piperacillin clearance
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concentrations ≥ 100 mg/L resulted in significantly higher 
mortality (ICU mortality: 31.9%, n = 45/484, p = 0.005; 
hospital mortality: 37.6%, n = 53/484, p = 0.001) compared 
to the PK-target group and patients with moderately high 

(65-99 mg/L) PIP SCs. Moreover, we separately analyzed 
the mortality in the subgroup of patients with exposure 
to SCs between 100-160 (n = 40/115) and > 160  mg/L 

A B

Fig. 3   Effects of RRT. A: Influence of RRT (89.9% CVVHD, 10.1% 
iHD) on CLPIP compared to the group of patients without RRT. 
CLPIP by RRT mode (median [IQR; range]): CVVHD (magenta): 4.3 
L/h [2.6 L/h; 1.4–17.2 L/h]. iHD (violet): 2.6 L/h [2.3 L/h; 1.2–6.2 
L/h]. no RRT (blue): 6.8 L/h [6.3 L/h; 1.3–35.5 L/h]. B: PIP doses 
administered to to patients with RRT (magenta&violet) compared to 

the non-RRT group (blue). Values given as absolute numbers (N) and 
relative incidence (%) or median (M), interquartile range (IQR) and 
range (minimum to maximum value), respectively. RRT​ renal replace-
ment therapy, CVVHD conitnuous veno-venous hemodialysis, iHD 
intermittent hemodialysis, CLPIP piperacillin clearance

Fig. 4   Distribution of CLPIP according to different BMI groups. CLPIP 
by BMI group (median [IQR; range]): ≤ 25  kg/m2 (green): 5.6 L/h 
[5.1 L/h; 1.2–26.3 L/h]. ≤ 30 kg/m2 (yellow): 6.9 L/h [5.3 L/h; 1.4–
26.3 L/h]. > 30 kg/m2 (red): 6.9 L/h [8.5 L/h; 1.8–35.5 L/h]. ≥ 40 kg/
m2 (dark red): 9.6 L/h [7.7 L/h; 1.4–27.8 L/h]. Values given as abso-
lute numbers (N) and relative incidence (%) or median (M), interquar-
tile range (IQR) and range (minimum to maximum value), respec-
tively. Statistical analysis was performed using analysis of variance & 
post hoc analysis with Bonferroni/Dunn correction. Significance level 
5% (p < 0.05). PIP piperacillin, CLPIP PIP clearance, BMI body mass 
index, IQR interquartile range

Fig. 5   Distribution of CrCL according to BMI. CrCL by BMI group 
(median [IQR; range]): ≤ 25  kg/m2 (green): 55.8  mL/min [54.5  mL/
min; 9.0–277.9  mL/min]. ≤ 30  kg/m2 (yellow): 39.3  mL/min 
[43.2  mL/min; 4.3–179.5  mL/min]. > 30  kg/m2 (red): 42.8  mL/min 
[41.7 mL/min; 7.6–141.8 mL/min]. ≥ 40 kg/m2 (dark red): 60.1 mL/
min [49.8  mL/min; 2.5–107.0  mL/min]. Values given as absolute 
numbers (N) and relative incidence (%) or median (M), interquartile 
range (IQR) and range (minimum to maximum value), respectively. 
Statistical analysis was performed by analysis of variance & post 
hoc analysis with Bonferroni/Dunn-correction. Significance level 5% 
(p < 0.05). CrCL creatinine clearance, CLPIP piperacillin clearance
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(n = 15/31). Both subgroups showed strikingly high ICU 
(30.4% and 35.5%) and hospital mortality rates (34.8% 
and 48.4%). In the group of patients with SC > 160 mg/L, 
we observed the highest median (IQR) PIP dose 12000 
(4000) mg, the highest SC 192 (56.3) mg/L and the lowest 
CrCL 21.7 (20.6) mL/min. Overall, we found a U-shaped 
distribution of mortality rates depending on the PIP SCs 
measured. We evaluated CrCL and SCs of survivors and 
deceased patients and found deceased to have significantly 
lower CrCL (31.8 mL/min (31.1 mL/min;[2.9–159 mL/
min]), p < 0.0001) as compared to survivors (48.5 mL/
min (48.5 ml/min; [4.3–245.2 mL/min]) and significantly 
higher PIP SCs (98.5 mg/L (75 mg/L;[21–244 mg/L]) vs. 
66.5 mg/L (53 mg/L;[14.1–300 mg/L], p < 0.0001).

Discussion

To the best of our knowledge, this is the largest reported 
experience of routinely used TDM-guided CI of PIP and 
customized PIP dosing. Positive effects of CI of β-lactams 
on patient outcome have been repeatedly reported [17, 19, 
22, 34]. An important metanalysis by Roberts et al. [18] with 
remarkably low heterogeneity (I2 = 0 for hospital and ICU 
mortality) including 632 patients strikingly demonstrated 
significantly lower 30-day hospital mortality using CI of 
β-lactams.

We realized the minimum PK-target of ≥ 33 mg/L in 
89.9% (n = 435/484) of patients within 24 h of treatment 
whereas 34.3% (n = 166/484) exactly met the designated 
PIP target range of 33–64 mg/L. TDM-guided dose adjust-
ments could significantly enhance PK-target attainment 
(33–64 mg/L) by 81.9% and at the same time effectively 
reduced the number of patients with potentially harmful 
concentrations of ≥ 100 mg/L by 85%. Our data do not sup-
port previous findings of insufficiently low SCs [9, 35, 36] 

associated with CI of β-lactams. Underdosing during CI of 
PIP did rarely occur in the evaluated study cohort (≤ 24 h: 
10.1%, n = 49/484; > 24 h: 15.8%, n = 71/449). In contrast 
to our findings, a recent prospective study of Dhaese et al. 
[36] found a remarkably high PK-target non-attainment in 
ICU patients enrolled to receive a CI of PIP (62.9% tar-
get non-attainment) or meropenem (25% target non-attain-
ment). A possible explanation for the poor target attainment 
might be the higher PK-target of 100% fT>4 ECOFF of PSA 
(≥ 64–160 mg/L) itself. Although we used a lower PK-tar-
get in our study, PIP SCs ≥ 100 mg/L occurred in 30.2% 
(n = 146/484) of patients within the first 24 h of treatment. 
We would like to argue that main contributing factors for the 
divergent target attainment between Dhaese and our study 
are in fact the different PK-targets and the significantly dif-
ferent study population. Dhaese et al. [36] included younger 
patients that rarely required vasopressor support which is 
uncommon in critically ill patients. Our patients are almost 
10 years older and the estimated median [IQR] CrCL is more 
compromised (46.3 mL/h [47.9 mL/h]) as compared to the 
ICU cohort of Dhaese and coworkers (Pip/Taz 95.4 mL/h 
[58.3 mL/h]; Mero 117.8 mL/h [68.4 mL/h]). Moreover, 
APACHE II and SOFA scores were only moderately high 
and patients with RRT were excluded. Our study cohort 
comprised 76.6% of patients with sepsis and septic shock 
including patients with RRT (Table 4). The PK-target (100% 
fT>4xECOFF, > 64 ≤ 160 mg/L) defined by Dhaese et al. [36] 
may be justified in a worst-case-scenario (PSA with MIC 16). 
EUCAST data show that only 11% of PSA have an MIC of 
16. Most of the strains exhibit an MIC of 0.5-8 (https​://mic.
eucas​t.org/Eucas​t2/regSh​ow.jsp?Id=6919). Consequently, 
we defined a lower primary PK-target (100% fT>2–4xECOFF, 
33-64 mg/L) to balance effective bacterial killing and possi-
bly harmful side effects. Our data highlight a U-shaped asso-
ciation of PIP SCs and mortality (Fig. 1). Exposure to higher 
than defined SCs was associated with significantly higher 

Table 4   Cross table depicting the distribution of clinical parameters in different PIP serum concentration group

Values given as absolute numbers (N) and relative incidence (%) or median (M) and interquartile range (IQR; Min.–Max.), respectively. Statisti-
cal analysis was assessed using Chi2- and Mann–Whitney U test. Significance level 5% (p < 0.05)
PIP Piperacillin, SC serum concentration, RRT​ renal replacement therapy, ICU intensive care unit, CrCL creatinine clearance, IQR interquartile 
range

PIP SC [mg/L] 33–64 ≤ 16 16–32 65–99 ≥ 100

N (%); p value ∑ N
 (Severe) sepsis 69 (41.3) 26 (54.2); .09 43 (37.4); .121 49 (31.8); .080 187
 Septic Shock 49 (29.3) 12 (25); .347 48 (41.7); 0.049 76 (49.4); < 0.0005 185
 Ventilation 104 (63.3) 1 (0.3) 31 (64.6); .504 80 (65.3); .410 101 (69.2); .163 317
 RRT​ 15 (9.0) 4 (8.2); .576 21 (16.5); 0.019 39 (26.6); < 0.0005 79

Median (IQR; min–max); p value ∑ n
 Age (years) 70 (17.8;17–92) 44 59.5 (24;19–88); < 0.0005 74 (14.5; 21–91) 75.5(12.0;16–91) < 0.0005 484
 CrCL (mL/min) 61.3 (50;10.7–245.2) 125.5 79.1 (65.8;9.7–179.5); 

0.011
40.9(37.6;7.6–176.8) .119 26.9 (24.9;2.9–152.1) < 

0.0005
484

https://mic.eucast.org/Eucast2/regShow.jsp?Id=6919
https://mic.eucast.org/Eucast2/regShow.jsp?Id=6919
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mortality rates (especially SCs ≥ 100 mg/L), especially in 
patients with exposure to PIP SCs of 100–160 (hospital mor-
tality 35.5%, ICU mortality 30.4%) and > 160 mg/L (48.4%, 
34.8%). We observed the highest survival rate in the patients 
with target attainment (33–64 mg/L), whereas Dhaese et al. 
[34] demonstrated a significantly lower survival rate in the 
group of patients with target attainment. In addition, these 
patients demonstrated a significantly lower CrCL.

With regard to adverse effects, Imani et al. [37] demon-
strated neuro- and nephrotoxicity during bolus application 
of PIP. Quinton et al. [38] predicted neurotoxicity follow-
ing continuous application of PIP at around a threshold 
concentration of 157 mg/L with a sensitivity of 52% which 
implies that neurotoxicity might well happen above and 
below 157 mg/L that concentration. Noticeably, patients 
with neurotoxic symptoms showed a significantly lower 
eGFR (18 mL/min) as compared to those without neurotox-
icity (50 mL/min). The patients with neurotoxicity (n = 23) 
reached significantly higher PIP SCs (156 mg/L) and dem-
onstrated a relevant reduction of GFR by approximately 45% 
(33/18 mL/min) within 3 days of antibiotic treatment. In 
contrast, the rest of the cohort demonstrated an increase of 
GFR by 13% (44/50 mL/min). On the day of PIP SC meas-
urements, the dose normalized to eGFR (g/24 h/100 mL/
min/1.73 m2) was significantly higher in the neurotoxicity 
group as compared to the rest of the group (48 [35.3–69.7] 
versus 22 [14.3–54]; p = 0.0111). We do think that this 
strongly hints to a potentially harmful effect in patients with 
very high PIP SCs (> 160 mg/L) and supports our finding 
that PIP SCs considerably higher than 100 and 160 mg/L 
may in fact be detrimental for kidney function in critically 
ill patients.

In accordance with previous data [30], we identi-
fied age and CrCL as two important factors for PK-target 
non-attainment in our study cohort: the odds for low PIP 
SCs significantly increased with high CrCL (< 16 mg/L: 
OR 1.002 95% CI [1.011–1.034]; 16–32 mg/L: OR 1.017 
95% CI [1.013–1.022]; p < 0.0005) while age significantly 
increased the odds for PIP SCs ≥ 100 mg/L (OR 1.044 95% 
CI [1.029–1.060]; p < 0.0005). Intensivists need to recognize 
that exposure to PK-targets impacts treatment success and 
patient outcome. Higher age and ARC are relevant risk fac-
tors for PK-target non-attainment. In that sense, our data are 
an important contribution to previous studies [35, 39] stating 
that customized PIP dosing [24] is the only reliable way to 
enhance PK-target attainment, preventing over- and under-
dosing and thereby presumably improving patient outcome.

As illustrated in Table 4, impaired renal function (and 
PIP elimination) may cause high SCs but vice versa, high 
PIP SCs may readily exacerbate a preexisting renal dys-
function resulting in acute kidney injury with RRT. The 
potentially nephrotoxic effects of PIP are of special con-
cern when a combination therapy (i.e., vancomycin) is 

pursued. Recent data clearly illustrate a higher incidence 
of acute kidney injury in combination therapy and fur-
thermore a distinct effect of piperacillin [40–42]. Recent 
data [37] further support the notion that high piperacil-
lin serum concentrations alone may be associated with 
nephrotoxicity; at least when administered as intermit-
tent bolus application. Patients who developed nephro-
toxic signs demonstrated mean PIP trough concentra-
tions > 100 mg/L and those without any signs showed 
concentrations considerably < 100 mg/L.

As one of only few studies we specifically investigated the 
effect of RRT on PIP-PK during CI. Consistent with other 
data [43], we found a considerable reduction of CLPIP during 
RRT with markedly higher PIP SCs compared to non-RRT 
patients. One explanation may be the constant and renal-
independent elimination of PIP during. In patients with PIP 
SCs of ≥ 100 mg/L, we found significantly more patients 
with acute renal failure requiring RRT. Vice versa, poten-
tially toxic PIP concentrations might as well exacerbate 
preexisting renal dysfunction and attribute to acute kidney 
injury [37]. CVVHD is the most commonly used form of 
RRT in critically ill patients [44, 45] but it is far from being 
a standardized system. Different modes of operation, varia-
tions in flow and the type of hemofilter used may influence 
CLPIP and PIP-PK [46–49].

Although pathophysiologic changes in obese patients [50, 
51] may impose dosing problems, our data do not support 
this notion in the context of CI of PIP. The significantly 
higher CLPIP not associated with increased renal drug clear-
ance in patients with a BMI (≥ 40 kg/m2) might hint to 
increased extra-renal drug clearance, i.e., through the gas-
trointestinal tract and/or drug deposition in fatty or muscle 
tissue. A significantly lower target attainment (fT>4×MIC) in 
obese patients has been previously demonstrated presumably 
as a drug-specific effect of piperacillin [52]. Therefore, these 
data emphasize the rationale for TDM particularly in obese 
patients in the ICU and the necessity for further trials inves-
tigating PIP and β-lactam PK alterations in this subgroup of 
patients [53–55].

Our findings underscore the need for definite studies 
investigating the effects of PK-target attainment along with 
CI of β-lactams on mortality. The ongoing TARGET study 
[56], investigating TDM-based dose optimization of pipera-
cillin/tazobactam to improve outcome in patients with sep-
sis, will particularly address target attainment and CI. The 
aspect of CI of β-lactams will be re-assessed in the BLING 
III-study, an ongoing phase 3 multicenter randomized con-
trolled trial investigating continuous versus intermittent 
β-lactam antibiotic infusion in critically ill patients with sep-
sis [57]. Both studies will also improve our understanding 
of the PK alterations of β-lactams in critically ill patients.

Our study has several limitations. The data were ana-
lyzed retrospectively and drawn from a single center where 
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β-lactams have been routinely and solely been administered 
as a TDM-guided CI for more than 10 years. In the absence 
of control groups and possible confounding, mortality data 
must be interpreted prudentially. Even though we report a 
large number of routine TDM measurements, correlation 
with clinical scores [Sepsis-related Organ Failure Assess-
ment Score (SOFA), Simplified Acute Physiology Score 
(SAPS)] was not possible. Microbiological data and MICs 
of pathogens were not available for analysis. HPLC was per-
formed to measure PIP concentrations while the combina-
tion of PIP and tazobactam (PIP/TAZ) was administered to 
the patients. Recent evidence, however, suggests that the PK 
alterations of both PIP and TAZ are almost equal in healthy 
adults [58] and critically ill patients [59, 60]. β-lactamase 
inhibition with tazobactam occurs rapidly, within 20–30 min 
[58] and additionally, piperacillin inhibits tubular excretion 
of tazobactam [61].

Conclusion

Our data strongly support the use of TDM-guided CI of PIP 
in critically ill patients. This customized approach leads to 
sufficient PK-target attainment within the first hours of treat-
ment while critically low PIP SCs rarely occurred. To the 
best of our knowledge, this is the largest reported experi-
ence of routinely used TDM-guided CI of PIP to report the 
effect of CI on PK-target attainment as well as PK changes 
with regard to renal function/RRT and obesity. We further 
found evidence of a reduction of mortality by achieving pre-
defined target SC facilitating adequate exposures of PIP in 
critically ill with severe infections, sepsis and septic shock. 
The results are only valid for continuous application of 
piperacillin/tazobactam.
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