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Abstract
Background Infections caused by bacteria are a foremost cause of morbidity and mortality in the world. The common strat-
egy of treating bacterial infections is by local or systemic administration of antimicrobial agents. Currently, the increasing 
antibiotic resistance is a serious and global problem. Since the most important agent for infection is bacteria attaching to 
host cells, hence, new techniques and attractive approaches that interfere with the ability of the bacteria to adhere to tissues 
of the host or detach them from the tissues at the early stages of infection are good therapeutic strategies.
Methods All available national and international databanks were searched using the search keywords. Here, we review 
various approaches to anti-adhesion therapy, including use of receptor and adhesion analogs, dietary constituents, sublethal 
concentrations of antibiotics, and adhesion-based vaccines.
Results Altogether, the findings suggest that interference with bacterial adhesion serves as a new means to fight infectious 
diseases.
Conclusion Anti-adhesion-based therapies can be effective in prevention and treatment of bacterial infections, but further 
work is needed to elucidate underlying mechanisms.
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Introduction

Bacterial infections are a major cause of mortality and 
morbidity worldwide. The excessive and incorrect use of 
antibiotics has led to the emergence of resistance, which is 
increasingly problematic for treatment due to increased anti-
biotic resistance. Thus, it has become increasingly important 
to develop new antimicrobials capable of withstanding the 
repertoire of bacterial resistance mechanisms. Adhesion of 
the pathogen to host cells or tissue is the first step during 
bacterial infection [1]. Alternatively, pathogens can colo-
nize and invade host cells. Thus, anti-adhesion therapy is 
an important way to prevent or treat bacterial infections. 
Targeting bacterial virulence properties (e.g.. adhesion, 
colonization, invasion, production of toxins) is considered 

a valuable alternative strategy to antibiotic therapy [2], with 
the great advantage of combating the infectious process to 
reduce tissue damage [3]. Attachment of bacteria to the host 
cell surface can be inhibited by interfering with host receptor 
assembly, adhesion assembly or adhesion biosynthesis. Anti-
bodies against bacterial adhesions can block surface epitopes 
required for binding [4, 5]. In this review, recent studies on 
anti-virulence therapy including the use of compounds that 
interfere with attachment or adhesion to the host tissue have 
been explord.

Overview of bacterial adhesion

Colonization is the most important step for pathogenicity 
in bacteria. It is necessary for the pathogen to stick to the 
host cell and tissue to start the infection. Colonization and 
subsequent internalization facilitate delivery of toxin and 
virulence factors to the host cell and helps the bacteria main-
tain their position and resist the host immunity. For example, 
many of Gram-negative bacteria employ different types of 
secretion system including type III, type IV or type VI to 
inject effector proteins into the host cells [1]. The clearance 
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mechanisms vary given different regions of the human body. 
Urine flow in the urinary tract or airflow in the respiratory 
tract, action of mucociliary removal in the airway, and fallo-
pian tube, the shedding of upper epithelial cell layers and the 
lining of tracts and tissue with antibodies, are natural cleans-
ing mechanisms of the host, all of which inhibit the bacterial 
attachment. The hydrophobic molecule sphinganine, which 
is a host-derived anti-adhesion in innate immunity and a 
component of sphingolipids, decreases adhesion of Strep-
tococcus mitis to buccal epithelial cells and Staphylococcus 
aureus to nasal mucosal cells [6]. These components act 
in such a way that they specifically bind to the pathogens 
entrapping them within the mucus blanket, and preventing 
attachment to the underlying epithelial cells [7]. The flow of 
mucus can reduce the pathogenic adhesion to the host cells 
[8]. In the gastric mucus, a sulfated component has been 
identified that can reduce bacterial binding to animal cells 
[9]. However, bacteria with their adhesives resist this mecha-
nism. Furthermore, attachment of bacteria to the host makes 
it easier to get nutrients and delivery toxins and enzymes to 
the host cell [10]. Alternatively, weakening the tight asso-
ciation allows easier elimination of the pathogen by the 
immune system. Attachment of bacterial adhesives to an 
appropriate receptor in the host cell confers tissue tropism, 
allowing specificity of the interaction between the host and 
pathogen. This ensures that the bacteria take advantage of 
the environment most appropriate to their physiological and 
metabolic requirements and to utilization of the most desir-
able environment for growth and colonization, internaliza-
tion or biofilm formation, depending on the bacterium [11]. 
There are multiple mechanisms for bacterial adherence to 
host cells and tissues. The first involves bacteria overcoming 
the electrostatic forces of the host cell. At physiological pH, 
both animal and prokaryotic cells have a negative charge, 
generating a repulsive force. The bacteria create a non-spe-
cific binding using hydrophobic molecules. Adhesion may 
also involve hydrophobic and other non-specific interactions, 
being mainly implicated in the initial ‘reversible’ phase of 
the process [12]. Bacteria may carry adhesions for more than 
one target surface and may employ more than one adhesion 
for binding to a substrate. Also, multiple adhesions can act 
in a concerted way and can be expressed at different stages 
during the infection [13]. Once in close contact to the mam-
malian cell, the bacteria can form stronger bonds with the 
surface. The adhesions involved in hard docking may be 
protein or polysaccharide-based [14]. Protein–protein inter-
action is a type of specific adherence, which involves pro-
tein adhesions and components of the extracellular matrix 
(ECM) or protein of the underlying structures which appear 
with wounds [15]. Other adhesions are neither protein nor 
sugar-based. Streptococcus pneumoniae contain phospho-
choline in its cell surface which attaches to the receptor for 
platelet-activating factor. The binding of bacteria to the host 

often occurs in multiple adhesions, causing the appearance 
of tissue tropism in bacteria [16]. The most important adhe-
sion, expressed by numerous bacteria, involves surface lec-
tins, which they serve as virulence factors of the organisms. 
Blocking these lectins by their analogs or suitable carbohy-
drates for preventing and treating the microbial diseases is 
the aim of anti-adhesion therapy [4].

Interfering with surface receptor biogenesis

Several studies have suggested that physicochemical change 
of the bacterial surface can lead to impaired pathogen recep-
tor biogenesis and decreased bacterial adhesion to host cells. 
Yersinia, Pseudomonas, Klebsiella, Escherichia coli, Hae-
mophilus, and species of Salmonella, have chaperone–usher 
pili, which are recognized as the most important virulence 
factor. Inhibition of pilus assembly is a promising strategy 
for preventing infection [17]. Sec pathway is important for 
biogenesis of chaperone–usher pilus. This chaperone–usher 
system transfers subunits to the outer membrane. Designing 
a synthetic peptide mimicking the structure of pilus protein 
can inhibit or prevent pilus assembly (pilicides) by disrupt-
ing the chaperon–pilin complex [18]. Pilicides and curlicides 
are important factors that prevent synthesis and assembly 
of pili in the chaperone–usher pathway through different 
mechanisms and substitution of other metabolites [19].

Interfering with the host receptor 
biogenesis

Many bacterial adhesions and toxins use host glycosphin-
golipids receptors for binding to the membrane translocation 
[20]. Altering the structure of host cell glycosphingolipids 
has been proposed as an strategy to prevent or treat infec-
tions by utilizing inhibitors enzymes in the glycosphingolip-
ids biosynthetic pathway [21]. In patients with lipid storage 
diseases, glycosylation inhibitors have been shown to be safe 
and effective [22].

Anti‑adhesion therapy strategy

Antibiotics kill or stop the growth of susceptible bacteria, 
while nonresistant strains can continue to outspread and be 
transmitted to new hosts. Wild type strains compete with 
resistant strains in untreated individuals, acting to prevent 
extensive spread of the resistance [3]. Resistance to drugs 
arises spontaneously in a population through mutation. Per-
sistent use of antibiotics will result in the death of all non-
resistant bacteria. Therefore, only those with the mutation 
can propagate, resulting in the quick spread of resistance in 
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a population. In anti-adhesive therapy, sensitive bacteria are 
still viable, where resistance to antibiotic therapy has been 
observed to occur at a much slower rate [11]. By attach-
ing to host cells, bacteria can resist the actions of cleaning 
mechanisms of the body, allowing the bacteria to reach a 
density whereby an infection can start. Anti-adhesion ther-
apy would prevent this association, causing the pathogen 
to be removed by the host, thus preventing disease. Several 
strategies have been considered to destroy bacterial adhe-
sion including coating the target substrate [23], modifying 
the surface anchoring [24], affecting adhesion biosynthesis 
[3], affecting glycosylation of the targeted substrate [25], 
use of anti-adhesion antibodies [26], or any type of adhesion 
analogs [27]. This novel therapeutics has aimed to prevent 
and treat bacterial infectious diseases.

Receptor analogs as anti‑adhesion agent

Bacterial host interactions are frequently mediated by carbo-
hydrates. Bacterial superficial carbohydrates contain glyco-
proteins, capsules and lipopolysaccharides, and host surface 
carbohydrates include glycoproteins and glycosphingolipids. 
Therefore, research has focused on the use of synthetic gly-
cosides and glycomimetics that would act as anti-adhesives 
[28]. The presence of a large number of receptor analogs in 
the environment creates a competitive inhibitor state with 
the host receptors for interaction with bacterial adhesions. 
Hence, the true and actual interactions decrease between the 
bacterial adhesion and host receptors [4]. Mannose was first 
shown to be a receptor for enterobacteria. Similarly, special 
sugars can be of interest as receptor for special bacteria, 
contributing to the development of receptor-like carbohy-
drates, inhibiting the adhesion of pathogens to host cells 
and tissues. Studies suggest that, in vivo, the concentrations 
of sugar analogs for inhibition of adhesion are usually high 
due to their relatively low affinity for the target adhesion. 
This problem has been solved by linking the saccharide to 
hydrophobic residues. Affinity can be increased by attaching 
much of the saccharide to an appropriate carrier. For exam-
ple, the affinity of alkyl-substituted mannose residues is 100 
times higher than that of mannose for adhesion of FimH of 
E. coli [29]. FimH, the adhesive subunit at the tip of type 
1 pili, is crucial for colonization and invasion to bladder 
tissue and is a key virulence factor in UTIs. Pharmacoki-
netic studies have revealed that these methods are appropri-
ate for UTI treatment in a preclinical murine model, with 
reductions in colony-forming units comparable to the those 
obtained by antibiotic ciprofloxacin [30]. Crystallographic 
studies and NMR relaxation analysis have indicated that 
the lectin domain of the adhesion contains a relatively deep 
sugar-binding pocket lined by aromatic lipophilic residues 
at the rim (the tyrosine gate, formed by Tyr48, Tyr137, and 

Ile52) along with established butyl α-D-mannoside 1 as a 
strong antagonist [31]. The first study of anti-adhesive effect 
of mannoside-based host receptor analogs began in 1970s 
in a murine model of UTI. Because of weak inhibition of 
this anti-adhesive, two strategies were used to improve the 
efficacy of FimH inhibitors: logical design of monovalent 
inhibitors with agglutinating components and synthesis of 
multivalent compounds with increased binding avidity to 
enhance affinity [32]. Administration of methyl K-manno-
side together with E. coli expressing the mannose-specific 
type 1 fimbrial lectin into the bladders of mice reduced 
the extent of bladder colonization by Uropathogenic E. 
coli (UPEC) [3]. Two combinations including α-methyl-
galactoside and α-methyl-fucoside are inhibitors of lectin 
(LecA and LecB). Further, Pseudomonas aeruginosa adhe-
sions reduced the damage and mortality in a murine model 
of bacterial-induced lung damage. This was most likely due 
to reduction of P. aeruginosa adhesion, reducing bacterial 
burden and dissemination [33]. Sialyl-3P-lactose [NeuAc 
K(2–3)GalL(1–4)Glc] is a specific safe and selective anti-
adhesive agent for adhesion of Helicobacter pylori to human 
gastric tissue culture cells [34]. However, this method has 
not been entirely successful in clinical trials. The reason for 
this is that multiple adhesions are utilized by a pathogen 
during an infection. These have diverse specificities, and 
therefore, require multiple inhibitors to prevent adhesion. 
The drug combination of multiple sugar receptor analogs 
is expected to be the only practical strategy for this type of 
therapy in the future. Another problem arises here, however. 
The cells of various tissues of the body, such as gastrointes-
tinal epithelial cells, constantly turn over and experience a 
high flow rate, which may dislodge the sugar mimics, remov-
ing the protection. Other defensive mechanisms against bac-
terial infection include physical barrier against colonization 
by pathogens. Mucus contains a variety of mucin glycopro-
teins secreted by the intestinal epithelium. Mucins act by 
binding and immobilizing bacteria [35].

Peptide‑based inhibitors

Streptococcus mutans expresses a surface protein streptococcal 
antigen (SA) I/II. It is the key attachment factor for S. mutans 
which binds to salivary receptors adsorbed on the hydroxyapa-
tite matrix of the tooth surface, where monoclonal antibodies 
raised against (SA) I//II can prevent tooth colonization [36]. 
For this area, peptide has been designed, in response to which 
the inhibition of the connection declines by 65–85%. This 
approach is useful in preventing caries as well as other strepto-
coccal infections [37]. MAM7 is another promising candidate 
for developing a peptide-based anti-adhesive. MAM7-coupled 
polymer beads have been used to decrease the surface attach-
ment and infection of pathogens including Yersinia pseudotu-
berculosis, Enteropathogenic E. coli (EPEC), Vibrio cholerae, 
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and Vibrio parahaemolyticus [38]. Fuzeon is a peptide-based 
HIV fusion inhibitor that blocks the binding and fusion of viral 
particles to host cells [39]. Factors need to be considered in 
the design of peptide-based anti-adhesion, including the sta-
bility in the host environment and their binding avidity [40]. 
Importantly, some adhesions may trigger signaling pathways 
by binding to host receptors. This may cause unwanted side 
effects, and therefore, should be considered in preclinical stud-
ies on peptide-based inhibitors [41].

Adhesion analogs as anti‑adhesion agents

Adhesion analogs also inhibit attachment of adhesins to host 
cells, but there is an increased chance of toxic and immuno-
genic side effects to healthy individuals. Furthermore, large 
quantities of these molecules would need to be employed 
to significantly reduce bacterial adhesion. An anti-adhesion 
peptide produced against S. mutans superficial proteins, 
when applied to the teeth of human volunteers, prevents 
colonization by S. mutans [42]. Studies suggest that this 
method may be widely successful for anti-adherence thera-
peutics when applied to specific pathogens.

Dietary inhibitors of adhesion

Many food components have been isolated and demon-
strated to have a protective effect against bacterial infection 
in vitro [1]. For example, cranberry juice protects against 
bacterial infections, in particular UTIs. Proanthocyanidins 
and polyphenols have proved to be the bioactive compounds 
contained in cranberries [43]. Proanthocyanidins inhibit the 
adhesion and co-aggregation of Porphyromonas gingivalis, 
H. pylori and, UPEC [44]. Polyphenols and proanthocyani-
dins can bind to flagella and pili, thus inhibiting bacterial 
surface attachment, aggregation into biofilms and swarming 
motility. Other food ingredients such as coffee, tea, wine, 
and plantains contain compounds with anti-adhesion proper-
ties [2]. Food-stuff containing either a mixture of inhibitors 
or an inhibitor with a broad spectrum of activity could be 
especially selective. These dietary items are good candidates 
for anti-adhesion studies. Nevertheless, caution should be 
exercised in consuming these foods because these com-
pounds may have bactericidal or bacteriostatic effects and 
selective pressures imposed by such compounds are undesir-
able and should be avoided [45].

Anti‑adhesion antibodies and vaccines 
(adhesion‑based vaccines)

Many studies have indicated use of antibodies against bacte-
rial adhesions, which is used as an anti-adhesion strategy. 
The host can be directly or passively immunized through 

bacterial adhesion. Immunization can be done by a DNA 
vaccine encoding the adhesion [1]. DNA vaccines con-
tain DNA that encodes the antigen of the target protein, 
which upon their expression in the host, are able to create 
protective immunity. Vaccines induce humoral and cell-
mediated immunity against a pathogen. Prevention of bac-
terial infections based on adhesion-based vaccinations can 
be achieved through multiple mechanisms. Many bacteria 
express surface proteins and pili and other adhesive factors, 
hence adhesion should be disrupted by inducing an anti-
body response toward the attaching agent [45]. The prob-
lem is the high degree of variation in the protein sequence 
among strains, due to their allelic variations [46]. Because 
of the emergence of multidrug-resistant strains, treatment 
of some pathogens like Salmonella enterica serovar Typhi 
is complicated. The S. Typhi adhesion T2544 is an impor-
tant factor in the interaction between bacteria and the host. 
T2544 is highly immunogenic, and dramatically increases 
the level of IgG and secretory IgA in immunized mice. For 
this reason, it is potentially a good candidate for vaccine 
development [47]. Definitely, apart from T2544 factor, there 
are other adhesion factors including the type IV pili, so the 
treatment of the disease has not been completely successful 
[48]. In a study, Immunization with FimH-based vaccines 
against UPEC prevented 99% of infections in a murine cys-
titis model. Immunization with FimH adhesion–chaperone 
complex in combination with an adjuvant elicited a strong 
IgG antibody response in monkeys and protected the animals 
against UPEC infection [49]. Bordetella pertussis contains 
filamentous hemagglutinin and pertactin adhesions on its 
surface, where both epitopes are used in vaccines effective 
against whooping cough [50]. Antibodies generated against 
these adhesions inhibit adherence of the bacteria to the cells 
of the respiratory tract [51]. In S. pneumoniae, by reducing 
colonization, an intranasal vaccine of pneumococcal surface 
adhesion A, has successfully reduced nasopharyngeal car-
riage rates in mice [52]. Outer membrane proteins of Sal-
monella enterica serovar Typhi [47], the clumping factor A 
and fibronectin-binding protein A in S. aureus [53], are other 
bacterial adhesion proteins with potential as vaccine targets. 
Conjugate polysaccharide vaccines like pneumococcal vac-
cination result in reduced nasopharyngeal colonization by 
S. pneumoniae strains [54]. Meningococcal polysaccharide 
vaccination reduces carriage of N. meningitidis [55]. In these 
cases, transudation of immunoglobulin into the nasophar-
ynx causes reduction in bacterial carriage. In addition to 
capsular polysaccharide vaccine, reduction has also been 
induced by an outer membrane vesicle vaccine. Neisseria 
lactamica outer membrane vesicle vaccine triggered reduced 
colonization of N. lactamica [56]. For embedding into host 
membranes, some bacteria secrete their own receptor into 
the host cell, like translocation of the intimin receptor in 
Enterohemorrhagic E. coli (EHEC) for attachment onto 
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epithelial cells. This process can be blocked using antibod-
ies generated through vaccination [57]. Enterotoxins of 
Enterotoxigenic E. coli (ETEC) are a major cause of diar-
rheal disease in humans and other animals. Studies suggest 
that rabbits immunized by an epitope from the A subunit 
of shiga toxin (STa) and B subunit of heat-labile (LT) toxin 
and FaeG, the major subunit of E. coli K88ac fimbriae, gen-
erated anti-STa antibodies, anti-LT and anti-K88ac, thus 
inhibiting adhesion of fimbrial E. coli to small intestinal 
enterocytes [58]. P. aeruginosa is an opportunistic pathogen 
which is becoming increasingly resistant to traditional anti-
microbials. Cachia and Hodges described a synthetic peptide 
anti-adhesion vaccine against small peptide structural ele-
ment found in P. aeruginosa strain K (PAK), which binds 
to the host epithelial cells. This process causes elevated 
anti-adhesion antibodies against multiple strains [59]. The 
proper vaccine should be able to stimulate both cellular and 
humoral immune responses. This goal can be achieved by 
having adhesion antigens communicate with outer mem-
brane vesicles. This strategy has been used to prepare a 
vaccine against Neisseria meningitidis. DNA vaccines have 
also been generated against S. aureus [60]. S. aureus binds 
to host cells by a number of surface proteins. For example, 
the collagen-binding protein (CNA), the major adhesin of S. 
aureus, was used to immunize Balb/c mice. The injection of 
this protein has stimulated both antibody and cell-mediated 
immune response in the mouse. A multiprotein DNA vac-
cine against S. aureus, consisting of a series of plasmids 
expressing the enzyme sortase (Srt), fibronectin-binding 
protein A (FnBPA), and clumping factor A (ClfA) has trig-
gered both antibody production and T-cell response against 
S. aureus [61]. The most major incompetency of this method 
is the presence of a variety of adhesion in bacteria, making 
its treatment difficult. The use of anti-adhesion antibodies or 
vaccines may still be effective. Antibodies can be involved in 
opsonization, so they can play a significant role in triggering 
the complement mediated bacteriolysis. However, antigenic 
variability of bacterial adhesions can potentially impair the 
efficacy of anti-adhesion antibodies [62].

Inhibitors of adhesions & receptors

To prevent colonization and infection of bacteria, we need 
to block adhesion of bacteria and inhibit the attachment to 
host cells. There are many potential targets for drugs that 
can disrupt the formation of these molecules. Pilicides are 
indeed toxins inhibiting the chaperone–usher pathway in 
Gram-negative microorganisms. For instance, the inhibitor 
targets pilus chaperone PapD, thereby reducing the adhesion 
to cell lines by 90% [63]. These pilicides inhibit curli forma-
tion in UPEC by preventing the polymerization of protein 
CsgA and FimC, the chaperone protein of the type I pili [64]. 

Sortase in Gram-positive bacteria catalyzes the formation 
of surface adhesions and pili, Thus, sortase is the target for 
several drug inhibitors [65].

Sublethal concentrations of antibiotics

Studies suggest that concentrations of antibiotics less than 
the amount to kill the bacteria affect the biochemistry of 
adhesions and the properties of the bacterial surface and 
subminimal inhibitory concentration (sub-MIC) of anti-
biotics can reduce adhesion to numerous surfaces [66]. 
Sub-MIC levels of ciprofloxacin caused a reduction in the 
hydrophobic nature of the bacterial surface in UPEC strains 
[67]. Sub-MIC of β-lactams piperacillin and imipenem have 
also had an inhibitory effect on adherence of P. aeruginosa 
[68]. Sub-MIC concentrations of antibiotics have reduced 
damage to the mucosal surface by Haemophilus influenzae 
[69]. (Sub-MIC) antibiotics may actually increase the levels 
of adhesion of certain bacteria, such as the attachment of 
UPEC to catheters [70]. Sub-MIC oxacillin for treatment of 
S. aureus has shown significantly increased adherence [70]. 
Conversely, the effect of sub-MIC diminished adherence. 
Rifampin treatment has decreased fibronectin binding of S. 
aureus and reduced attachment of bacteria to the surface 
[71]. Another problem with the use of sub-MIC antibiotics is 
the emergence of bacterial resistance, where under sub-MIC 
conditions, resistance is more likely to occur [72].

Dietary supplements as adhesion inhibitors

Some dietary supplements inhibiting bacterial adherence can 
be found in natural foodstuff. These inhibitor dietary supple-
ments can be extracted and used as anti-adhesion agents. The 
mechanism of action is unknown, but they may be receptor 
analogs and adhesion inhibitors [2]. Cranberry is the most 
studied dietary supplement, particularly in terms of UTIs 
and dental decay. It has been shown that the cranberry poly-
phenols are capable of reducing the attachment of a range of 
bacteria, including E. coli [73], N. meningitidis [74] and S. 
mutans [75]. According to a study, Women who consumed 
cranberry juice over extended periods, have displayed 
reduced incidences of bacteriuria [76]. Furthermore, milk 
contains oligosaccharides, antibodies and glycoproteins that 
can reduce bacterial adherence. Many bacteria are known to 
bind to such compounds, whereby their ability to adhere to 
and colonize the host tissue is inhibited. Breast-feeding of 
human infants has reduced rates of diarrhea via inhibition 
of bacterial adherence in infant [77]. Human milk is rich in 
oligosaccharides as well as related compounds, which inhibit 
the binding of both the common enteric pathogens (E. coli) 
and pathogenic species (V. cholerae and Salmonella fyris) to 
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epithelial cell lines [78, 79]. Bovine Muc1 derived from cow 
milk efficiently prevents bacterial infection. It is not effective 
in inhibiting attachment of Gram-positive organisms such 
as Bacillus subtilis and S. aureus, but it inhibits the attach-
ment of Gram-negative pathogens (E. coli and Salmonella 
Typhimurium) [80].

Probiotics as anti‑adhesive agents

A convenient and inexpensive procedure to achieve the nec-
essary polyvalency of inhibitive epitopes is their heterolo-
gous expression on the surface of probiotic bacteria. Probiot-
ics are useful bacteria that prevent pathogens from reaching 
a critical density required to cause disease. They can act to 
reduce the binding of pathogen bacteria. Probiotic bacterial 
strains can displace pathogenic bacterial antigen and they 
compete with the pathogen for vital nutrients for growth 
[81]. Probiotics have been specifically designed to mimic 
sugars on host receptors, thereby blocking the host cell bind-
ing of toxins released by pathogenic bacteria including V. 
cholera, ETEC and shiga toxin-producing E. coli (STEC) 
[82]. Consumption of probiotics like certain strains of bifi-
dobacteria can protect against an otherwise lethal infection 
of S. Typhimurium [83]. It is, however, difficult to under-
stand the mechanism of action of probiotics. Probiotics may 
inhibit pathogen adherence through influencing other com-
ponents of pathogenesis, such as the production of antimi-
crobial substances like lactic acid and bacteriocins [84] and 
activation of the innate immune system [85].

Glycoconjugates and glycomimetics 
as microbial anti‑adhesives

The most important factor for pathogenicity of microorgan-
isms is the binding to the host cell with the adhesion factors. 
Bacterial adhesions, located on the bacterial surface or on 
pili and fimbriae, interact with specific glycans on the host 
tissues. Inhibition of this attachment is a target for anti-adhe-
sion therapy in several infective diseases. Use of suitable 
compounds that are resistant to environmental conditions is 
very important. For example, natural compounds can limit 
resistance to enzymatic degradation. Therefore, appropriate 
compounds should be used to solve this problem. The use of 
carbohydrate mimics (glycomimetics) as a replacement for 
natural sugars potentially allows higher metabolic stability 
and also higher selectivity towards the desired protein tar-
get [4]. Effective anti-adhesion therapy requires high-affinity 
monovalent lectin multivalent structures incorporating sev-
eral copies of ligands of moderate affinity on a polyvalent 
scaffold (dendrimer, polymer, nanoparticle) [86] (Table 1).

New approachwa in anti‑adhesion therapy

Organosilane nanoparticles

One of the anti-adhesion strategies to reduce the binding 
of bacteria to the host cell is modification of surfaces by 
nanoparticulate coating. In 2017, a study was conducted 
in Greece, where the biofilm biological cycle of a number 
of pathogens including S. aureus, S. Typhimurium, E. coli 
O157:H7, Listeria monocytogenes, and Yersinia enterocolit-
ica was monitored on stainless steel and glass surfaces, with 
or without nanocoating. Organosilane nanoparticles affected 
the bacterial attachment, and the subsequent biofilm forma-
tion reduced the bacterial attachment [108].

Nanostructured mesoporous carbon 
polyethersulfone composite ultrafiltration 
membrane

In 2016, Yasin Orooji and colleagues studied the novel 
polyethersulfone (PES) ultrafiltration membrane contain-
ing of mesoporous carbon nanoparticles (MCNs), which 
exhibited the highest protein adsorption resistance and 
bacterial attachment inhibition property. Surface modifica-
tion by incorporating antibacterial agents into the polymer 
membrane matrix is an effective approach to inhibiting the 
growth of microorganisms [109].

Live‑cell nanoscopy in anti‑adhesion therapy

Antibodies and synthetic peptides can target host surface 
proteins to inhibit the different stages of biofilm forma-
tion, from initial attachment to biofilm accumulation 
[110]. Nanoscopy techniques have offered unprecedented 
opportunities to study the location and motion of single 
molecules in cells. Atomic force microscopy (AFM), also 
called force nanoscopy, is capable of capturing and meas-
uring the cell surface and measuring the interaction forces 
between single cells and single molecules required for 
biofilm formation [111]. In this technique, living micro-
bial cell is attached to the AFM probe, as a result, scien-
tists can examine interactions between the cell and target 
surface and evaluate the influence of inhibitors on these 
interactions. AFM-based nanoscopy has been used to gain 
insight into the mechanism by which cranberry juice inhib-
its the adhesion of clinical UPEC [112]. The S. aureus 
collagen-binding protein (Cna), is involved in adherence 
to collagen. Further, Herman-Bausier et al. [113] demon-
strated the anti-adhesion activity of monoclonal antibodies 
(mAbs) against Cna by nanoscopy techniques. Some mAbs 
were also able to block Cna binding to the complement 
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system protein C1q and the extracellular matrix protein 
laminin [114]. Researchers have designed peptides that 
can prevent biofilm formation of S. aureus. The surface 
adhesion SdrC mediates biofilm accumulation by weak 
homophilic bonds. They discovered that β-neurexin which 
is peptide derived from the neuronal cell can inhibit SdrC 
attachment to surfaces and biofilm formation. Live-cell 
nanoscopy has significantly contributed to assessing the 
inhibition of bacterial adhesion.

Characterization of non‑dialyzable constituents 
from cranberry juice

Non-dialyzable material (NDM) of cranberry extract has 
anti-adhesion properties against bacteria such as UPEC H. 
pylori [115], and Staphylococcus epidermidis. According to 
a study, the biofilm formed on soft contact lenses microbial 
keratitis is caused by Gram-positive bacteria in 27%, Gram-
negative bacteria in 11%, and multiple microbes in 13.8% of 

Table 1  Examples of anti-adhesion studies as inhibitors bacterial pathogens

Material group or anti-adhe-
sion

Anti-adhesive mechanism Year Location Authors Animal References

Multivalent adhesion molecule 
(MAM7) coupled to polysty-
rene microbeads

Blocking pilus assembly or 
function in P. aeruginosa

2017 Birmingham Roberts et al. In vivo rat model [87]

PilQ/PilA antigen of P. aerugi-
nosa (vaccine)

Anti-pili in P. aeruginosa 2017 Iran Gholami et al. In vivo mouse model [88]

Chitosans Inhibition of the growth and 
adhesion of human uropatho-
gens

2017 Italy Campana et al. In vitro [89]

Salvianolic acid B Anti-pili of  N. meningitidis 2016 Finland Huttunen In vitro [90]
Quercetin-mediated nanopar-

ticles
 Anti-adhesive activity against 

B. subtilis biofilm
2016 Egypt Raie et al. In vitro [91]

Phaleria macrocarpa Anti-adhesion and anti-biofilm 
agent against S. mutans

2015 Malaysia Heana et al. In vitro [92]

Essential oils (EOs) Anti-adhesive potential against 
a foodborne pathogen Salmo-
nella strain

2015 Tunisia Miladi et al. In vitro [93]

Monoclonal antibody Against pneumococcal type I 
pilus (RrgA)

2015 Italy Amerighi et al. In vitro [94]

Designed peptides Blocking the binding of AAF-
II EAEC

2015 India Gupta et al. In vitro [95]

Calixarene-based glycoclusters Anti-adhesive of P. aeruginosa 2014 France Boukerb et al. In vivo mouse model [96]
Cranberry bioactives P-fimbrial of E. coli 2013 Not determined Kaspar et al. Ex vivo [97]
Synthetic-mannosides FimH of E.coli 2013 Germany Fessele et al. In vitro [98]
Flavonoid rich extract of Gly-

cyrrhiza glabra (GutGard)
H. pylori (inhibit DNA gyrase, 

dihydrofolate reductase, 
protein synthesis)

2012 India Asha et al. In vitro [99]

S-carboxymethylcysteine (S-
CMC)

Reducing the expression of 
host receptors for S. pneu-
moniae

2011 Japan Sumitomo et al. In vitro [100]

High molecular weight coffee 
components

Inhibiting the ability of S. 
mutans

2010 Italy Stauder et al. In vitro [101]

Cranberry P-fimbriae of E. coli 2010 France Howell et al. ex-vivo/in vivo [102]
Lactobacillus rhamnosus GG Reduction of adhesion and 

cytotoxicity of S. Typhimu-
rium

2009 USA Burkholder et al. In vitro [103]

Wine components Anti-adhesion and anti-biofilm 
activity against S. mutans

2009 Italy Daglia et al. In vitro/ex vivo [104]

Sialyloligosaccharides (SOS) Inhibition of V. cholerae toxin 
(Ctx) binding to GM1-OS

2009 United Kingdom Sinclair et al. In vitro [105]

Monosaccharide Inhibition of adherence by 
P. aeruginosa to canine 
corneocytes

2008  England McEwan et al. In vivo [106]

Ceramic-composite S. mutans 2007 Germany Rosentritt et al. In vitro [107]
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cases [116]. Non-dialyzable material (NDM) reduces forma-
tion of biofilm on soft contact lenses.

Advantages and disadvantages 
of anti‑adhesion therapy

The essential step in infection is microbial adhesion medi-
ated primarily by protein–carbohydrate interactions. Pre-
vention of such interactions has become a promising target 
for anti-adhesion therapy in several infective diseases. Most 
successful anti-adhesive materials consist of polyvalent 
glycoconjugates, while monovalent protein–sugar interac-
tions are often weak [117]. Anti-adhesion therapy does not 
increase antibiotic resistance, since it only inhibits bacterial 
binding to surface without affecting microbial viability. This 
approach prevents colonization and biofilm formation, but 
does not kill the invading pathogen, and therefore, selec-
tive pressure as well as resistance to anti-adhesin do not 
develop [4]. It is clear that the presence of multiple bacterial 
adhesions and the lack of appropriate methods to deliver the 
inhibitors for all adhesions are a major hindrance to anti-
adhesion therapy. Other problems are low affinity of free 
receptors to the bacterial ligands, and presence the adhesins 
of common epitopes with human proteins. Nevertheless, it is 
possible that mutations could occur and affect the efficacy of 
anti-adhesion compounds. These would also directly affect 
the pathogen’s ability to bind to the host receptor. Clearly, 
point mutations in bacterial adhesions can influence tissue 
tropism in human body. Consideration of this issue informs 
us in designing strain-specific and species-specific anti-
adhesive compounds, thus avoiding side effects caused by 
changes in the microbiota. Another benefit of this technique 
is resistance to environmental conditions. Furthermore, anti-
adhesion compounds are not bactericidal, and they do not 
have harmful effects on the host such as the release of bacte-
rial toxins and endotoxins.

Concluding remarks

Misuse of antibiotics has led to the development of resistant 
strains, and the infection that has already been curable has 
now become a problem. Therefore, alternative therapies are 
really needed. Anti-adhesion therapy involves attempts for 
blocking adherence, quorum sensing, biofilm formation and 
virulence. These have benefits over traditional antibiotics 
by virtue of inhibiting pathogenicity without killing bacte-
ria. This, in turn, hampers the development of subsequent 
increased resistance in a bacterial population by remov-
ing the selective pressure for such mutations, giving key 
advantages over classical drugs. Bacteria utilize a variety of 
adhesions during the process of adherence, hence, multiple 

molecular interactions may need to be inhibited to maxi-
mize the removal of the pathogen from the body. As a result, 
despite the potential advantages of anti-adhesion therapy, 
there have been failures in some cases. This may account 
for the lack of extensive use of such treatment, despite ini-
tial successes. On the other hand, tissues are composed of 
multiple cell types with varying receptors for bacterial adhe-
sions. For developing the use of anti-adhesin therapy, it may 
be better to focus on simple tissues such as the bladder and 
nasopharynx, rather than more complex tissues of intestinal 
tract, where the associations between bacteria and the host 
are more intricate. Better knowledge of the stereochemistry 
of these adhesions and their receptor–ligand interactions will 
allow better design of anti-adhesive agents. Broad specificity 
inhibitors that block multiple targets, such as those found in 
dietary products or a combination of several distinct agents 
that target separate adhesions seem to be a decent solution. 
These will require significant testing until they become fully 
licensed for use in healthcare. They must also prove to be as 
effective as present antibiotics.
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