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Results All environmental specimens from 28 different 
sampling sites were contaminated with antimicrobials. 
High concentrations of moxifloxacin, voriconazole, and 
fluconazole (up to 694.1, 2500, and 236,950 µg/L, respec-
tively) as well as increased concentrations of eight other 
antibiotics were found in sewers in the Patancheru–Bol-
laram industrial area. Corresponding microbiological anal-
yses revealed an extensive presence of extended-spectrum 
beta-lactamase and carbapenemase-producing Enterobac-
teriaceae and non-fermenters (carrying mainly blaOXA-48, 
blaNDM, and blaKPC) in more than 95% of the samples.
Conclusions Insufficient wastewater management by bulk 
drug manufacturing facilities leads to unprecedented con-
tamination of water resources with antimicrobial pharma-
ceuticals, which seems to be associated with the selection 
and dissemination of carbapenemase-producing pathogens. 
The development and global spread of antimicrobial resist-
ance present a major challenge for pharmaceutical produc-
ers and regulatory agencies.

Abstract 
Purpose High antibiotic and antifungal concentrations in 
wastewater from anti-infective drug production may exert 
selection pressure for multidrug-resistant (MDR) patho-
gens. We investigated the environmental presence of active 
pharmaceutical ingredients and their association with MDR 
Gram-negative bacteria in Hyderabad, South India, a major 
production area for the global bulk drug market.
Methods From Nov 19 to 28, 2016, water samples were 
collected from the direct environment of bulk drug manu-
facturing facilities, the vicinity of two sewage treatment 
plants, the Musi River, and habitats in Hyderabad and 
nearby villages. Samples were analyzed for 25 anti-infec-
tive pharmaceuticals with liquid chromatography–tandem 
mass spectrometry and for MDR Gram-negative bacte-
ria using chromogenic culture media. In addition, speci-
mens were screened with PCR for blaVIM, blaKPC, blaNDM, 
blaIMP-1, and blaOXA-48 resistance genes.
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Introduction

The rising prevalence of antimicrobial resistance in clini-
cally relevant pathogens exerts enormous pressure on the 
global human healthcare system and is estimated to cause 
several hundred thousand deaths annually [1, 2]. While 
resistance is a naturally occurring phenomenon, the increas-
ing use of anti-infectives since the second half of the 20th 
century has created artificially strong selection pressure for 
resistant microorganisms [3]. The global emergence and 
spread of antibiotic resistance are accelerated by various 
human behaviors, including inappropriate use of antimi-
crobial agents, poor infection prevention and control within 
healthcare systems, insufficient control of antibiotic pollu-
tion of the environment, and international travel and food 
trade [4–11]. To mitigate this threat, it is essential to iden-
tify sources and dissemination routes of multidrug-resistant 
(MDR) bacteria and antibiotic resistance genes [4–6, 15]. 
Today, the most important tools against the spread of MDR 
organisms are intensified infection control, surveillance, 
and antimicrobial stewardship [6].

Low levels (0.1–1 µg/L) of pharmaceuticals, includ-
ing antibiotics, have been detected in surface, ground, and 
drinking water worldwide [3, 12, 15]. Incorrect usage and 
disposal have been identified as the major sources of envi-
ronmental micro-contamination. The environment around 
bulk drug manufacturing plants has repeatedly been identi-
fied as a source for resistant organisms, especially in India 
and the People’s Republic of China, which supply most of 
the world’s antibiotics [3, 12–14, 16, 17, 20]. However, the 
extent to which high concentrations of antimicrobial agents 
in the environment contribute to the development of MDR 
organisms has not yet been conclusively determined [3]. 
Unfortunately, current regulatory systems of pharmaceuti-
cal production do not address resistance [15]. Several stud-
ies have measured environmental concentrations close to or 
exceeding the minimal inhibitory concentrations (MICs) of 
certain antibiotics, such as ciprofloxacin, in samples gener-
ally linked to pollution from bulk drug production facilities 
[3, 12–14, 21]. It is well known that antibiotic concentra-
tions below the MICs can select for resistant bacteria [3, 4, 
22].

India currently supplies approximately 20% of the 
world’s generic drugs, with US$15 billion in revenue in 
2014 [23], and anti-infectives account for a substantial 
share of the total. Particular bulk drug manufacturing plants 

in Hyderabad, South India, have been shown to dump 
waste into their surroundings or fail to treat manufactur-
ing discharges appropriately, resulting in the contamination 
of rivers and lakes [12–14, 17, 20]. The substantial quan-
tities of antibiotic pollution, combined with runoff from 
agriculture and human waste, facilitate the growth of MDR 
bacteria in water bodies and sewage treatment plants [23]. 
Consequently, India has become a hot spot of drug resist-
ance, with drastic clinical consequences. More than 56,000 
newborn babies in India die each year from infections by 
bacteria that are resistant to first-line antibiotics [24]. The 
presence of NDM-1 and other carbapenemases in environ-
mental samples has important implications for citizens reli-
ant on public water and sanitation facilities [18, 19].

Microbes’ ability to travel within human hosts and 
traded animals or goods means that multidrug resistance 
can move around the world within a flight time of only a 
few hours [11]. Visitors to a country with a high prevalence 
of antibiotic resistance often return home colonized by 
MDR bacteria, which are then easily transmitted to others 
[7–10], including 5–10% of household members [10]. For 
instance, during travel to India, the specific risk of acquir-
ing Enterobacteriaceae that produce extended-spectrum 
beta-lactamases (ESBL’s) is about 70–90% [8–10].

This study was designed to determine the environmen-
tal presence of active anti-infective pharmaceuticals in a 
major production area for the global bulk drug market. The 
aim is to document the ongoing environmental pollution by 
the pharmaceutical industries in Hyderabad, South India, 
and to highlight its association with the presence of MDR 
pathogens.

Methods

Setting

Hyderabad is the capital of the southern Indian state of 
Telangana and occupies approximately 650 km2 along the 
banks of the Musi River. Its population was estimated at 
10.1 million (with 11.7 million in the metropolitan area) 
in 2016, making it the fourth most populous city and 
sixth most populous urban agglomeration in India [25]. 
Hyderabad is the growing hub for pharmaceutical manu-
facturing companies in South India. Many companies in 
Hyderabad are approved by the World Health Organiza-
tion (WHO), US Food and Drug Administration (FDA), 
and European authorities for good manufacturing practice 
(GMP), and have international reputations (e.g., Dr. Red-
dy’s Laboratories, Aurobindo Pharma).

Patancheru–Bollaram is an industrial zone located 
approximately 32 km outside Hyderabad. In the early 
1980s, many bulk drug, chemical, pesticide and other 
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manufacturing plants were established there. Today, 
Patancheru–Bollaram and the surrounding villages are 
home to more than 100 industries, including more than 
30 pharmaceutical drug manufacturers (Fig. 1) that sup-
ply nearly all leading pharmaceutical companies in the 
world [23, 26]. Although they generate enormous amounts 
of industrial effluents every day [27], the pharmaceutical 
industries in Patancheru–Bollaram are not connected to a 
functioning water supply or wastewater network (Fig. 2, 
Supplementary Fig. 1). On-site treatment of wastewater in 
primary effluent treatment plants includes reverse osmo-
sis, strippers, multiple effect evaporators, and agitated 
thin-film dryers [26]. Pretreated effluents, low in total dis-
solved solids, are transported by trucks to a common efflu-
ent treatment plant operated by Patancheru Enviro Tech 
Ltd. (PETL) for further processing (Supplementary Fig. 2). 
Officially, PETL receives approximately 1600–2000 m3 
of industrial waste per day [27]. Until a few years ago, 
the effluent from PETL was discharged into the Isakavagu 
creek, which feeds the Nakkavagu, Manjira, and eventually 
Godawari rivers [13, 26]. Following a public interest peti-
tion in 1997, the Indian Supreme Court ordered the pollu-
tion control authorities to channelize effluents from PETL 
through an 18 km pipeline to the Amberpet mega sewage 
treatment plant in Hyderabad, so that the effluents could 
be diluted with sewage [27, 28]. The PETL outlet was con-
nected to the pipeline 12 years later, in July 2009. Since 
then, the final treated wastewater has been discharged into 
the Musi River (Supplementary Fig. 3).

Sampling

Different sampling sites were chosen to cover the direct 
vicinity of bulk drug manufacturing facilities, rivers, 
lakes, ground water, drinking water, water sources con-
taminated by sewage treatment plants, and surface water 
from populated urban as well as rural areas. The selec-
tion of sites was a matter of availability without claim-
ing to be fully representative. Accurate GPS coordinates 
and photographic documentation are provided for all 
sampling sites (Supplementary Fig. 4). An overview map 
is given in Fig. 3, and a more detailed marked map is 
available at http://umap.openstreetmap.fr/de/map/sam-
ples-hyderabad_123988#11/17.4375/78.4561. Micro-
biological specimens were collected using ESwabs™ 
(Copan, Brescia, Italy), a liquid-based multipurpose col-
lection and transport system, and were transferred to the 
microbiology laboratory in Leipzig, Germany, within 
48 h. Water samples destined for liquid chromatogra-
phy–tandem mass spectrometry (LC–MS/MS) analysis 
were transferred to the laboratory in Nuremberg, Ger-
many, within 48 h and frozen at −80 °C. Surface, seep-
age, and tap water samples are not listed in the current 

notifications (Exim Policy Schedule 2, http://www.dgft.
org/export-policy-schedule-2.html) issued by the India 
Directorate General of Foreign Trade, so no permit was 
required for export.

Fig. 1  Shepherd with a herd of goats amidst the Patancheru–Bol-
laram industrial zone

Fig. 2  Polluted sewer, Patancheru–Bollaram industrial zone (when 
collecting s11)

http://umap.openstreetmap.fr/de/map/samples-hyderabad_123988%2311/17.4375/78.4561
http://umap.openstreetmap.fr/de/map/samples-hyderabad_123988%2311/17.4375/78.4561
http://www.dgft.org/export-policy-schedule-2.html
http://www.dgft.org/export-policy-schedule-2.html
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Fig. 3  Map of sampling locations in Hyderabad and surrounding areas. A more detailed marked map is available from http://umap.openstreet-
map.fr/de/map/samples-hyderabad_123988#11/17.4375/78.4561

http://umap.openstreetmap.fr/de/map/samples-hyderabad_123988%2311/17.4375/78.4561
http://umap.openstreetmap.fr/de/map/samples-hyderabad_123988%2311/17.4375/78.4561
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Bacterial cultures and identification of isolates

Microbiological specimens were plated onto two selective 
culture media plates (CHROMagar™ ESBL and CHRO-
Magar™ KPC; CHROMagar, Paris, France) according to 
the manufacturer’s instructions for the isolation of ESBL and 
carbapenemase-producing bacteria. Additional cultures were 
established to determine the total bacterial content of the 
samples. Three colonies identical in macro-morphology on 
each selective plate were identified using a matrix-assisted 
laser desorption/ionization time-of-flight (MALDI-TOF) 
mass spectrometer (bioMérieux, Marcy l’Etoile, France).

Detection of extended‑spectrum beta‑lactamases

Bacterial isolates were tested with MIC Test Strips (Lio-
filchem, Roseto degli Abruzzi, Italy) containing gradients 
of cefotaxime/cefotaxime + clavulanic acid (CTX/CTL), 
ceftazidime/ceftazidime + clavulanic acid (CAZ/CAL), 
and cefepime/cefepime + clavulanic acid (FEP/FEL). 
Interpretation followed the manufacturer’s recommenda-
tions. Strains were considered ESBL-positive when three 
doubling dilutions in the presence of clavulanic acid 
caused a reduction of the MIC (MIC ratio of ≥8).

Detection of carbapenemases

Carbapenemases were detected using the on-demand real-
time PCR system Xpert® Carba-R (Cepheid, Sunnyvale, 
USA), capturing the VIM, IMP-1, NDM, KPC, and OXA-
48 variants [29].

Liquid chromatography–tandem mass spectrometry

Samples were analyzed with LC–MS/MS for the presence 
of 25 anti-infective pharmaceuticals (see Table 2) using ten 
different methods. The exact methodology is given in Sup-
plementary Text File 1. Levofloxacin was not analyzed in 
enantioselective mode; thus, concentrations shown for levo-
floxacin could as well be those of ofloxacin. Samples with 
concentrations above the upper quantification limit were 
diluted and analyzed again. For example, the sample with the 
highest concentration in all samples was diluted 1:5000 with 
0.1% formic acid for quantification of fluconazole (Fig. 4).

Statistical analysis

Only descriptive statistics were used. Numerical vari-
ables are given as means, and categorical variables are 
given as frequencies or proportions.

Ethics compliance

This study was performed in accordance with the ethical 
guidelines of the 1964 Declaration of Helsinki and its later 
amendments. Since this is an environmental study that does 
not involve patients, formal consent is not required by the 
federal legislation of the Free State of Saxony, Germany.

Results

Detection of multidrug‑resistant pathogens

The 28 samples can be subdivided into 4 tap water, 1 bore-
hole water, and 23 environmental samples (Table 1). Of the 
latter, 10 were taken in the direct vicinity of pharmaceuti-
cal factories, 4 from rural areas, and 9 from urban sites in 
Hyderabad.

The only samples that tested negative for all MDR path-
ogens (s23 and s28) were taken from tap water of a four-
star hotel in Banjara Hills, Hyderabad. Tap water from a 
food stall in the suburb of Dundigal (s1) contained ESBL-
producing Enterobacteriaceae and non-fermenting bacteria, 
including species testing positive for blaOXA-48. Water from 
a borehole in Dundigal (s2) and tap water from the village 
of Isnapur (s23) contained Enterobacteriaceae and/or non-
fermenters without multidrug resistance.

All 23 environmental samples contained ESBL as well 
as carbapenemase-producing bacteria (mainly Enterobac-
teriaceae, but also non-fermenters), of which 22 tested 
positive for blaOXA-48, 10 for blaNDM, 7 for blaKPC, 5 for 
blaVIM, and 5 for blaIMP-1. Two samples (s12 and s18), one 
of which derived from the Musi River, were positive for all 
tested carbapenemase genes. In the 10 samples from the 
direct vicinity of bulk drug manufacturing plants, the domi-
nant carbapenemase gene was blaOXA-48 (9 samples), fol-
lowed by blaNDM (3) and blaKPC (3).

Detection of pharmaceuticals by liquid 
chromatography–tandem mass spectrometry

Specimens from 16 sampling sites were analyzed (Table 2). 
The pharmaceutical samples are numbered in the same 
way as the microbiological samples but are marked with an 
asterisk.

All environmental samples were found to be contami-
nated with antifungals and/or antibiotics. Fluconazole was 
detectable in 13 of the samples, voriconazole in 12, moxi-
floxacin in 9, linezolid in 8, levofloxacin in 6, clarithromy-
cin in 6, and ciprofloxacin in 5. Ampicillin, doxycycline, 
trimethoprim, and sulfamethoxazole were also detect-
able. Samples from sewers in the Patancheru–Bollaram 
industrial area contained extremely high concentrations of 
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Fig. 4  Chromatograms of samples with detection of fluconazole. 
Panel A shows the highest measured concentration of fluconazole 
(s6*, 236,950 µg/L) and Panel B a comparatively low concentration 

(s12*, 13.1 µg/L). Panel C belongs to a blank sample set at highest 
sensitivity which contains no fluconazole. The results were verified 
by analyzing the samples in duplicate
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fluconazole (s3*, s4*, and s6*; up to 236,950 µg/L) and 
voriconazole (s9*; up to 2500 µg/L) as well as nine anti-
biotics (with the highest values measured for moxifloxacin 
in s26*). A sample from the Musi River (s12*), which rep-
resents the final stretch of the wastewater discharge, con-
tained the highest number of different antimicrobial agents 
(9) along with many resistance genes encoding carbapene-
mases. In contrast, tap water from villages (s23*) and water 
from a borehole in Dundigal (s2*) were not contaminated 
with pharmaceuticals or showed values in the range of the 
detection limits (s1*).

Compared with the suggested environmental regula-
tion limit (cut-off for resistance selection) [3], moxifloxa-
cin concentrations in the samples were up to 5500 times as 
high, ciprofloxacin up to 700 times, clarithromycin about 
110 times, ampicillin about 115 times, and levofloxacin/
ofloxacin about 50 times. The concentration of flucona-
zole measured in s6* was approximately 950,000 times 
as high as the proposed limit. This particular sample was 
repeatedly analyzed by different laboratory approaches, but 
the result was always within <10% difference to the first 
analysis.

Discussion

We found carbapenemase-producing Enterobacteriaceae 
(CPE) and non-fermenters in more than 95% of our sam-
ples from Hyderabad, and the proportion of ESBL-pro-
ducing organisms was 100%. Excessively high concentra-
tions of clinically relevant antibiotics and antifungal agents 
were also measured in the environment. The most notable 
finding is the detection of fluconazole at a concentration 
of 236,950 µg/L (more than 20 times greater than thera-
peutically desired levels in the blood) in a sewage sample 
(s6*) from the Patancheru–Bollaram industrial zone. To 
our knowledge, this is the highest concentration of any 
drug ever measured in the environment. The uniqueness of 
this finding may be the result of low water flow, evapora-
tion of water (ambient temperature was 27 °C, leading to 
more concentrated samples), and discharge of a production 
lot that may have not met quality criteria. Fluconazole lev-
els from other sampling sites were in a range described by 
Larsson et al. before [13].

Our findings confirm those of previous studies that 
demonstrated a strong association between environmen-
tally stable anti-infective residue pollution and the pres-
ence of MDR bacteria [12–14, 16, 17, 20, 21]. According 
to our own Internet-based research, in 2016, more than 
40 pharmaceutical factories in Hyderabad produced anti-
microbial drugs and/or intermediates, in particular fluoro-
quinolones, such as ciprofloxacin, levofloxacin, and mox-
ifloxacin, but also various other antibiotics (i.e., linezolid, Ta
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clarithromycin, trimethoprim, sulfamethoxazole, doxycy-
cline, ampicillin, piperacillin, tazobactam, and merope-
nem) and antifungal agents (i.e., fluconazole and vori-
conazole). The proportion of proven contaminations with 
antifungal agents were higher than that with antibiotics, 
which might reflect the manufacturing procedures at the 
time. This assumption is supported by the data of concen-
tration measurement with LC–MS/MS which suggest that 
at the time of sampling (or shortly before), fluconazole 
and voriconazole were synthesized and discharged. Nota-
bly, agents such as fluconazole, voriconazole, or moxi-
floxacin are synthesized in a traditional chemical way 
with no natural nucleus, and therefore, they are detect-
able in the environment for longer time periods. Conse-
quentially, compounds which are made from biological 
origin (e.g., beta-lactam antibiotics) were not present in 
reasonably quantifiable concentrations in our analyses.

India is a region of high prevalence of MDR organisms 
with a substantial potential of spread to other regions 
of the world [18, 30]. According to the Delhi Neonatal 
Infection Study, in the period 2011–2014, high rates of 
multidrug resistance were observed in all clinically rel-
evant pathogens, with 82% of Acinetobacter isolates, 
54% of Klebsiella isolates, and 38% of Escherichia coli 
isolates, leading to case fatality rates of 40–60% [24]. 
Methicillin resistance was detected in 61% of coagu-
lase-negative staphylococci and 38% of Staphylococcus 
aureus isolates [24]. In another study from New Delhi, 
ESBL carriage of breast-fed neonates increased threefold 
from day 1 to 60; the reservoirs for these genes are most 
likely linked to the mother and environment [31]. A study 
from Mumbai revealed that 51.9% of patients admitted to 
the intensive care unit of a tertiary care facility carried 
CPE in their guts [32]. Antibiotic stewardship efforts in 
Indian hospitals are still incipient [33].

A report published for the 2015 World Toilet Day 
stated that in the world’s second most populous nation, 
60.4% of Indians do not have access to safe and private 
toilets [34]. MDR bacteria are integrated into the human 
intestinal microbiome/resistome and may stay there for a 
long period [4], further complicating the situation. MDR 
Enterobacteriaceae, such as Klebsiella pneumoniae car-
bapenemase (KPC)-producing Klebsiella pneumoniae, 
may have immediate life-threatening effects during out-
breaks in hospitals, especially for high-risk populations 
such as transplant recipients [35]. Moreover, affected 
patients may be colonized for several years [36], and the 
risk of infection due to intestinal colonization with Kleb-
siella strains is at least 5% [37].

Since antibiotic resistance and the associated genes 
are ubiquitous and ancient (e.g., ESBL and fluoroqui-
nolone resistance genes, such as qnr) [1, 3, 7, 14], their 
rapid spread in recent years must be attributed to modern 

human behavior and its influence on the environmental 
resistome [4–7, 30]. This risk can be reduced through 
improved management of waste containing antibiotic res-
idues and antibiotic-resistant microorganisms [3, 20, 22, 
38, 39].

Currently, Hyderabad accounts for approximately 40% 
of the total Indian bulk drug production and 50% of the 
bulk drug exports [23]. The pharmaceutical industries and 
their exports are expected to grow 20% annually. Despite 
decades of campaigning by local NGOs and legal action 
taken to the highest Indian courts, the pollution of the sur-
roundings of manufacturing plants has not been reduced 
[23, 28]. In fact, regulation targeting the pharmaceutical 
industry is actually becoming more relaxed as the govern-
ment lifts restrictions on plant expansion and introduces 
changes to the national pollution index [23]. This index, 
which has been in place since 2009, has repeatedly classi-
fied the Patancheru–Bollaram industrial area as “critically 
polluted” [26, 27]. The government recently removed cer-
tain criteria relating to health and the environment from 
the index in the name of simplification, despite heavy crit-
icism by the media that these changes were made to ben-
efit polluting industries [23, 28]. Although the Supreme 
Court demanded that the industries ensure “zero liquid 
discharge,” which means that they would have to effec-
tively treat their wastewater and reuse it [27, 28], mas-
sive violations have reportedly occurred [23, 28]. Since 
the manufacturing units discharge effluents with different 
chemical compositions, they need to employ various spe-
cialized technologies to ensure zero liquid discharge. As 
such technologies are expensive, the industries often clan-
destinely send their effluents directly to PETL or simply 
drain them into the environment [23, 28]. Since the instal-
lation of the Patancheru–Amberpet pipeline, the quality of 
local rivers around PETL has improved, but the pollution 
has actually been transferred to the Musi River, which 
flows through the center of Hyderabad and reaches more 
than 100 villages in its drainage basin [28]. The main 
problem is that the Amberpet mega sewage treatment 
plant is ill equipped to treat pharmaceutical effluents with 
different chemical compositions, so it simply discharges 
them into the Musi River [26–28]. A study published in 
September 2016 showed that concentrations of antibiot-
ics in the Musi River (Supplementary Fig. 5) were 1000 
times higher than those usually found in rivers in devel-
oped countries [40].

Strength and limitations

The strength of this study is the wide range of sampling 
sites, accurate documentation of sites, and use of highly 
sensitive LC–MS/MS and PCR techniques. On the other 
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hand, we lack a strong control group, and our findings do 
not provide evidence as to whether the wide spread of car-
bapenemases in the environment has a direct relationship 
to antibiotic pollution, since many of the causative genes 
are present in relatively large proportions of fecal bacte-
ria in India. Each environmental sample contains billions 
of bacteria. Since PCR was used to determine presence or 
absence of carbapenemases in the samples, a positive result 
for all or almost all of these genes in any specimen contain-
ing sewage or fecal matter is expected. For example, sew-
age samples from treatment plants in Sweden likely also 
contain several carbapenemase genes [22], even though 
only approximately 200 cases of human CPE infections 
have been documented in the entire country of Sweden 
[Joakim Larsson, personal communication]. Therefore, 
detection of CPE-containing bacteria in an environmental 
swab has very different implications from the same result 
in a targeted fecal swab.

Conclusions

Environmental pollution and insufficient wastewater man-
agement in one of the world’s largest centers for bulk drug 
production lead to unprecedented antimicrobial drug con-
tamination of surface, ground, and drinking water, which 
seems to be associated with the selection and spread of car-
bapenem-resistant Enterobacteriaceae and non-fermenters, 
such as Acinetobacter baumannii. The presence of ESBL 
and carbapenemase-producing pathogens in environmental 
samples from the Hyderabad metropolitan area has impor-
tant implications for people in the city and surrounding 
countryside who are reliant on public water and sanitation 
facilities.

Europe has a duty to help mitigate the pollution in 
Hyderabad and other locations. Regulations must be 
imposed on the manufacturing process of finished drugs 
as well as active pharmaceutical ingredients to require 
strict compliance with environmental laws, adequate mod-
ernization of manufacturing units and treatment plants, 
and international labeling of the origin of medicines in a 
manner clearly visible for pharmacists, physicians, and 
consumers.
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