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Abstract

BACKGROUND: Current tendon and ligament reconstruction surgeries rely on scar tissue healing which differs from

native bone-to-tendon interface (BTI) tissue. We aimed to engineer Synovium-derived mesenchymal stem cells (Sy-MSCs)

based scaffold-free fibrocartilage constructs and investigate in vivo bone–tendon interface (BTI) healing efficacy in a rat

anterior cruciate ligament (ACL) reconstruction model.

METHODS: Sy-MSCs were isolated from knee joint of rats. Scaffold-free sy-MSC constructs were fabricated and

cultured in differentiation media including TGF-b-only, CTGF-only, and TGF-b ? CTGF. Collagenase treatment on

tendon grafts was optimized to improve cell-to-graft integration. The effects of fibrocartilage differentiation and colla-

genase treatment on BTI integration was assessed by conducting histological staining, cell adhesion assay, and tensile

testing. Finally, histological and biomechanical analyses were used to evaluate in vivo efficacy of fibrocartilage construct in

a rat ACL reconstruction model.

RESULTS: Fibrocartilage-like features were observed with in the scaffold-free sy-MSC constructs when applying TGF-b
and CTGF concurrently. Fifteen minutes collagenase treatment increased cellular attachment 1.9-fold compared to the

Control group without affecting tensile strength. The failure stress was highest in the Col ? D ? group (22.494 ± 13.74

Kpa) compared to other groups at integration analysis in vitro. The ACL Recon ? FC group exhibited a significant 88%

increase in estimated stiffness (p = 0.0102) compared to the ACL Recon group at the 4-week postoperative period.

CONCLUSION: Scaffold-free, fibrocartilage engineering together with tendon collagenase treatment enhanced fibro-

cartilaginous BTI healing in ACL reconstruction.
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1 Introduction

Bone–tendon interface (BTI) injuries are one of the most

commonly injured anatomical structures in the orthopedic

field, with more than 30 million injuries occurring world-

wide [1]. Most commonly affected areas include the

anterior cruciate ligament (ACL) in the knee and rotator

cuff of the shoulder, with 48% of ACL injuries occurring in

the BTI area [2]. Due to its transitional composition of

tissue and high biomechanical loads, BTI injuries often

require surgical intervention. The annual incidence of ACL

injuries is 30–78 per 100,000 persons [3, 4], requiring

400,000 ACL reconstructions annually worldwide [6].

While ACL reconstruction result in functional improve-

ment and return to sports, graft retears and residual insta-

bility occur in 8–25% of patients [7] leading to revision

surgeries in 17.5% of patients [8]. This is, in part, due to

the defective healing in the BTI [9].

During ligament reconstructions, the tendon graft is

fixed in a bone tunnel. BTI healing occurs via scar tissue

formation between the tendon graft and bone. Scar tissue,

which is disorganized and biomechanically inferior com-

pared to fibrocartilage, may lead to a high failure rate and

unsatisfactory clinical outcomes [10, 11]. This occurrence

is caused by the lack of a gradient mineral distribution and

collagen fiber disruption, which are essential to the native

BTI’s microstructure and metabolic activity [12]. A variety

of bioinspired materials and related fabrication techniques

including 3D printing [13, 14] and electrospinning [16, 17]

were utilized to mimic the inherent hierarchical structures

of BTI, with showing the usefulness of multiphasic scaf-

folds for reconstruction of the BTI [18, 19]. Nevertheless,

the biggest obstacle to functional BTI healing is still

obtaining a progressive change in physiological charac-

teristics [20]. To address this issue, previous studies aimed

to improve the BTI healing process via osteoinductive

materials [21, 22] and stem cells [23–30]. Cell therapies

targeting BTI utilizing bone marrow-derived mesenchymal

stem cells (BM-MSCs), Synovium-derived mesenchymal

stem cells (Sy-MSCs), and periosteal progenitor cells have

been reported, resulting in some biomechanical and histo-

logic benefits. To improve delivery of cells, Lui et al.

utilized tendon-derived stem cell sheets rather than indi-

vidual cells to wrap the transplanted graft, which resulted

in improved healing without the use of scaffolds [32]. In

terms of biomimicry, however, there is an unmet clinical

need to repair BTI via fibrocartilage with a level of inte-

gration comparable to that observed in the native tissue.

The BTI, also known as the enthesis, is a highly spe-

cialized transitional tissue consisting of tendon, non-min-

eralized, mineralized fibrocartilage, and bone. These

structural characteristics lead to gradual mechanical

property changes allowing progressive transmission of

mechanical loads from tendon to bone and withstanding

load from various vectors [33]. We have previously

developed scaffold-free cartilage constructs that resulted in

not only excellent biomimicry toward cartilage, but also

improved cell delivery and preservation of the transplanted

construct after 6 months in a non-human primate model

[34]. We aimed to engineer sy-MSC based scaffold-free

fibrocartilage constructs and investigate in vivo BTI heal-

ing efficacy in a rat ACL reconstruction model. We

hypothesized that the use of scaffold-free, fibrocartilage

neo-tissue would promote fibrocartilage-like tissue healing

in the BTI.

2 Materials and methods

2.1 Cell isolation and culture

All animal procedures were performed according to the

protocol (A16-141) approved by the Institutional Animal

Care and Use Committee (IACUC) at Wake Forest

University Health Sciences. Three male Sprague-Dawley

rats were used. The synovium of knee joints from the rats

were harvested from the anterior fat pad. Tissues were

minced, treated for 4 h at 37 �C with 0.2% type II colla-

genase (Worthington Biochemical Corp., Freehold, NJ,

USA), and centrifuged at 1500 rpm for 10 min. After

washing twice with complete growth medium (CGM; a-
MEM containing 10% FBS, 100 U/ml penicillin G, and

100 lg/ml streptomycin), the digested tissue was passed

through 100 lm nylon mesh filter (Falcon, BD Bioscience,

Franklin Lakes, NJ, USA) to yield single-cell suspensions.

Rat synovium-derived mesenchymal stem cells (rSy-

MSCs) were counted with a hemocytometer and seeded at

a density of 89103 cells/cm2. After 3 days, the medium

was changed to remove non-adherent cells and incubated at

37�C with 5% CO2. rSy-MSCs were passaged at 70–80%

confluence and cells at passages under 4 were used in this

study.

2.2 Scaffold-free fibrocartilage construct

fabrication

Schematic figure of experimental flow was suggested as

Fig. 1. The effects of transforming growth factor beta-3

(TGF-b) and connective tissue growth factor (CTGF) on

fibrocartilage construct fabrication were compared. 49106

of rSy-MSCs were seeded at 60 mm tissue culture dish.

After 24 h following cell seeding, cells were scraped with a

cell lifter (Corning, New York, US) and placed 6 well plate

with cell growth media. Subsequently, the medium was

changed to differentiation medium (DM; high glucose
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DMEM supplemented with 1% insulin, transferrin, sodium

selenite (ITS) ? mix, 50 lg/mL ascorbic acid-2-phosphate,

100 nM dexamethasone, 1% penicillin–streptomycin, 100

lg/mL sodium pyruvate, and 40 lg/mL L-proline) with two

growth factors (10 ng/mL of TGF-b and 100 ng/mL of

CTGF all from Sigma-Aldrich, St. Louis, MO, USA) or

without (control group) two growth factors. Subsequently,

the constructs were cultured in DM for 2 weeks to induce

differentiation in the respective growth factor groups.

For sulfated glycosaminoglycans (sGAG) content anal-

ysis, freeze-dried samples were weighed and digested in

papain solution with 125 mg/mL papain with 5 mM L-

cysteine, 100 mM Na2HPO4, 5 mM EDTA (Sigma-

Aldrich) at 60 �C for 16 h as previously reported [34]. The

amount of sGAG was quantified with Blyscan Assay fol-

lowing the manufacturer’s instructions (B1000, Biocolor,

Carrickfergus, UK).

For collagen content analysis, freeze-dried samples were

solubilized in 0.1M HCl with 0.1% (w/v) pepsin at RT for

24 h. The amount of collagen was quantified with Sircol

Collagen Assay (SCA) following the manufacturer’s

instructions (S1000, Biocolor).

For histological analysis, samples were fixed with 10%

formalin for 24 h at room temperature (RT) and then

embedded in paraffin wax. Sample slides in 5 lm thickness

were made and stained with safranin-O (Sigma-Aldrich) to

examine the degree of GAG deposition. Other slides were

used to immunostain collagen type I (1:100, Abcam) and

collagen type II (1:100, Abcam) antibodies using an

immunohistochemical assay kit (GBI labs, Bothell, WA,

USA).

For gene expression analysis, fibrocartilage constructs

were homogenized with Biomasher (OPTIMA INC,

Tokyo, Japan) on day 14. Total RNA was extracted from

cells using Trizol reagent (Invitrogen Carlsbad, CA, USA)

according to the manufacturer’s instructions. Total RNA

(500 ng) in a 20 ll mixed solution was reverse-transcribed

into cDNA by iScript cDNA synthesis kit (Bio-Rad, Her-

cules, CA, USA). RT-qPCR was performed in a CFX96

Touch Real-time PCR Detection System (Bio-Rad) using

SYBR Green detection (Roche, Mannheim, Germany). The

mRNA expression levels of samples were normalized to

GAPDH (glyceraldehyde-3-phosphate dehydrogenase) as a

housekeeping gene and calculated by using the compara-

tive CT method. Expression of genes including collagen

type I (COL1A1), collagen type II (COL2A1), and aggre-

can (ACAN) were analyzed. The primers used are shown in

Supplemental Table 1.

2.3 Collagenase treatment on tendon

A sheath known as the paratenon may deter BTI integration

and are usually dissected off during ACL autograft

reconstructions [35]. In addition to this idea, collagenase

Fig. 1 Schematic overview of scaffold-free fibrocartilage engineering for bone-tendon interface healing
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treatment was utilized to improve the attachment of rSy-

MSCs on the surface of the flexor digitorum profundus

(FDP) tendon graft. The volume of collagenase was opti-

mized to induce slight digestion of the tendon surface

which resulted in 0.5 ll/mm2. Briefly, a total of 18 (3 grafts

for each group), 2 mm 9 5 mm 9 1 mm FDP grafts were

harvested from 9 rats. The effects of collagenase treatment

were evaluated according to treatment time; 0, 5, 15, 30, 60

min. The group without any treatment was named as the

control group. A mechanical abrasion group was also

analyzed, where we applied mechanical abrasion by rub-

bing the tendon with sandpaper (220 grit) three times to the

tendon surface for comparison with collagenase treatment.

After treatment, the degree of integration with tendon and

cells was evaluated by the histological observation and

mechanical test.

Sirius red (SR) staining was used to clearly distinguish

collagen fibers structure of tendon. Briefly, sample were

incubated for 1 h in a 0.1% Sirius Red solution diluted in

picric acid. After rinsing in 0.5% Glacial acetic acid, the

samples were dehydrated and mounted using Permount

Mounting Medium (Fisher Scientific). All PSR imaging

was performed on an axioscope 5 microscope (Zeiss) with

linear polarizers (PSR-POL).

For cell adhesion analysis, 5 9 106 cells were labeled

with PKH26 Red Fluorescent Cell Linker Mini Kit For

General Cell Membrane Labeling (Sigma-Aldrich). Sub-

sequently, cells were seeded on the tendon surface (n = 3).

Following treatment, cells remaining on the cell culture

plate that did not attach to the tendon surface were

detached by from the culture plate using 0.05% trypsin

(Gibco BRL) and counted with a hemocytometer. Finally,

the percentage of cell adhesion was calculated by ratio of

cell number counted from hemocytometer to initial seeding

number of cells. Three independent experiments were

repeated for the reliability.

Tensile test was performed by connecting the FDP with

a length of 5 mm between two custom-made zigs. The

pulling test was applied to measure the longitudinal axis

strength, and this was carried out using a ZWICK/Roell

Z005 testing machine with a 5 N loading cell (ZWICK/

Roell, Ulm, Germany). The tests were performed with a 1

mm/min pulling rate for each sample. Loading values

measured with a sensitivity of 0.1% by the device’s load

cell were entered into the software, and force values

(F) were obtained; the tests were terminated after the

detection of a force decrease and rupture of the sample.

The Young’s elastic modulus is typically calculated by

analyzing the linear portion of the stress–strain curve,

indicating the elastic resistance to compression.

2.4 in vitro bone/scaffold-free fibrocartilage

construct/tendon integration

The effects of fibrocartilage differentiation and collagenase

treatment were tested in an in vitro BTI reconstruction

model. FDP tendons and bone tissue from the femur were

obtained from pig carcasses (Finish pig, Yorkshire, female,

[1 year, free of knee osteoarthritis) within 1 h of sacrifice.

For bone preparation, cancellous bone was cut in to 6 mm

diameter discs with 2 mm height. A cylinder-shaped defect

(3 mm diameter) was created in the center using a 3 mm

biopsy punch. For tendon tissue preparation, tendon sam-

ples were cut into 3 mm diameter, 2 mm height disc shapes

perpendicular to the tendon fiber orientation. Overall, five

groups were tested (n= 6 per group); (1) Empty (2) Col-D-

(3) Col?D- (4) Col-D? (5) Col?D?. Col? groups were

subjected to collagenase treatment of the tendon surface

(15 min, 1% collagenase, 0.5 ll/mm2) before inserting the

tendon disc into bone tissue. D? groups were subjected to

insertion of fibrocartilaginously differentiated scaffold-free

construct using two growth factors, while D-groups were

subjected to insertion of scaffold-free constructs cultured

without growth factor treatment. After assembling the

tendon tissues within the bone tissues, the in vitro BTI

reconstruction constructs were cultured in high glucose

DMEM supplemented with 1% ITS for 4 weeks. After-

wards, the histological and biomechanical evaluation was

performed with these experimental groups.

For integration failure stress analysis, mechanical test

using a push-out test was done as previously described

[23]. While recording load, a specialized cylindrical-

shaped indenter with 4-mm-diameter coupled with

Universal testing machine pushed the inner tendon part

with the rate of 1 mm/min. The load at failure and interface

area were divided to compute failure stress (integration

strength). TestXpert II was used for both the initial

preparation of the tests and the post-test analysis of the

data.

2.5 Bone-to-tendon healing in vivo efficacy

A total of 56 SD rats (27 weeks, 350g, Male) were used in

this study. Rats were allocated in to ‘ACL recon’ group (n=

28), and ‘ACL recon?FC’ group (n= 28). Time points of 2

and 4 weeks were analyzed, with 14 animals allocated at

each time point. The following is the brief description of

the surgical procedure. The rats were anesthetized by 3%

isoflurane with 2 L/min oxygen. Each rat was injected with

dexmedetomidine (0.2 mg/Kg, IP) and ketamine (80 mg/

Kg, IP). Oxygen (2 L/min) was delivered via a nose cone

during the surgical procedure. Buprenorphine (0.1 mg/kg,

SC) and meloxicam (1 mg/Kg, SC) were given after the

induction. The left knee of the animals was shaved and
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prepped in an aseptic manner. A lateral parapatellar inci-

sion was made. After patellar dislocation, the native ACL

was removed. Bone tunnels were created with a 1mm

diameter drill in the femur and tibia. FDP tendons were

sutured at the ends and the suture was passed through the

bone tunnels. The graft was seated at the native ACL site

and fixed with 1.5 mm stainless steel cortical screws at the

femur and tibia tunnel. For the ‘ACL recon?FC’ group, the

FDP tendon graft was treated with collagenase as previ-

ously described at the proximal and distal ends of the

tendon graft that come in contact with the bone tunnels.

During graft passage, scaffold-free FC constructs were

inserted in the bone tunnels in the surface opposite of the

interference screws. Layer by layer closure of the skin was

done. Postoperative analsesia was provided with meloxi-

cam (0.1 mg/Kg, SC, qd for 4 days). The animals were

single housed and fed ad libitum.

After euthanasia, 7 knees of each group and time point

were analyzed for histology and biomechanical analysis,

respectively. For biomechanical testing, the interferences

screws were removed. All joint tissues were dissected off

the knee joint excluding the ACL graft. The femur and

tibial ends were placed on jigs in a biomechanical testing

machine (ZWICK/Roell Z005, Ulm, Germany) directed

along the longitudinal axis of the graft. After preloading of

1 N per specimen, ultimate failure load was calculated at a

speed of 0.25 mm/s. Stiffness of constructs were calculated

using TestXpert II.

2.6 Statistical analysis

Statistical analysis was conducted with Graph Pad Prism 8

(GraphPad Software, La Jolla, CA, USA) using one-way

analysis of variance (ANOVA) with Tukey’s multiple

comparison test as described in each assay. The data are

expressed as means ± SD. The statistical significance was

determined as *p\ 0.05, **p\ 0.01, and ***p\ 0.001.

3 Results

3.1 Scaffold-free fibrocartilage construct

fabrication in vitro

Safranin-O staining was strongly stained in the TGF-b
group, but weakly stained in the control and CTGF group.

CTGF?TGF-b group showed areas of strong safranin-O

staining on the outer regions of the construct and weakly

stained area in the center (Fig. 2A). Immunohistochemistry

staining for collagen types I and II showed that the TGF-b
group had more type II collagen, while the CTGF group

had more type I collagen. CTGF?TGF-b group showed

expression of both collagen types (Fig. 2A). Biochemical

quantification results showed the most sGAG expression in

the TGF-b group, followed by CTGF?TGF-b group and

CTGF group (Fig. 2B). Additionally, collagen contents

were significantly higher in the CTGF group, but there was

no significant difference between CTGF?TGF-b and other

groups (Fig. 2B, Control: 9.987 ± 3.84 lg/mg, CTGF:

22.28± 6.97 lg/mg, CTGF?TGF-b: 16.99 ± 1.14 lg/mg,

TGF-b: 19.68± 2.28 lg/mg). Moreover, the gene expres-

sion profile showed higher expression of COL1A1 with

CTGF exposure, whereas chondrogenic marker, COL2A1

and ACAN expression were significantly increased upon

TGF-b treatment (Fig. 2C). The CTGF ? TGF-b group

showed intermediate COL1A1, COL2A1 and ACAN

expressions compared to CTGF and TGF-b treated groups.

In all, histologic, biochemical and gene expression results

showed elevated fibrocartilage features in the CTGF ?

TGF-b group.

3.2 Improvement of integration properties

in tendon via collagenase treatment

Sirius red staining showed maintenance of collagen

arrangement at tendon until 15 min collagenase treatment

time (Fig. 3A). More than 30 min of collagenase treatment

destroyed fibrillar crimp structure. At 60 min, dense fiber

bundles were completely disorganized and collagen fluo-

rescence decreased considerably. As shown Fig. 3A and B,

cell attachment on tendon, on the other hand, increased

according to collagenase treatment time (Control: 35.16 ±

3.9%, Abrasion: 51.52 ± 7.51%, 5 min: 56.46 ± 5.57%, 15

min: 67.23 ± 2.3%, 30 min: 75.08 ± 2.77%, and 60 min:

80.85 ± 2.1%). In collagenase treatment groups for[30

min, cells penetrated the tendon surface and adhered to the

stroma (Fig. 3A). Tensile modulus was not considerably

affected until collagenase treatment of 15 min, however, it

reduced dramatically at[30 min (Fig. 3C, Control: 134.02

± 38.57 Kpa, Abrasion: 124.7 ± 40.45 Kpa, 5 min: 120.93

± 42.97 Kpa, 15 min: 120.93 ± 42.97 Kpa, 30 min: 75.58

± 6.75 Kpa, and 60 min: 18.23 ± 8.65 Kpa). After these

results, collagenase was applied to tendon for 15 min to

improve cellular adhesion without altering tensile strength.

3.3 Integration analysis of scaffold-free

fibrocartilage construct in vitro

Safranin-O stained tissue section revealed the presence of

positive staining regardless of collagenase treatment in the

group with fibrocartilage differentiation (Fig. 4A). Addi-

tionally, collagenase treatment to tendon showed enhanced

integration of bone-to-scaffold-free fibrocartilage construct

as well as the integration of construct-to-tendon (Fig. 4A).

In contrast, detachment of scaffold-free fibrocartilage

construct-to-tendon interface was observed in the group
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without collagenase treatment (Fig. 4A). The integration

failure stress was significantly highest in the Col?D?

group, but there was no significant difference between

other groups except empty group (Fig. 4B, Col?D?:

22.494 ± 13.74 Kpa, Empty: 0.46 ± 0.13 Kpa, Col-D-:

5.72 ± 1.76 Kpa, Col?D-: 7.41 ± 2.67 Kpa, and Col-D?:

7.93 ± 2.91 Kpa). Consequently, fibrocartilage differenti-

ation and collagenase treatment mimicked native bone-to-

tendon interface and promoted bone-to-scaffold-free

fibrocartilage construct-to-tendon interface integration.

3.4 Bone-to-tendon healing efficacy in vivo

At week 2, ACL Recon group showed fibrous scar at BTI.

In contrast, the representative hematoxylin and eosin

(H&E) stained image of ACL Recon?FC group indicated

hypercelluar tissue mass attached directly bone and tendon

(Fig. 5A). After 4 weeks, both groups showed enhanced

integration between bone and tendon graft compared to 2

weeks. Particularly, the formation of hypercellular, fibro-

cartilage-like tissue was observed at the ACL Recon? FC

group (red arrow). In addition, safranin-O stained images

showed increased sGAG deposition in the ACL Recon?FC

group with the group compared to ACL Recon group (red

arrowhead). The results of biomechanical test indicated the

enhanced mechanical properties of both groups at 4 weeks

operation compared to 2 weeks in line with histologic

results (Fig. 5B). All knees failed at the BTI of the femoral

tunnel during the biomechanical examination. In particular,

the estimated stiffness of ACL Recon?FC group was

increased by 88% (p= 0.0102) when compared to the ACL

Recon group at 4 weeks operation. In all, histologic and

biomechanical results showed improved integration in

interface as well as fibrocartilaginous tissue formation at

the group of ACL Recon?FC group.

Fig. 2 in vitro characterization of fibrocartilage constructs according

to two growth factors addition. A Histologic B biochemical charac-

terization of fibrocartilage constructs. C Gene expressions were

quantified by qRT-PCR analysis. Differences among the groups were

determined by one-way ANOVA with Turkey’s multiple comparisons

test (*p\ 0.05, **p\ 0.01 and ***p\ 0.001). Scale bar = 100 lm
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4 Discussion

The goal of this study was to engineer sy-MSC based

scaffold-free fibrocartilage constructs and investigate its

efficacy in an in vivo rat ACL reconstruction model.

Treatment of both CTGF and TGF-b resulted in fibrocar-

tilage differentiation of the scaffold-free constructs. Col-

lagenase treatment on the tendon surface resulted in

enhanced cell-to-tendon graft integration. Fibrocartilage

constructs, together with tendon collagenase treatment

resulted in BTI healing similar to native BTI and increased

biomechanical strength compared to the current tendon

reconstruction group both in vitro and in vivo. In all,

scaffold-free fibrocartilage engineering together with ten-

don collagenase treatment offers a potential biomimetic

solution to improve current tendon/ligament

reconstructions.

Fibrocartilage, by definition, is a composite connective

tissue with both fibrous and chondrogenic properties. A

number of growth factor combinations utilizing BMP-2

[36], BMP-7 [37, 38], IGF-1 [39, 40], CTGF [41], and

TGF-b3 [42] have been used to induce fibrochondrogenic

differentiation in vitro and in vivo. Lee et al. [43] described

a sequential treatment protocol of CTGF followed by TGF-

b3 treatment on MSCs to induce fibrochondrogenic dif-

ferentiation in a scaffold-based model for meniscus

regeneration. We have utilized a combination of CTGF and

TGF-b condition media for fibrochondrogenic differentia-

tion and have found both fibrous and cartilaginous prop-

erties within 2 weeks of in vitro culture in the respective

scaffold-free constructs (Fig. 2). CTGF directs fibroblast

differentiation in MSCs [44] while TGF-b1 induces MSC

condensation and chondrocyte differentiation. Fibrochon-

drogenic differentiation protocols may be influenced by

MSC type, growth factor combinations and dosage, dura-

tion of differentiation, and culture conditions.

A sheath known as the paratenon covers most tendons

which allow smooth gliding of the tendon via proteoglycan

rich matrix [45]. These sheaths may deter BTI integration

and are usually dissected off during ACL autograft

reconstructions [35]. Previous studies have reported the

effects of enzyme treatment on connective tissue surfaces

such as collagenase [46, 47] and hyaluronidase [48] to

improve integration. We observed that collagenase treat-

ment time correlated with cell adhesion while inversely

correlating to biomechanical strength of the graft. Colla-

genase treatment resulted in cells and surrounding tissue to

interdigitate with the graft tissue, resembling native BTI

Fig. 3 Optimization of collagenase treatment time for enhanced

integration of rSy-msc to tendon. A Histological analysis of

integration with rSy-MSCs and tendon and B quantitative analysis

of PKH-labeled rSy-MSCs attachment to tendon and C biomechanical

evaluation of tendon after treatment of collagenase. Differences

among the groups were determined by one-way ANOVA with

Turkey’s multiple comparisons test (*p\ 0.05, **p\ 0.01 and

***p\ 0.001). Scale bar = 100 lm
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(Fig. 3). Collagenase treatment, however, should be opti-

mized to the graft being used and clinical scenarios to

maximize the integration effect while minimizing biome-

chanical strength loss of the graft.

Regarding the rat ACL reconstruction model, we have

utilized an interference screw to fix the graft to the bone

tunnel, following methods from previously reported studies

[49, 50]. Interference screws are commonly used in human

reconstructions to provide firm fixation and compression of

the graft to the bone tunnel. We have utilized interference

screws in our rat model to reduce motion of the graft within

the bone tunnel, considering the soft cancellous bone of

Fig. 4 Integration analysis of scaffold-free fibrocartilage construct

in vitro. A The representative histologic images stained using

safranin-O at integrated region as low magnification image (left)

and high magnification images (right, a–h) B Quantification of failure

stress after 4 weeks differentiation. Differences among the groups

were determined by one-way ANOVA with Turkey’s multiple

comparisons test (*p\ 0.05, **p\ 0.01 and ***p\ 0.001 compared

to the Col ? D ? group). B; Bone, T; Tendon, FC; Fibrocartilage
construct. Scale bar = 100 lm

Fig. 5 Bone tendon healing efficacy in vivo. A The representative

histological images stained with H&E and safranin-O at bone and

tendon integrated region. The black rectangle indicates the region of

interest for safranin-O stained images. Red arrow indicated fibrocar-

tilage-like tissue at the ACL Recon ? FC group, whereas arrowhead

indicated increased sGAG deposition in the ACL Recon ? FC group

with the group compared to ACL Recon group B the biomechanical

evaluation for measuring load to failure and stiffness by using

universal testing machine. ST; Scar tissue, B; Bone, TG; Tendon

graft, FC; Fibrocartilage cell construct, and S; Screw. Scale

bar = 100 lm
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rodents compared to humans. Furthermore, interference

screws increased the reproducibility of the in vivo results

by preventing migration and potential loss of the implanted

construct. Histology and biomechanical analyses of both

experiment groups were equally carried out after removal

of the interference screws.

The mode of action of our constructs can be explained

by biomimicry, which was achieved by fibrocartilaginous

scaffold-free constructs and collagenase treatment of the

tendon grafts. Fibrocartilage constructs mimicked the

native fibrocartilage layers situated between the tendon and

bone, while collagenase treatment resulted in interdigitat-

ing integration between the tendon graft and fibrocartilage

constructs. The effect of these two factors was shown in the

in vitro BTI model, where fibrocartilage constructs together

with collagenase treatment resulted in the highest biome-

chanical strength in the BTI (Figs. 4B, 5B). Previous

strategies attempted to improve BTI healing through

enhanced osteogenesis, in situ tissue formation via scaf-

folds, or increased MSCs in the BTI. Several studies uti-

lized growth factor delivery via biomaterials such as bone

morphogenetic protein (BMP) [27, 38] and fibroblast

growth factor (FGF) [51, 52], or insertion of nano-scaffolds

[53, 54]. Some studies also tested the efficacy of sy-MSCs

in BTI healing. Ouyang et al. observed higher percentage

of oblique fiber formation after sy-MSC treatment in BTI

but could not detect fibrocartilage formation until the week

4 of transplantation [25]. Wrapping the tendon graft with

tendon-derived stem cell sheets also enhanced mineralized

tissue formation inside bone tunnel thus facilitating early

graft healing in a previous study [32]. Our study adds on

such previous strategies in that we have attempted to

engineer the BTI rather than deliver certain cells or growth

factors. The use of scaffold-free constructs in turn may

have a beneficial role in BTI engineering in terms of non-

uniform application and prevention of cell loss [24].

This study has the following limitations. The rat ACL

model used in this study does not reflect the human knee

environment after major ligament reconstructions of the

knee. Furthermore, longer observation time periods may be

necessary to fully validate the fate of the implanted scaf-

fold-free construct in the BTI. Guo et al. reported that the

scaffold-free construct preserved cells from acute inflam-

mation and ECM of the construct facilitated integration of

host cells and neo-epicardial tissue [55]. While some

researcher revealed the presence of MSC up to week 8 at

the graft-to-bone tunnel interface in rat model [30], other

reported the disappearance of transplanted MSC within

4 weeks [25]. Therefore, further research is required to

identify the fate of cells after implantation by using cell

tracking. Furthermore, the in vivo data could be improved

with further biological and microstructural characteriza-

tions of the implanted construct. Collagen microstructure

and fiber orientation, as well as mineral density of the bone

tunnel are important factors in BTI healing. Further

investigations concerning such factors are required in a

large animal model to further investigate the biomimicry

potential of the constructs and potential areas for

improvement.

Taken together, the implantation of scaffold-free fibro-

cartilage constructs at the BTI achieved considerable bio-

mimicry, via fibrocartilage formation and collagenase

treatment of the tendon graft. Future research directed to

mimic the native BTI may further enhance clinical results

of current tendon/ligament reconstruction.
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