
INTRODUCTION

The skin functions as a protective barrier against the environ-
ment. Loss of the integrity of large areas of skin may lead to in-
creased risk of illness [1]. Wound healing is essential to prevent 
invasion of pathogens and to maintain the integrity of normal 
tissue [2], and involves several steps including inflammation, 
formation of granulation tissue, remodeling of connective tissue, 
collagenization, and formation of new blood vessels [3].

Granulocyte-colony stimulating factor (G-CSF) directly stim-
ulates neutrophil-restricted progenitor cells into proliferation 
and differentiation [4]. It has been reported to be effective in 
the treatment of tissue repair in post-myocardial infarction by 
enhancing mobilization of neutrophils and macrophages from 
bone marrow [5]. Recently, Wang et al. [6] demonstrated that 

systemic injection of G-CSF can accelerate wound healing in 
mice. They suggested that G-CSF repairs wounds through mo-
bilization of bone marrow derived cells (BMDCs) and up-reg-
ulation of growth factors. 

Recent findings, however, have indicated that G-CSF acts di-
rectly on cardiomyocytes and monocytes by binding to a recep-
tor expressed on these cells [7-9]. Moreover, Mueller et al. [10] 
reported that keratinocyte express G-CSF receptors (G-CSFR). 
The therapeutic effects of local injection of G-CSF on wound 
healing in a rat wound model remain unclear. 

In this study, we investigated whether local injection of G-CSF 
can accelerate wound healing in a rat wound model, and evaluat-
ed whether the effects of local injection of G-CSF on wound 
healing occurred faster than that those of systemic injection. We 
also investigated the presence of G-CSFRs in wound tissues.

MATERIALS AND METHODS

Animals
Male Sprague-Dawley rats (Koatech, Pyeongtaek, Korea), 10 

weeks of age and weighing 280–300 g, were used. The rats were 
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kept in a specific pathogen-free facility at the Hanyang University 
Medical School Animal Experiment Center at a controlled tem-
perature (23±2°C) and humidity (55±5%), with a 12 hours artifi-
cial light and dark cycle. This research protocol was approved by 
the Hanyang University Institutional Animal Care and Use Com-
mittee, and the experiments were performed in compliance with 
the ARRIVE guidelines on animal research [11].

Excision wound model
The rats were anesthetized using an intramuscular injection 

of a mixture of zoletil 50 (30 mg/kg, Virbac SA, Carros, France) 
and rompun (10 mg/kg, Bayer Korea, Seoul, Korea). The dor-
sum was clipped free of hair, and a wound model was created 
as described by Morton and Malone [12]. An impression was 
made on the dorsum, the interscapular region 5 mm away from 
the ears using a circular colored rubber stamp of 30 mm diam-
eter. Scissors were used to excise the full thickness of skin with-
in this marking, including panniculus carnosus, to get a wound 
area of approximately 706 mm2. Wounds were left undressed 
and rats were housed separately.

Experimental design and G-CSF injection
All rats were divided randomly into three groups: the con-

trol group (n=20) rats was introdemally with saline 50 μg (0.2 
mL)/kg/point, at 8 points around the wound once weekly for 2 
weeks after wound creation; the local injection group (n=20) 
rats was injected intradermally with G-CSF (Leucostim, Dong-
A Pharmaceutical, Seoul, Korea) 50 μg (0.2 mL)/kg/point, at 8 
points around the wound once weekly for 2 weeks after wound 
creation; and the systemic injection group (n=5) rats was in-
jected intraperitoneally (i.p.) with G-CSF, 400 μg (1.6 mL)/kg 
once weekly for 2 weeks. Rats in the control group and the lo-
cal injection group were randomly euthanized on days 1, 3, 9, 
and 15 after wound creation for histological wound comparison 

(Fig. 1). The entire wound, including a 2 mm margin of un-
wounded skin, was excised [13]. Then, the excised tissue was 
bisected into two parts: one was used for histological analysis 
and, the other was used for quantitative real-time polymerase 
chain reaction (qRT-PCR) examination and Western blotting.

Wound closure analysis 
To record wound closure, 5 photographs were taken of ran-

domly selected from each group at days 0, 1, 3, 9, and 15. The 
wound area was measured by tracing the wound margin using 
Image-Pro Plus 4.5 (Media Cybernetics, Silver Spring, MD, 
USA). The researcher who measured the wound was blinded 
to the treatment grouping. The wound healing rate was calcu-
lated as a percentage of wound closure using the Walker and 
Mason formula: [(day 0 area-day n area)/(day 0 area)]×100% 
(n=1, 3, 9, or 15) [14].

Histology 
To examine the pathology of wound healing, 4% parafor-

maldehyde-fixed paraffin-embedded wound sections of 5 μm 
thickness were stained with hematoxylin and eosin (H-E) and 
Masson’s trichrome (MT) staining [15]. Five regions from each 
digitized images were selected at random from the individual 
sections and were quantified using the Leica image analysis 
system (Leica DM 4000B, Wetzlar, Germany) [16]. The stained 
sections were photographed using a light microscope (Leica 
DM 4000B). All data were evaluated by a separate blinded in-
vestigator.

Deposition of collagen percentage
MT staining was used to analyze the deposition of collagen in 

the dermis [17]. The mean percent area occupied by MT-
stained collagen fiber was calculated for 5 randomly selected 
fields of each wound section using the Leica image analysis sys-

Figure 1. Schematic description of the experimental protocol. The control group (n=20) was injected with saline 400 μg/kg/week for 
two weeks; the local (i.d.) injection group (n=20) and systemic injection group (i.p.) (n=5) were injected with granulocyte-colony 
stimulating factor (G-CSF) 400 μg/kg/week for two weeks after wound creation. ↑: injection, ▲: sacrifice.
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tem with magnification ×200 (Leica DM 4000B).

Western blotting for G-CSF receptor
The excised tissues were homogenized, and total proteins 

were extracted using protein lysis buffer (Pro-preb; iNtRON, 
Seongnam, Korea). Then, samples containing 100 ug of pro-
tein were transferred into sample buffer, separated by 10% so-
dium dodecyl sulfate polyacrylamide gel electrophoresis and 
transferred to nitrocellulose membranes (0.45 μm pore size, 
Bio-Rad, Hercules, CA, USA). After blocking in 5% skim milk 

solution for 60 minutes, the membranes were incubated with 
primary antibody for G-CSFR (1:250; Santa Cruz Biotechnol-
ogy Inc., Santa Cruz, CA, USA) or glyceraldehyde-3-phos-
phate dehydrogenase (GADPH) (1:2000; Cell Signaling Tech-
nology, Boston, MA, USA) overnight at 4°C. Subsequently, 
they were incubated with HRP-conjugated anti-rabbit anti-
body (1:2000; Jackson Immunoresearch, West Grove, PA, USA) 
for 1 hour at room temperature. GAPDH was used as a pro-
tein loading control. Positive protein bands were visualized us-
ing an ECL kit (GenDEPOT, Barker, TX, USA), and the results 

Table 1. Sequences of primers

Primer Sequences Size (bp)
VEGF F: 5ʹ-CTT-CCT-ATT-CCC-CTC-TTA-AAT-CGT-G-3ʹ

R: 5ʹ-CTA-CCT-CTT-TCC-TCT-GCT-GAT-TTC-C-3ʹ
102

EGF F: 5ʹ-ACC-CAT-TCT-CTC-TAG-CTG-TGT-TTG-A-3ʹ
R: 5ʹ-ACC-AGT-CCT-CTT-GTT-CAC-CCT-TAT-T-3ʹ

89

GAPDH F: 5ʹ-CCT-TCT-CTT-GTG-ACA-AAG-TGG-ACA-T-3ʹ
R: 5ʹ-CGT-GGG-TAG-AGT-CAT-ACT-GGA-ACA-T-3ʹ

96

VEGF: vascular endothelial growth factor, EGF: epidermal growth factor, GAPDH: glyceraldehyde-3-phosphate dehydrogenase

Figure 2. Visualization of wound healing. At post-wound days 1, 3, 9, and 15, the macroscopic wounds in the three groups were 
randomly photographed and measured. The macroscopic image in the local injection group showed that wound area decreased 
compared with the other groups.
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were quantified with an image analyzer (Image lab 3.0, Bio-
Rad, Hercules, CA, USA).

Quantitative real-time polymerase chain reaction 
for EGF and VEGF

Total RNA was purified using the Qiazol reagent (Qiagen, 
Valencia, CA, USA) following the manufacturer’s instructions 
[15]. RNA concentrations were measured with a Nanodrop 
ND-2000 spectrophotometer (Thermo Fisher Scientific Inc., 
Welmington, DE, USA), and purity was determined by mea-
suring ratios of A260 and A280, which ranged from 1.8 to 2.0. 
For qRT-PCR, complementary DNA was synthesized from 3 
ug of RNA using Moloney Murine Leukemia virus reverse 
transcriptase primed with oligo (dT) (Invitrogen, Carlsbad, 
CA, USA). The qRT-PCR was performed using a Light Cycler 
480 System (Roche, Basel, Switzerland) with a FastStart DNA 
Master SYBR Green I kit (Roche Diagnostics, Indianapolis, 
IN, USA). qPCR amplification was performed with an initial 
incubation for 10 minutes at 95°C followed by 45 cycles of 10 
seconds at 95°C, 10 seconds at 60°C, and 8 seconds at 72°C 
and then a final dissociation step at 65°C for 15 seconds. The 
crossing point of each sample was automatically determined 
by the LightCycler program. The primers used are shown in 

Table 1. PCR was performed in duplicate and the measured 
transcript levels were normalized against those of GAPDH.

Statistical analyses
For statistical analyses, the Statistical Package for the Social 

Sciences 21.0 software (IBM, Armonk, NY, USA) was used. 
All data are expressed as mean±standard deviation, except for 
histological data which are expressed as mean±standard error. 
Data were analyzed using Mann-Whitney U-tests (for single 
comparisons) or Kruskal-Wallis nonparametric ANOVA (for 
multiple comparisons). Values of p<0.05 were considered sta-
tistically significant. 

RESULTS

Wound healing rate
Wound healing rate was calculated as a percentage of wound 

closure at days 1, 3, 9, and 15 (Fig. 2, Table 2). There was no 
difference between the three groups at day 1. The wound heal-
ing rate in the local injection group was significantly higher 
than that in the control group at day 3 (p<0.05), day 9 (p<0.05), 
and day 15 (p<0.05). The wound healing rate in the local injec-
tion group was significantly higher than that in the systemic in-

Table 2. Wound healing rates of the rats in Group 1, 2, and 3 at days 1, 3, 9, and 15

Group Day 1 Day 3 Day 9 Day 15
Control 2.44±1.23 10.78±4.86 57.18±4.30 82.7±2.27
Local injection 2.67±1.43 20.04±6.20* 70.97±3.63*† 87.95±2.16*†

Systemic injection 2.57±0.69 18.05±5.39* 62.92±5.45 82.63±2.59
The wound healing rate was calculated as a percentage of wound closure: [(day 0 area-day n area)/(day 0 area)]×100%. All data were ex-
pressed as means±SD. *p<0.05 vs. control, †p<0.05 vs. systemic injection (n=5–10). 

Figure 3. The pathology of wound healing. (A) Histological changes in the dermis of wounded skin (H&E stain, ×100), (B) (H&E 
stain, ×400). The G-CSF local (i.d.) injected group showed decreased inflammatory reaction and the presence of arranged colla-
gen fibers at day 9. Deposition of collagen in the G-CSF local (i.d.) injected group was increased at day 15. G-CSF: granulocyte-
colony stimulating factor.
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jection group at day 9 (p<0.05) and day 15 (p<0.05). The wound 
healing rate in the systemic injection group was significantly 
higher than that in the control group at day 3 (p<0.05), but there 
were no significant differences at days 9 and 15. 

Histological assessments
The process of wound healing was confirmed by H-E and 

MT staining. The H-E-stained sections of the local injection 
group showed that inflammatory reaction were decreased and 
dense collagen fibers were arranged in the dermis at days 9 and 
15. The sections from the control group were still observed to 
be in the inflammatory reaction stage and loose collagen fibers 
were apparent at day 9 (Fig. 3). The MT-stained sections from 
the local injection group showed that collagen fibers were dis-
tributed compactly and regularly at days 9 and 15, but collagen 
fibers in the control group were loosely distributed at days 9 and 
15 (Fig. 4A). The percentage deposition of collagen in the local 
injection group was significantly higher than that in the control 
group at day 9 (43.64±3.59% vs. 11.60±0.97%, p<0.05) and 
day 15 (51.11±1.55% vs. 25.32±1.56%, p<0.05) (Fig. 4B).

Western blotting for G-CSFR
G-CSFR expression in wound tissues was confirmed by the 

detection of the G-CSFR protein by Western blot analysis. Fur-
thermore, the expression of G-CSFR protein in wound tissues 
was higher than that in normal skin tissues (Fig. 5).

Expression of EGF and VEGF
The average level of epidermal growth factor (EGF) in wound 

samples of the local injection group was significantly higher 

than that in the control group at day 1 (124.09±6.87% vs. 100± 
14.31%, p<0.05) and day 3 (94.20±19.51% vs. 65.80±8.75%, 
p<0.05). The level of EGF was decreased in both groups at days 
9 and 15 (Fig. 6A). The levels of vascular endothelial growth 
factor (VEGF) increased gradually and peaked at day 9, and 
then decreased. The level of VEGF in the local injection group 
was significantly higher than that in the control group at day 9 
(378.90±43.48% vs. 220.98±58.23%, p<0.05) (Fig. 6B).

DISCUSSION

Our data showed that local injection of G-CSF improved the 
wound healing rate more than systemic injection of G-CSF. 
The wound healing promoting effect of locally injected G-CSF 
was accompanied by accelerated collagen deposition in the der-
mis neighboring the wound, reduced inflammatory response 
and increased expression of wound healing promoting genes 
EGF and VEGF in wound tissues. We also confirmed that G-
CSFRs are present in wound tissues.

The findings of previous studies have suggested the mecha-

Figure 4. The pathology of wound healing. (A) Histological changes in the dermis of wound skins (MT stain, ×200). Deposition of 
collagen increased at days 9 and 15 in the G-CSF locally (i.d.) injected group. (B) Quantitative analysis of the deposition of colla-
gen at day 9 and 15. The mean percent area occupied by MT stained collagen fiber density was calculated for 5 randomly selected 
fields of each wound section. All data are expressed as mean±SE. *p<0.05 vs. control (n=5). G-CSF: granulocyte-colony stimulat-
ing factor, MT: Masson’s trichrome.
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nism for the effect of G-CSF in tissue repair. In one study, sys-
temic injection of G-CSF increased survival after myocardial 
infarction by promoting BMDCs to migrate into the infarcted 
border zone and differentiate to cardiomyocytes [18], and Yang 
et al. [19] also showed that BMSCs can promote skin append-
age regeneration. However, recent studies have also suggested 
that G-CSF exerts local actions on the healing processes in dam-
aged tissues. Frank et al. [20] showed that the local injection of 
G-CSF reduced retinal ganglion cell death in a retinal ganglion 
cell axotomy model. We confirmed that local injection of G-
CSF effectively accelerated wound healing in a rat wound mod-
el, and that local injection of G-CSF was more effective than 
systemic injection in accelerating wound healing. In addition, 
we also confirmed that G-CSFRs were present in wound tissues, 
which is a likely explanation of G-CSF’s observed direct thera-
peutic effects on wound healing. 

The inflammatory response following tissue injury plays an 
important role in wound healing. During the inflammatory phase, 
platelet aggregation is followed by infiltration of leukocytes into 
the wound site [21]. An excessive or prolonged inflammatory 
response, however, can result in increased tissue injury and poor 
healing. Successful wound repair requires the coordinate ex-
pression of both inflammation and resolution of inflammation 
[22]. In our study, we confirmed that the inflammatory response 
in the control group lasted longer than it did in the G-CSF in-
jected group. G-CSF may promote wound healing by accelera-
tion the inflammatory response.

Collagen is the predominant extracellular protein in granu-
lation tissue. It provides strength and integrity to all tissues and, 
thus plays a vital role in wound repair, particularly in forming 

initial wound structure [23]. The mechanical strength of wound 
healing depends on the synthesis of collagen and formation of 
collagen fibrils and fibers. In this study, treatment of the G-CSF 
group increased the percentage deposition of collagen. There-
fore, we confirmed that the wound healing effect related to G-
CSF treatment was associated with enhanced deposition of col-
lagen, which appeared to improve the rate of wound healing.

The wound healing process is regulated by a complex signal-
ing network, involving various growth factors, cytokines, and 
chemokines [24]. EGF and VEGF are particularly important 
factors in the wound healing process [25]. Previous studies 
have shown that EGF accelerates epidermal and dermal repair 
through regeneration of epidermal cells, proliferation of kera-
tinocytes, and migration of keratinocytes [26,27]. VEGF par-
ticipates in wound healing through the stimulation of angio-
genesis [28] and by promoting epithelialization and collagen 
deposition [29]. Numerous studies have demonstrated that G-
CSF can increase EGF and VEGF expression [6,30-33]. Our 
data also indicated that the wound healing effect of G-CSF treat-
ment was associated with increased expression of EGF and 
VEGF.

This study has several limitations. First, we could not rule 
out any potential effects of the downstream pathways activated 
by the binding of G-CSF to its receptor, and we could not clear-
ly determine the major mechanism underlying the effects of 
local injection of G-CSF on wound healing. Second, we did not 
establish the optimum dosage or regimen of G-CSF injection. 
Third, the number of animals in the systemic injection group 
was small. In addition, the histological analysis and gene expres-
sion for the systemic injection group on the different stages of 

Figure 6. Time course of changes in epidermal growth factor (EGF) (A) and vascular endothelial growth factor (VEGF) (B) expres-
sion in wounds was determined by qRT-PCR. White circles indicate the control group and black circles indicate the G-CSF locally 
(i.d.) injected group. All data are expressed as means±SD. *p<0.05 vs. control (n=5). G-CSF: granulocyte-colony stimulating factor, 
qRT-PCR: quantitative real-time polymerase chain reaction.
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wound healing were not demonstrated. Therefore, future stud-
ies should involve a larger number of animals. 

In summary, local injection of G-CSF accelerated wound heal-
ing more effectively than systemic injection of G-CSF in a rat 
wound model. The wound healing effect of the local injection 
of G-CSF is associated with alleviation of local inflammation, 
promotion of collagen deposition and local elevation of VEGF 
and EGF levels, which may implicate the local actions of G-
CSF in wound tissue.
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