
INTRODUCTION 

Cartilage tissue plays critical roles in articular movements by 
decreasing the frictional force or decentering the weight. How-
ever, because this tissue is very thin (3–4 mm thin in the case of 
a human knee joint), it is necessary to transplant subchondral 
bone for its fixation when transplanting it. It is known that 

transplanted cartilage is very difficult to integrate with the sur-
rounding cartilage of recipient. According to research by Ob-
radovic et al. [1], bone integration is much faster, and it occurs 
only two weeks after transplantation, while the integration of 
cartilage takes more than 24 weeks. Therefore, stable fixation 
of a cartilage graft is possible by a fixation technique with sub-
chondral bone. Given that the life span and mechanical behav-
ior of cartilage are closely related to the mechanical behavior 
of subchondral bone, a tissue engineering manufacturing pro-
cess is also necessary for successful cartilage tissue engineering. 
Over the last couple of decades, tissue engineers have dedicated 
themselves to seeding cells onto a porous biodegradable scaf-
fold to induce the functional assembly into three-dimensional 
(3D) tissues [2,3]. This strategy has achieved notable progress in 
simple tissue/organ regeneration applications. However, simple 
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strategies with cell seeding onto a porous 3D scaffold during 
tissue engineering cannot be used to form complex organs [4]. 
Many studies have attempted the complex manufacturing of 
osseous tissue and cartilage tissue. These efforts can be subdi-
vided into the single scaffold type, the hybrid scaffold & hybrid 
cell type, and the hybrid scaffold & single cell type [5]. Each 
type has its own advantages, yet on the other hand, they all 
have limitations. These processes include the inducing of cells 
from the host tissue, the independent differentiation of cells 
into bone or cartilage within the tissue, and the integration of 
two tissues. To realize independent differentiation, it is neces-
sary to use a bioreactor to supply different culture media or to 
manufacture the bone and cartilage separately and then bond 
the two tissues, which is technically difficult. However if one 
could have a scaffold to induce a cell into an osteoblast or a ch-
ondrocyte using stem cells, the technical difficulties would be 
greatly reduced. 

Practically, the properties of tissue scaffolds play an impor-
tant role in controlling the cell response, differentiation, and ul-
timately, functional tissue regeneration [3,6]. In particular, scaf-
folds which simulate native tissue could provide a favorable mi-
croenvironment in which to facilitate cell attachment, growth, 
and differentiation. Hence, efforts are increasingly being fo-
cused on design and manufacturing technologies which can 
generate and modify the structures and surfaces of biomaterials 
[7,8]. Conventional fabrication processes of engineered scaf-
folds are unable to control precisely the pore size, pore geome-
try, or pore interconnectivity within the scaffold. In contrast, 
solid freeform fabrication (SFF) technology can produce scaf-
folds with fully designed and interconnected pore structures 
[9,10]. Thus, SFF has recently been introduced as a powerful 
tool with which to fabricate supporting structures. 

The advantage of the SFF approach is that it does not require 
the construction of layer-specific mold patterns or stamps, 
which simplifies experimental procedures. The utilization of 
SFF enables the production of 3D scaffolds with complex geom-
etries and very fine structures [11]. Numerous research groups 
have developed the SFF process and assembled a plotted 3D ar-
chitecture using synthetic and natural materials to provide a 
scaffold for tissue engineering [12,13]. However, only a few 
materials have successfully been 3D plotted using this tech-
nique, such as thermoplastic materials such as polycaprolac-
tone (PCL), poly-L-lactide and poly L lactide-co-polyglycolide 
(PLGA) [14-16]. Thermoresponsive materials can produce 
well-designed, plotted scaffolds by 3D plotting owing to their 
good mechanical properties [17]. On the other hand, synthetic 
biomaterials have several disadvantages, including the fact that 
their structures and compositions are not similar to those of na-
tive tissues. Moreover, their biocompatibility levels are poor. 

Thus, natural biomaterials have been developed as an alterna-
tive and are preferred due to their inherent advantages for clini-
cal applications [8,18,19]. One typical natural polymer is algi-
nate, which is preferred for SFF fabrication because alginate 
and calcium chloride solidify rapidly with multivalent cations 
after mixing [20]. The biocompatibility and cell delivery effica-
cy of alginate materials have been proven in numerous studies 
[21-23].

Cell seeding onto an artificial supporter is an important pro-
cess in tissue engineering manufacturing. Homogeneous cell 
seeding onto an artificial supporter is extremely difficult, and 
it becomes more critical when the size of the supporter is larger. 
Thus, it is difficult to create tissue after homogenous cell cultur-
ing. Moreover, cell necrosis occurs in the core area of the sup-
porter, which makes tissue formation even more challenging. 
Cell printing is becoming a key technique with which to resolve 
this problem. That is, we can seed simultaneously cells that can 
be divided into various tissues and then spread them homoge-
nously.

In this study, we developed a 3D plotting system which en-
ables the manufacturing of a biphasic graft consisting of carti-
lage and subchondral bone for application to osteochondral de-
fects. The hybrid material advantages of both synthetic (PLGA) 
and natural (alginate) polymers were combined for a support-
ing structure and for cell printing. Specifically, to induce a ma-
ture osteochondral graft, porcine-cartilage-derived ECM (cECM) 
and hydroxyapatite (HA) substances were blended with algi-
nate containing human fetal-derived stem cells (HFCPCs) for 
the cartilage and subchondral bone layers, respectively. The cur-
rent study identified the plotting potential and tissue formation 
potential of 3D printed cartilage/subchondral bone grafts for 
regeneration in cases of osteochondral defects. 

MATERIALS AND METHODS

Cell culture 
HFCPCs were isolated from 12 weeks to 16 weeks fetus limbs. 

The samples were delivered and processed under sterile condi-
tions. Patients were informed and gave consent, and the experi-
ments followed the guidelines from the Ajou University Medi-
cal Center Institutional Review Board (CRO-07-139, Suwon, 
Korea). The fetal cartilage was minced and then treated with 
0.1% of a collagenase solution overnight at 37°C in a 5% CO2 
incubator. Subsequently, cells were centrifuged at 1700 RPM for 
10 min after cell-strainer filtering. Cells were re-suspended in 
DMEM; supplemented with 10% fetal bovine serum (FBS), 100 
µL/mL penicillin G and 100 µg/mL streptomycin; and plated 
onto 100-mm culture dishes at 1.5×106 cells/cm2. 
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Differentiation of HFCPCs
The HFCPCs at passage 2 were analyzed for their adipogen-

ic, osteogenic, and chondrogenic differentiation ability in vitro 
for 21 days. HFCPCs were planted into six-well plates and a 
specific induction medium was added 24 hours later. For adi-
pogenesis, cells were plated into a six-well plate at a density of 
2×105 cells/well. The adipogenic induction medium consisted 
of complete medium supplemented with 1 µM dexamethasone, 
10 µg/mL insulin, 0.5 mM isobutylmethylxanthine, and 0.1 mM 
indomethacin. After 21 days, the adipogenic cultures were 
fixed in 4% paraformaldehyde for at least 1 h and stained with 
fresh Oil Red-O solution for 2 h. For osteogenesis, cells were 
plated in a six-well plate at a density of 2×104 cells/well. The 
osteogenic induction medium consisted of a-MEM supple-
mented with 10% FBS, 10 mM b-glycerophosphate, and 50 µM 
ascorbic acid. These dishes were stained with a fresh 0.5% aliz-
arin red solution.

The chondrogenic differentiation of the mesencymal stem 
cell (MSC) was demonstrated using a pellet culture system. The 
second-passaged 5×105 MSCs were centrifuged at 500×g for 5 
min and the pellet was cultured in 1 mL of DMEM containing 10 
ng of TGF-β3 in 15 mL polystyrene conical tubes. After one day, 
when the cells had aggregated into a round form, the culture 
medium was changed to a chondrogenic medium consisting of 
DMEM with 100 U/mL penicillin, 100 µg/mL streptomycin, 
100 µg/mL pyruvate, 40 µg/mL proline, 50 µg/mL l-ascorbicacid-
2-phosphate, 1% ITS, and 100 nM dexamethasone. The chon-
drogenic differentiation was evaluated by Safranin-O staining.

 
Multi-head 3D plotting system

In this study, the 3D SFF plotting system used had multi-head 
nozzles for dual printing. It was supplied by the department in 
control of the Nature-Inspired Nano Convergence System at the 
Korea Institute of Machinery & Materials (Daejeon, Korea) 
(Fig. 1). In detail, computerized tomography and magnetic reso-
nance images in data are converted into typical stereolithogra-
phy results from 3D shape data through a conversion program. 
These data are converted again into NC code, which includes 
driving information such as the space, direction, height, and 
speed for plotting the nozzle of the dispenser. The dual-3D 
SFF plotting system had motion, temperature and pneumatic/
mechanical suspending controllers. The temperature and pres-
sure of each head were controlled individually. This equipment 
consists of a two-head system; one head is a thermo-responsive 
polymer (PLGA) nozzle for the frame structure and the other 
head is a natural hydrogel nozzle for cell printing. The plotting 
system consists of a x, y, and z stage, an air pressure supply, a 
screw mixing system, a compression controller, and a 3D-data 
processing program system. 

Plotting of biphasic scaffolds for osteochondral grafts
Experimental groups were divided by the dual-printing of 

PLGA and cell-laden alginate (PLGA/alginate), PLGA and 10% 
cECM blended cell-laden alginate (PLGA/cECM-alginate), 
and PLGA and 10% HA-blended cell-laden alginate (PLGA/
HA-alginate). A PLGA-only scaffold served as a control. Man-
ufacturing was performed at room temperature, and this pro-
cess consisted of alternating steps of PLGA and alginate print-
ing. The PLGA (PLA 75:PGA 25, Boehringer Ingelheim, Ger-
many) was heated to 120°C and subsequently dispensed th-
rough a 300-µm metal needle at a pressure of 120 kpa and a 
deposition speed of 120 mm/min. Medium-viscosity sodium 
alginate [3%, Sigma-Aldrich, in phosphate-buffered saline (PBS, 
Invitrogen, Carlsbad, CA, USA) and subsequently autoclaved] 
was dispensed between the PLGA strands, at room temperature, 
using a deposition speed of 65 mm min-1, a spindle speed of 1.5 
and a nozzle diameter of 300 μm. Subsequent layers were de-
posited at an angle (normally 90°, 0–90) with the underlying 
layer. After all layers had been printed, the alginate was solidif-
icated with a 5 mM calcium chloride (CaCl2, Sigma-Aldrich) 
solution for 3 min. Static cell seeding was done after the print-
ing process for the PLGA-only scaffolds. The cell-laden alginate 

A  

B   C  

Figure 1. Dual-head printing deposition system (A) a front view 
of dual head system (B) including a pneumatic pressure sup-
ply, a temperature nozzle for thermo-responsive polymer [Poly 
(L-lactic acid-co-glycolic acid)], and (C) a pneumatic pressure 
supply and a screw spinning nozzle for cell-laden natural hydro-
gel (3% alginate). 
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solution contained 1×107 cells/mL for the other groups. Fine 
cECM and HA ground powders were physically blended into 
a 3% alginate solution before cell mixing. 

 
SEM analysis and viability analysis

The specimens were freeze-dried and gold-coated with a 
sputter coater for 60 s. The morphology of the specimens was 
then analyzed using a scanning electron microscope (SEM, St-
ereoscan 440, Cambridge, UK) operated at 10 kV. The viabilities 
of adherent cells on the scaffold and of encapsulated cells in 
the hydrogel were assessed using a live/dead cell assay kit (Lonza 
Walkersville, Walkersville, MD, USA). Live and dead cells were 
represented as green and red fluorescent colors, respectively. 
The stained cells were imaged and counted manually using flu-
orescence microscopy to quantify the percentages of live and 
dead cells (Axiovert 200, Zeiss, Jena, Germany).

Evaluation of differentiation with reverse transcriptase-
polymerase chain reaction analysis

Total RNA was extracted using the RNA Easy-Spin Kit (In-
tron, Seongnam, Korea) following the manufacturer’s instruc-
tions. RNA of an amount of 1 μg was used for cDNA synthesis 
using the First-Strand cDNA Synthesis Kit for RT-PCR (AMV) 
(Rhoche, Mannheim, Germany), and 1 μg of the synthesized 
cDNA was used for the polymerase chain reaction. The synthe-
sized cDNA (1 μg) was used for PCR using primer sequences of 
type 2 collagen alpha 1 (Col2A1), aggrecan, alkaline phospha-
tase (ALP), osteopontin (OPN). Glyceraldehyde-6-phosphate 
dehydrogenase (GAPDH) was used as an internal control. PCR 
products were separated on a 1.5% agarose gel and stained with 
ethidium bromide. They were then visualized and digitalized 
with the Image Analysis System Gel (Geliance 200, PerkinElmer). 
The sequences of the primers are listed in Table 1.

Biochemical analysis
Total GAG contents were analyzed using the 1,9-dimethyl-

methylene blue (DMB) assay technique. Individual samples 
were mixed with the DMB solution and the absorbance was 
measured at a wavelength of 525 nm. The total GAG of each 
sample was extrapolated using a standard plot of shark chon-
droitin sulfate (Sigma, St. Louis, MO, USA) in the range of 0–50 
µg/mL. For a DNA analysis, the scaffolds were chopped by mi-
cro-scissors. The DNA contents were measured using the Pico-
Green assay. Samples were extracted twice with 0.5 mL of 5% 
trichloro acetic acid for the total calcium content. The calcium 
content was determined by a colorimetric assay using the or-
tho-cresolftaleina complex one Calcium LiquiColor test (Stan-
bio Laboratory, TX, USA). The calcium complex was measured 
spectro-photometrically at 575 nm. 

The ALP activity assays were done with the p-nitrophenol 
(pNPP) ALP assay kit (ANASPEC, CA, USA) following the 
manufacturer’s directions. The analysis was performed on Day 
14 after in vitro culturing. The collected scaffolds were washed 
three times with PBS, cut down with scissors, and homogenized 
in lysis buffer. The sample lysate was centrifuged at 10000×g 
for 15 min at 4°C. The supernatant was assayed for ALP activity 
using pNPP as a substrate. Into each well of 96-well plates, an 
aliquot of supernatant and the pNPP mixture were added then 
incubated at 37°C for 30 min. In addition, stop solution was 
added the wells to stop the reaction before the absorption was 
measured. The absorbance of p-NPP was determined at 405 nm 
using a micro-plate reader (TECAN Infinite 200, Switzerland). 

Statistical analysis 
The statistical analyses were done using the ‘analysis of vari-

ance-Tukey’ test (SPSS, Chicago, IL, USA) between groups. Sta-
tistical significance was assigned as either p<0.05 or p<0.001. 

Table 1. The primers used for RT-PCR

Primer Sequence Product size
GAPDH Forward 5’-GGTCATGAGTCCTTCCACGAT-3’ 520 bp

Reverse 5’-GGTGAAGGTCGGAGTCAACGG-3’
ALP Forward 5’-CCACGTCTTCACATTTGGTG-3’ 196 bp

Reverse 5’-AGACTGCGCCTGGTAGTTGT-3’
Osteopontin Forward 5’-TTGCAGTGATTTGCTTTT GC-3’ 161 bp

Reverse 5’-GTCATGGCTTTCGTTGGACT-3’
Type II collagen alpha 1 Forward 5’-GATATTGCACCTTTGGACAT-3’ 344 bp

Reverse 5’-CCCACAATTTAAGCAAGAAG-3’
Aggrecan Forward 5’-GAAAGGTGTTGTGTTCCACT-3’ 319 bp

Reverse 5’-GTCATAGGTCTCGTTGGTGT-3’
RT-PCR: reverse transcriptase-polymerase chain reaction, GAPDH: glyceraldehyde-6-phosphate dehydrogenase, ALP: alkaline phosphatase
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RESULTS 

Characterization of scaffolds and cell viability
The PLGA-only scaffold was fabricated by a single-head de-

position system. Other PLGA/alginate hybrid printing groups 
were successfully fabricated by the dual-head deposition sys-
tem. As presented in Fig. 2, the plotted PLGA line and the pore 
size of the scaffolds in all groups were 300 and 600 µm, respec-
tively. Live/dead staining of all plotted scaffolds was carried 
out to determine the rate of cell viability after one week of in 
vitro culturing (Fig. 3). All of the adhered cells survived on the 
plotted fibers of the PLGA-only scaffold at Day 7. Encapsulat-
ed cells in plotted alginate fibers also showed visibility of around 
90%. The blending of the cECM and the HA in the alginate 
did not decrease cell viability after one week. In the SEM im-
ages, evenly distributed cells in the spaces between PLGA fi-
bers were observed in plotted cell-laden alginate fibers, while 
the seeded cells showed a partially spread morphology on the 
surfaces of the plotted fibers in the PLGA-only control group. 

 

In vitro differentiation potential of HFCPCs
Adipogenic differentiation was evaluated by Oil-red-O stain-

ing. Lipid vesicles were observed in the induction group (Fig. 
4B). HFCPCs were clearly differentiated into an adipogenic 
lineage. Osteogenic differentiation was detected by Alizarin 
red staining. HFCPCs positive for Alizarin red staining was 
widely distributed throughout the six-well plates (Fig. 4D). In 
vitro chondrogenesis as a pellet culture system was performed 
to evaluate the chondrogenesis potential of the cells. During 
chondrogenesis, the pellet size increased due to the production 
of an extracellular matrix. The pellets of the induction groups 
were larger and heavier than those of the control group, indi-
cating their superiority in chondrogenesis. Histologically, each 
cell pellet exhibited a cartilage matrix that was stained with Saf-
ranin-O staining (Fig. 4E and F).

 
cECM blending effects on chondrogenic differentiation 
in the cartilage layer scaffold

cECM was blended with alginate with cells printed for the 
cartilage layer of the osteochondral graft. RT-PCR and the GAG 

Figure 2. The structure of the SFF-based PLGA only, PLGA and the cell-laden alginate, PLGA and PCP-blended cell-laden algi-
nate, and PLGA and HA-blended cell-laden alginate scaffolds. (A-D) Surface morphologies, and (E-H) side of the scaffold. (I-L) 
High-magnification image of PLGA and cell-laden alginate fibers. The plotted PLGA line and the pore size of the scaffolds in all 
groups were 300 and 600 µm, respectively. P: PLGA fiber, Al: alginate fiber, SFF: solid freeform fabrication, PLGA: poly (L-lactic ac-
id-co-glycolic acid), cECM: cartilage-derived ECM, HA: hydroxyapatite. 
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content were analyzed at Day 14 after in vitro chondrogenic 
induction. The PLGA/cECM-alginate group showed notably 
increased gene expression of Col2A1 and aggrean compared 
to the PLGA-only and the PLGA/alginate samples (Fig. 5A). 
Moreover, the GAG content in the PLGA/cECM-alginate was 4.5 
µg/mg, which was a significantly higher value among the groups 
(Fig. 5B).

HA blending effects on osteogenic differentiation in 
a subchondral bone layer scaffold

The ALP activity was used as an important biochemical mark-
er for determining the osteoblast phenotype and the bone dif-
ferentiation and mineralization characteristics. Thus, the osteo-
genic differentiation of HFCPCs in three types of scaffolds was 
also analyzed in terms of the expression levels of the osteogenic 
markers of ALP and OPN at the level of messenger ribonucleic 
acid. As shown in Fig. 5C and D, the expression levels of the 
ALP and OPN genes in the PLGA/HA-alginate were the highest 
among the three groups. The super-iority of osteogenic differen-
tiation in PLGA/HA-alginate was also proved by a chemical an-
alysis of the ALP activity after two weeks of in vitro culturing. 

Fabrication of hybrid scaffold 
As depicted in Fig. 6, the bi-phasic scaffold consisting of 

PLGA for the frame and alginate for the HFCPC delivery was 
successfully fabricated using the SFF technique. In particular, 

cECM and HA substitutes were blended for cartilage and sub-
chondrodral bone layers, respectively. The structure size of the 
plotted biphasic scaffold was 3×3×5 mm3. The biphasic graft 
showed good integration between the cartilage and subchondral 
bone layers without structural separation. Furthermore, no 
structural collapse of the scaffolds was observed during the tis-
sue culturing process.

DISCUSSION

Ideal scaffolds require a stable mimetic hierarchical struc-
ture as well as biological features to support the formation of 
new tissue [18]. Significant advances have been made in the 
progress of scaffolds fabrication techniques. Nevertheless, fab-
ricated scaffolds using conventional techniques cannot pre-
cisely control the pore size, interconnectivity or pore geometry 
for the specified requirements of tissue regeneration [3,24]. Re-
cently, SFF techniques to create desired structures with good 
functionality have become a hot issue in tissue engineering as 
part of the effort to fabricate 3D spatially organized constructs 
as an advanced form of this technology [9,13]. Plotted 3D scaf-
folds of synthetic materials have demonstrated good mechani-
cal strength strong enough to maintain structures [9]. PLGA was 
chosen as the frame structure in this study because SFF-based 
PLGA scaffolds have shown the successful chondrogenesis of 
chondrocyte [16]. In addition, the long-lasting degradation be-

Figure 3. (A-L) Cell viability analysis and SEM morphology. (A and E) Viability at 7 days after cell observations on the PLGA-only 
scaffold (B, C, and D; F, G, and H) Viability at 7 days after cell-laden alginate printing. Green: live cells, red: dead cells. SEM obser-
vation (I) of the attached cell morphology on the plotted PLGA fiber, (J, K, and L) cell-laden morphology in the plotted alginate. ▲: 
cells, P: PLGA fiber, Al: alginate fiber, SEM: scanning electron microscope, PLGA: poly (L-lactic acid-co-glycolic acid), cECM: carti-
lage-derived ECM, HA: hydroxyapatite.  
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havior of a 3D-plotted PLGA scaffold was also identified for 
seven weeks in saline in another study [17]. However, the poor 
biological features of the PLGA synthetic scaffold were im-
proved by the addition of natural materials to the point that 
they were even better than those of PCL [25].

Natural hydrogel is commonly utilized for cell deposition in 
the SFF fabrication system owing to its inherent advantages, 
such as its bioactivity and biocompatibility [22,23,26]. In par-
ticular, the alginate utilized in our study is preferred for SFF 
fabrication due to its very rapid solidification [27]. Cohen et al. 
[20] successfully printed cell-laden implants with the alginate 
hydrogel with SFF technology. Khalil and Sun [22] also report-
ed the ideal conditions of sodium alginate and calcium chloride 
for SFF bioprinting. However, a 3D-plotted scaffold with algi-
nate only was not suitable for long-term cell culturing owing to 
its rapid degradation and low mechanical strength. To overcome 
the limited strength of alginate, the printed PCL structure was 
combined with a hybrid scaffold for bioprinting [14]. We also 
found that the alginate-only plotted structure could not with-
stand a time of two weeks in our pilot study. A long-lasting cell 
delivery material is needed for long-term culturing to induce 
mature tissue formation. Thus, we developed both a PLGA and 
an alginate hybrid plotting system to enable the manufacturing 

of a biphasic scaffold for application to osteochondral defects. 
The hybrid printing of alginate and PLGA resulted in stable st-
ructural maintenance of more than two weeks (Fig. 2). As an-
other trial for more stable cell printing using alginate, we are now 
the developing a catechol-added alginate, which is showing 
very-long-lasting degradation properties in a preliminary study. 

During the conditions of tissue formation, maintaining of an 
appropriate physicochemical environment is essential to pro-
mote the tissue regeneration. In particular, tissue-specific ECM 
can provide the cells with a favorable cellular microenviron-
ment with the appropriate 3D architecture for normal growth 
and development [28]. The cECM material used here for the 
cartilage layer contained collagen, glycosaminoglycan and, other 
adhesion molecules. Cartilage tissue-engineering applications 
of cECM were developed in our previous studies [29,30]. For 
instance, the differentiation of planted cells and a high quality 
of engineered cartilage were generated from ECM materials 
[31]. ECM materials helped to maintain a chondrogenic phe-
notype and delay the calcification and hypertrophic changes of 
engineered cartilage [32]. Moreover, ECM materials can en-
hance chondrogenic formation in cartilage defects in animals 
[29,30,33]. Another blended substance, HA, for a subchondral 
bone layer was also determined to be a suitable material for 
proliferation and osteoblastic differentiation of mesenchymal 
stem cells in vitro [34]. A HA-combined scaffold-free tissue-en-
gineered construct exhibited earlier restoration of subchondral 
bone as well as good tissue integration of repaired cartilage in 
a rabbit osteochondral defect model [35]. Furthermore, pure-
alginate-encapsulated stem cells did not show strong evidence 
of chondrogenic or osteogenic differentiation during in vitro 
culturing [21,36], although the alginate demonstrated high cell 
viability of more than 83% from plotted cells with alginate 
when using a multi-nozzle deposition SFF system [22]. In this 
sense, in order to promote the maturity of osteochondral grafts 
in our study, cECM or HA substances blended alginates were 
specifically plotted together with stem cells in cartilage or sub-
chondral bone layers. In the present result, the non-toxicity of 
cECM and HA substances on cells were proved in a live/dead 
assay of plotted cell-laden alginate, as presented in Fig. 3. This 
indicates that cell death did not occur due to the materials or 
the plotting process used in our system. Regarding the struc-
tural stability of the fabricated osteochondral graft, both the 
cartilage and the subchondral layers were stably plotted up to 
a height of 5 mm (Fig. 6). Notably, a plotted biphasic structure 
using the same materials showed strong integration between 
both cartilage and subchondral bone layers. 

Eventually, we also employed HFCPCs as a new cell source 
for both the chondrogenesis and osteogenesis of osteochondral 
grafts in the current study. Fetal stem cells are more plastic 

Figure 4. Differentiation of HFCPC. (A and B) Adipogenic differ-
entiated HFCPC with Oil-red O staining. (C and D) Osteogene-
sis. (E and F) Histology of pellets as determined with Safranin-O 
staining. HFCPC: human fetal cartilage-derived stem cells.
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than adult stem cells and hence have greater therapeutic poten-
tial [37]. The feasibility of using fetal stem cells was confirmed 
during chondrogenic differentiation and skeletal development 
assessments for cartilage repair [38]. The stem cells used in this 
research are fetal tissue-derived stem cells.

As shown in Fig. 4, they can easily be divided into adipo-
cytes, osteocytes, and chondrocytes under conditions with 
sound differences in a medium. However, without the condi-
tions of the sound difference, they are not divided into bone 
and cartilage. This tendency is correlated the results of tissue 
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diffentiation of biphasic scaffold. HFCPCs in PLGA/cECM-al-
ginate of cartilage layer showed highly expressed chondrogen-
ic gene markers such as type II collagen and aggrecan. In other 
hand, HFCPCs in PLGA/HA-alginate of bone layer showed the 
much higher expression of osteogenic gene marker such as ALP 
and OPN than cartilage layer. the acquired RT-PCR results 
from this study demonstrated the differential effects of plotting 
HFCPCs in substances (cECM or HA) blended with alginate 
for cartilage or subchondral bone layers. However, we unfortu-
nately could not provide the histological staining data because 
the alginate layers shrunk during the block preparation process 
in the analysis. 

In conclusion, this study identified the plotting feasibility 
and tissue formation of 3D plotted osteochondral biphasic 
grafts using PLGA and certain substances (cECM or HA) blend-
ed with alginate for the regeneration of osteochondral defects. 
The utilized bio-printing system includes a dual-printing sys-
tem that utilizes SFF techniques and a computer-aided model-
ing system capable of creating heterogeneous osteochondral 
grafts. Both cartilage and subchondral layers were stably plot-
ted up to a height of 5 mm. The plotted osteochondral graft 
showed good integration between the cartilage and subchon-
dral bone layers without structural separation. Furthermore, 
no structural collapse of the 3D plotted scaffolds was observed 
during the tissue culturing process. A fabricated osteochon-
dral graft with cECM and HA substances showed dominant 
cartilage and bone tissue formation properties in a differentia-
tion assay. Future studies should focus on modifying the algi-
nate physical properties for long-lasting structural stability. In 
the meantime, the 3D plotted osteochondral graft will be eval-
uated in terms of its efficacy from in vivo implantation into os-
teochondral defects.
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