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Abstract
This study highlights the potential of Aquibacillus halophilus and microbial treatments to address water quality issues in 
drilling operations, offering promising avenues for mitigating heavy metal contamination and reducing total water hardness 
to achieve sustainable development goal (SDG) 6 (Clean Water and Sanitation) and SDG 14 (Life Below Water). Aquiba-
cillus halophilus exhibited rapid growth and remarkable water quality enhancement capabilities. Its robust growth at pH 
7 suggests minimal interference from in situ bacteria, thereby preserving the optimal pH level for drilling operations and 
promoting sustainable water resource management. Keeping the total hardness below 800 ppm is essential to utilize water in 
well-logging effectively. Aquibacillus halophilus offers an alternative approach to hardness reduction that reduces reliance on 
chemical additives such as caustic soda. By incorporating Aquibacillus halophilus, a conventional treatment requiring 100% 
caustic soda to treat 19,100 ppm hardness, it can be reduced to 19.37%, obtaining a remarkable 80% reduction in material 
consumption. This reduction facilitates wastewater reuse significantly, promotes resource efficiency, and is consistent with 
SDG 6. In addition to reducing well-logging costs, the microbial technique safeguards the environment by addressing heavy 
metal contamination, which aligns with SDG 14’s objective of protecting aquatic life.

Keywords Bioremediation · Heavy metal removal · Hawizeh Marshes · Total hardness · Sustainable development goal · 
Water-based drilling mud

Introduction

The efficacy of the drilling operation is highly dependent 
on the drilling fluid, which accounts for 15–18% of the total 
costs associated with oil well drilling (Ytrehus et al. 2023). 
Based on their chemical properties and phase type, drilling 
fluids are typically classified as water-based or oil-based 
(Karakosta et al. 2021; Alkalbani and Chala 2024). Vari-
ous compounds, polymers, and additives are combined with 
drilling mud to maintain properties such as mud weight, 
gel strength, viscosity, and filtration (Inemugha et al. 2019; 

Abed and Rasaei 2024; Davoodi et al. 2024; Li et al. 2024). 
The pH range for water-based mud (WBM) drilling is typi-
cally between 7 and 12 but may vary depending on well 
conditions (Blkoor et al. 2021). It is essential to maintain 
the proper pH to prevent chemical reactions that can con-
tribute to corrosion and ensure clay stabilization (Ahmed 
et al. 2021). The pH level has a direct impact on the solubil-
ity, reactivity, and effectiveness of various additives used in 
drilling mud formulations (Bardhan et al. 2024; Fadairo and 
Oni 2024). Deviations from the optimal pH range can impair 
the performance of these additives, potentially resulting in 
reduced drilling fluid properties and compromised wellbore 
stability (Kong et al. 2024; Zhendong et al. 2024). Therefore, 
maintaining the appropriate pH in drilling mud additives 
is critical. Inorganic compounds, especially heavy metals, 
in the water that return from the oil well to separate cut-
tings are considered an environmental risk (Hu et al. 2024). 
The concern stems from the potential for these inorganic 
compounds to have negative ecological and human health 
consequences due to their persistence and inherent toxicity 
(Gautam et al. 2023; Sharma et al. 2023; Verma et al. 2023; 
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Wu et al. 2024). Heavy metals, such as lead, cadmium, and 
mercury, have the ability to accumulate in aquatic ecosys-
tems, resulting in long-term environmental consequences 
(Brindhadevi et al. 2023). The discharge of water containing 
elevated levels of heavy metals into natural water bodies 
endangers aquatic organisms and, as a result, disrupts the 
ecological balance. Furthermore, heavy metals can bioaccu-
mulate in the food chain, eventually reaching human popula-
tions via consuming contaminated aquatic organisms (Dong 
and Li 2024; Saidon et al. 2024). The intricate interplay of 
inorganic compounds, particularly heavy metals, highlights 
the importance of stringent environmental management 
practices and regulatory frameworks to mitigate the poten-
tial negative impacts associated with them (Edo et al. 2024).

Several methods can be used to recover and remove 
heavy metals from polluted environments. These techniques 
include oxidation and reduction methods, various filters, 
electrochemical techniques, evaporation, ion exchange, 
demineralization, and deionization (Alkhadra et al. 2022; 
Balasubramaniam et al. 2022; Antony et al. 2024; Tang et al. 
2024). The low cost and significant ecological benefits are 
two of the most significant advantages of microbial methods 
for managing the concentration of heavy metals in polluted 
environments (Kurella et al. 2023; Tedesco et al. 2024). The 
use of microbial methods completely depends on the situa-
tion of a polluted environment, which leads to using in-situ 
and ex-situ bioremediation methods (Ciampi et al. 2024; 
Yuan et al. 2024).

Advanced techniques such as atomic absorption spec-
trometry (AAS) and inductively coupled plasma mass spec-
trometry (ICP-MS) aid in detecting trace amounts of heavy 
metals in biological and environmental samples (Halmi et al. 
2019; Jenikova et al. 2022).

Bacteria can readily absorb minerals due to the structure 
of their cell surface. During ion absorption, various ele-
ments, including nitrogen, oxygen, sulfur, and phosphorus, 
may also be absorbed into bacteria’s cell walls (Mu et al. 
2021; Baek et al. 2022). In most instances, the absorption of 
nitrogen, oxygen, sulfur, and phosphorus has no direct effect 
on the absorption of heavy metals. These elements’ absorb-
ing mechanisms and pathways are distinct and independ-
ent. Nitrogen, oxygen, sulfur, and phosphorus are essential 
nutrients for biological systems and are typically absorbed 
by plants, microorganisms, and other organisms via spe-
cific metabolic and nutrient absorption processes (Guerra-
Renteria et al. 2019; Li et al. 2020). Microorganisms have 
negatively charged groups, such as phosphoric acid anions 
and carboxyl anions, on the surface of their cell walls. In 
addition, heavy metals contain cationic groups that enable 
them to interact with the bacteria cell wall. Microorganisms 
accumulate heavy metal ions through adsorption, which does 

not require metabolic energy. However, the absorption pro-
cess in living cells depends on energy metabolism (Hu and 
Chen 2023). Table S1 lists several studies regarding mineral 
absorption by microorganisms. On the other hand, incorpo-
rating lemon oil or ethylenediaminetetraacetic acid (EDTA) 
can increase mineral elimination rates by 26.3–31.5% if 
absorption is slow and inefficient (Ning et al. 2019). In other 
words, this indicates that lemon and EDTA can be used as 
a catalyst to increase bacterial cell wall mineral absorption.

However, when essential nutrients are introduced, the 
cell’s capacity to absorb metal ions increases. During the 
catabolism and anabolism processes, bacteria produce 
organic acids that dissolve heavy metals in the soil, immobi-
lizing heavy metals on the cell walls of bacteria. According 
to several studies, microorganisms can produce organic acids 
and dissolve Cd in the soil if given sufficient nutrients and 
energy. Specifically, the study found that the rate of leaching 
was only 9% in the absence of nutrients, but it increased to 
36% when glucose and other nutrients were added (Chang 
et al. 2019; Ke et al. 2020; Sharma 2021). Citrobacter can 
absorb significant quantities of toxic metals by producing 
unbound inorganic phosphate and can absorb minerals dif-
ferently (Liu et al. 2023; Shiri-Yekta et al. 2023). Through 
oxidation–reduction reactions, the ability of microbes to 
metabolize heavy metals is significantly enhanced when 
heavy metals combine with oxygen or hydrogen. Prokary-
otic microorganisms, for instance, can alter the oxidation 
state of heavy metals, thereby modifying their properties 
and rendering them less toxic. Aerobic microorganisms can 
convert  Hg2+ to  Hg0 before evaporation (Merkel et al. 2021; 
Sazykin and Sazykina 2023). Although Hg(0) is fairly toxic, 
it cannot compare to the toxicity of Hg(II) and Hg(I), which 
can produce organomercury compounds such as methyl-
mercury and dimethylmercury. This and similar compounds 
enter the trophic chain and can bioaccumulate, accumulating 
mercury in fish (Wang et al. 2022). Corynebacterium can 
absorb and reduce  Cr6+ in water to  Cr3+. The  Cr6+ form is 
more toxic than the  Cr3+ form. It was discovered that the 
toxicity of  Cr3+ is due to its specific antagonism with iron 
absorption (DesMarias and Costa 2019; Liu et al. 2022). 
Bacillus licheniformis R08 uses the same process to convert 
 Pb2+ to  Pb0 (Margaryan et al. 2021; Zhang et al. 2022). Rap-
idly manifesting symptoms result from exposure to organic 
lead, which is likely more toxic than inorganic lead due to 
its lipid solubility. Organic lead compound poisoning symp-
toms primarily affect the central nervous system and include 
insomnia, delirium, cognitive deficits, tremors, hallucina-
tions, and convulsions (Frolova et al. 2021).

Previous research (Rasti et  al. 2021) investigated 
the organic matter discharged in the drilling area of the 
Hawizeh Marshes using in-situ bacteria. In this study, the 
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intention was to reduce the total hardness of the drilling 
field by decreasing the amount of heavy metals in the 
water-based drilling mud through halophilic bacteria. It 
is the first time this species of bacteria has been used to 
reduce total hardness. Additionally, using this species in 
ex-situ bioremediation processes represents a pioneering 
effort in the field. The ultimate objective is to reduce the 
cost of sustainable forestry and protect the environment 
from hazardous chemicals. This research was conducted 
under laboratory conditions to prevent variations in pH, 
temperature, and mineral composition, which might oth-
erwise lead to alterations in environmental conditions. 
The investigation was undertaken over a period spanning 
from 2021 to 2023 within the confines of the Hawizeh 
Marshes.

Materials and methods

Sampling

A sample was collected from the water tank just prior to 
reinjection into the well in the Hawizeh Marshes region 
of southwest Iran, in close proximity to Ahwaz, during 
the continuous circulation of water-based mud (Fig. 1). 
Sampling was conducted in the best possible way, with 
the assistance of personnel from the drilling company and 
the use of containers supplied by the drilling company. 

The characteristics of the drilling fluid employed in the 
well up to 2771 m are displayed in Table S2.

Addition of microorganisms to wastewater

In this investigation, four bacterial species were isolated 
in situ and added individually to wastewater. Each bacte-
rium was collected and transferred to blood agar for growth. 
A bacterial sample was obtained in the incubator after 24 h 
at 35 °C to create McFarland standards. Then, 0.15 mL of 
McFarland standards were combined with 10 mL of waste-
water and incubated for one week. The same procedure was 
applied to Aquibacillus halophilus, procured from a bacterial 
culture collection. It was added separately to serum physiol-
ogy to create the McFarland standard, then added to efflu-
ent and incubated for seven days. Seven days later, a visual 
inspection revealed that the water’s color had changed. In the 
subsequent phase, the test was repeated while increasing the 
volume of wastewater and bacteria to 200 mL and 10 mL, 
respectively. After a week, the color changes of the wastewa-
ter were recorded. After two days, the evidence showed that 
no in situ bacteria could thrive in the moderately halophilic 
medium.

Why is Aquibacillus halophilus chosen?

The contaminated environment must be assessed before 
choosing bacteria from outside the environment. Based 
on several factors, including the minerals present in the 
drilling fluid and the location of the reservoir, which is 

Fig. 1  The location of the sampling site (31.576849, 47.746551) is in the Hawizeh Marshes (Rasti et al. 2021)
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surrounded by saline water, it is hypothesized that only 
halophilic species can survive in this environment. This 
hypothesis was further supported by the inductively cou-
pled plasma-optical emission spectrometry (ICP-OES) 
results and total hardness measurements. Aquibacil-
lus halophilus is a unique bacterium that can survive in 
highly salty environments. Based on the ICP-OES results 
and total hardness, an ex-situ bacterium, Aquibacillus hal-
ophilus, was chosen to thrive in wastewater because it can 
thrive in NaCl concentrations, with optimal growth occur-
ring at 10% (w/v) NaCl. According to Amoozegar et al. 
(2014b, a), the ideal temperature and pH for its prolifera-
tion are 35 °C and 7.0, respectively (Amoozegar et al. 
2014a; b). Aquibacillus halophilus is a gram-positive, 
moderately halophilic bacterium. The bacterial cells are 
rod-shaped and motile and can produce oval endospores 
in non-swollen sporangia. The strain number is IBRC-
M 10775, obtained from the Iranian Biological Resource 
Center. Amoozegar et al. (2014a; b) isolated and identi-
fied this species from the Aran-Bidgol hypersaline lake 
in central Iran, which contains NaCl,  Na2SO4,  MgCl2, and 
 MgSO4 with traces of carbonate ion (Amoozegar et al. 
2014a, b; Lee and Whang 2019).

ICP‑OES analysis

750  mL of water-based drilling fluid was sent to the 
Meyar Danesh Pars laboratory for ICP-OES and hard-
ness measurements. Those experiments were done to 
determine the total concentration of heavy metals and 
to identify and quantify heavy metals from the investi-
gated emplacement. The ICP (atomic emission spec-
trometer) laboratory of Danesh Pars is outfitted with a 
Perkin Elmer Company Optical Emission Spectrometer 
8300 and a Sherwood Company flame photometer. The 

ASTM D1976 standard has been applied to identify water 
minerals.

Results and discussion

Sampling location

The investigation of the well in the Hawizeh Marshes is 
of utmost importance due to the profound environmental 
changes induced by drilling campaigns. This investigation 
was initiated because the oil company responsible for these 
activities recognized the need to address and mitigate the 
damages caused to the area.

Microbiological techniques for removing heavy 
metals from water‑based drilling slurry

A case study on in situ bacteria will help us comprehend 
the diversity of bacteria and their ability to absorb heavy 
metals. Combining in-situ and ex-situ bacteria is indeed 
advantageous. Our team identified the four species of bac-
teria detected in a water-based drilling mud using a blood 
agar medium (Rasti et al. 2021). They were added separately 
to the drilling wastewater, but the appearance of the waste-
water samples did not alter. In contrast, heavy metals such as 
lead, iron, and manganese were found in water-based drilling 
sludge (Fig. 2). The total hardness of the water-based drill-
ing slurry was determined to be 19,100 parts per million 
(ppm). High salinity levels in the mud are responsible for the 
inability of four in-situ bacterial species to thrive in drilling 
wastewater. Due to membrane lysis or rupture, these in-situ 
bacteria cannot grow in water with high salinity (Sharghi 
et al. 2014). However, previous research has demonstrated 
that these bacteria could thrive in a blood culture medium, 
indicating they may be pathogenic.

Fig. 2  The heavy metals 
detected in wastewater before 
bioremediation with halophilic 
bacteria (Aquibacillus halo-
philus)
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Saline water surrounds subterranean petroleum reserves 
(Agapkin and Kotov 2021; Ershaghi 2024). Drilling water 
has a high salinity, and the presence of halophilic bacteria 
is indicative of a salient medium (Rezaei Somee et al. 2018; 
Rezaei Somee et al. 2021; Gorriti et al. 2023; Novák et al. 
2023). A medium with a moderate salinity level was used to 
identify halophilic bacteria in wastewater. In contrast, after 
one week of Aquibacillus halophilus bacterium addition, the 
hue of the effluent changed to a milky white (Fig. 3). The 
density of bacteria in the effluent was high, Aquibacillus 
halophilus did not interact with other bacteria, and it can 
proliferate without restriction. The four in situ bacteria can 
only grow on blood agar because they defend themselves 
against salty conditions within the cell. Drilling mud sam-
ples containing heavy metals and bacteria were sent to the 
Meyar Danesh Pars laboratory to determine the wastewater’s 
metal content and total hardness. As anticipated, the micro-
organisms were highly effective at absorbing heavy metals. 
The variations in minerals are depicted in Table 1. The ini-
tial concentration of 18 of the 30 identified heavy metals 
has significantly changed or decreased. In addition, the total 
hardness indicated after treatment was 3700 ppm. The meas-
ured total hardness was substantially lower than its original 
value of 19,100 ppm before bioremediation. Despite a sub-
stantial decrease in water hardness, the current total hard-
ness is still above the standard limit for wastewater reuse. 
Following regulations, the total hardness should preferably 
be less than 800 ppm.

The most significant alterations in elemental concentra-
tions are delineated in Fig. 2. These elements are categorized 
into three main groups. The first group comprises Ni, Mo, 

La, Co, Cr, and Cn, exhibiting relatively minor fluctuations. 
Nevertheless, certain studies have demonstrated that Pseu-
domonas species, such as Pseudomonas aeruginosa, possess 
a notable capacity to absorb Cr and Ni, reaching up to 30% 
and 90%, respectively (Oves et al. 2023; Priyadarshanee and 
Das 2024). The second group encompasses Mn and Se, dem-
onstrating more pronounced variations than the preceding 
category. Notably, Pseudomonas spp. exhibit commendable 
capabilities in heavy metal absorption. Additionally, Bacil-
lus spp., including Bacillus selenitireducens, represents a 
viable option for the absorption of Mn and Se (Guo et al. 
2023; Huang et al. 2023; Oves et al. 2023). Finally, the third 

Fig. 3  The color of the effluent changed a before Aquibacillus halo-
philus treatment and b one week after Aquibacillus halophilus treat-
ment

Table 1  The percentage changes and the element concentrations in 
ppm before and after bacteria treatment

The elements whose concentrations have decreased drastically are 
highlighted in bold

Number Elements Concentration 
before treatment 
(ppm)

Concentration 
after treatment 
(ppm)

Changes in 
percentage 
(%)

1 Na 3.01 1.52 49.50
2 B 2.19 0.28 87.21
3 Si 1.65 0.18 89.09
4 W 0.9 0.87 Unchanged
5 Sb 0.87 0.29 66.66
6 S 0.79 0.19 75.94
7 As 0.7 0.33 52.85
8 Ca 0.69 0.14 79.71
9 K 0.66 0.16 75.75
10 Al 0.58 0.41 29.31
11 Cd 0.54 0.32 40.74
12 Cu 0.52 0.52 Unchanged
13 Bi 0.48 0.28 41.66
14 Fe 0.43 0.35 18.60
15 Se 0.43 0.38 11.62
16 Pd 0.42 0.42 Unchanged
17 Mn 0.34 0.27 20.58
18 Ti 0.33 0.33 Unchanged
19 Sn 0.33 0.33 Unchanged
20 Mg 0.32 0.15 53.12
21 Cr 0.32 0.31 Unchanged
22 Zn 0.31 0.26 16.12
23 Co 0.29 0.29 Unchanged
24 Be 0.29 0.29 Unchanged
25 La 0.28 0.28 Unchanged
26 Sr 0.27 0.11 59.29
27 Mo 0.25 0.25 Unchanged
28 V 0.25 0.25 Unchanged
29 Ni 0.24 0.24 Unchanged
30 Ba 0.22 0.11 50
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group consists of Bi, Cd, K, As, Sb, Si, and Na, which are 
significantly reduced after the addition of A. halophilus. 
A. halophilus, a halophilic bacterium, has demonstrated 
remarkable ability to remove a wide range of heavy metals, 
including Bi, Cd, K, As, Sb, and Si, despite their disparate 
chemical properties and periodic table group affiliations.

There are several reasons why A. halophilus did not 
exhibit a significant impact on the absorption of heavy met-
als, specifically Ni, Mo, La, Co, Cr, and Cn. Firstly, the 
type of bacteria and the metal ions in issue have a signifi-
cant impact on the capacity of microorganisms to sequester 
heavy metals. It’s possible that A. halophilus, an acinetobac-
ter species, lacks binding sites or specialized transporters 
that effectively interact with these particular heavy metals. 
Because metal absorption selectivity is frequently species-
specific, A. halophilus’s cellular processes and innate meta-
bolic pathways may be to blame for the absence of reac-
tions seen (Abd Elnabi et al. 2023; He et al. 2023; Liu et al. 
2024). Secondly, it’s possible that the experiment’s heavy 
metal concentrations weren’t ideal for getting A. halophilus 
to react noticeably. The degree of tolerance that different 
microbial species show for heavy metals varies, and concen-
trations that are too low might not cause a noticeable bioac-
cumulation reaction (Chakravorty et al. 2023; Huang et al. 
2024). Conversely, concentrations that exceed the organ-
ism’s tolerance threshold might lead to toxicity, hindering 
the absorption process (Chakravorty et al. 2023; Khalid et al. 
2023; Zhou et al. 2023; Alabssawy and Hashem 2024). Fur-
thermore, the kinds of heavy metals tested and their chemi-
cal composition could be quite important. Heavy metals, in 
particular oxidation states or chemical forms, are frequently 
the target of microbial resistance mechanisms; if the metals 
were supplied in a form that A. halophilus could not access, 
this could account for the observed lack of effect (Yin et al. 
2019; Jeyakumar et al. 2023; Mansoor et al. 2023). In con-
clusion, the interaction of microbial physiology, heavy 
metal concentrations, and chemical forms has a significant 
impact on the effectiveness of A. halophilus in absorbing 
heavy metals. Based on Fig. 2 and Table 1, this bacterium 
can selectively interact with and sequester heavy metals by 
using different mechanisms, such as biosorption and bio-
accumulation, regardless of chemical group differences. In 
terms of environmental cleaning, A. halophilus can be used 
in bioremediation strategies, providing a sustainable and 
environmentally friendly solution. Economically, using such 
ex-situ microbial methods is consistent with cost-effective 
and efficient remediation strategies.

Detection of heavy metals via ICP‑OES analysis

The significant change in ICP-OES results demonstrates 
the superior performance of Aquibacillus halophilus bac-
teria. This study was conducted in a laboratory setting to 

specifically assess the impact of Aquibacillus halophilus 
on wastewater while mitigating the influence of any exter-
nal factors (e.g., changes in pH, temperature, and mineral 
composition). Table 1 indicates that approximately thirty 
elements were analyzed by ICP-OES before and after treat-
ment, except sodium, which has an inverted process. The 
alterations fall into three categories: Elements such as Na, 
B, Si, Sb, S, As, Ca, K, Mg, Sr, Zn, and Ba make up the 
first group with the most significant concentration reduc-
tion. The second group includes elements such as Al, Cd, 
Bi, Fe, Se, and Mn, whose concentrations have decreased to 
a lesser extent. The final group consists of elements whose 
concentrations have not altered, including W, Cu, Pd, Ti, Sn, 
Cr, Co, Be, La, Mo, V, and Ni. Table 1 demonstrates that the 
colloidal solution of these substances may have a negative 
ionic charge, preventing their absorption by bacterial cell 
walls. Either they are independently negatively charged or 
associated with negatively charged elements such as iron, 
oxygen, and chloride.

Although Ca and Mg elements typically govern total 
hardness (Kozisek 2020; Dey et al. 2024), numerous miner-
als in this drilling waste, including Na, Fe, and Mn, have 
affected the hardness of the water. After treatment with 
Aquibacillus halophilus, total hardness is observed to 
decrease significantly. After bacterial treatment, the total 
hardness dropped from 19,100 to 3700 ppm, a tremendous 
and significant reduction of more than 15,400 ppm. It dem-
onstrates that Aquibacillus halophilus absorbs most miner-
als as a source of energy. This bacterium provides distinct 
advantages to this research over another research. While the 
optimal growth conditions for Aquibacillus halophilus are 
35 °C and pH 7, this bacterium has a broad temperature 
range and can grow between 15 and 45 °C and pH 5 and 10 
(Amoozegar et al. 2014a; b). Due to its wide temperature 
range, this bacterium can be utilized in various climates. 
The ability of this halophilic bacterium to substantially 
reduce the concentration of 18 heavy metals is a key differ-
ence between it and other species, as shown in Table 1. In 
addition, this halophilic bacterium substantially influenced 
the concentrations of Ca and Mg, resulting in decreases of 
79% and 53%, respectively, and contributing to a remarkable 
reduction in total hardness. Notably, none of the microor-
ganisms listed in Table 1 discovered in water samples could 
significantly reduce the total hardness at this level.

Assessing the growth effect of Aquibacillus 
halophilus on the ecosystem of Hawizeh Marshes

Bacteria play a crucial role in our environment, influenc-
ing various ecosystems and important processes (Singh and 
Yadav 2021; Chen et al. 2024). Understanding their behavior 
and distribution is vital for monitoring environmental health, 
identifying potential hazards, and ensuring the well-being of 
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ecosystems and human populations (Gomte et al. 2024; Liao 
2024; Mauck et al. 2024). Therefore, the primary conclusion 
derived from this discussion is that purifying and recycling 
effluent is the most effective way to aid the Hawizeh Marshes 
ecosystem. Improper management has caused the Hawizeh 
Marshes to dry completely (Hasab et al. 2020). According 
to Hasab et al. (2020), the average salinity in this region has 
increased to over 1800 mg/L, creating a high probability 
for the proliferation and spread of Aquibacillus halophilus 
bacteria. Due to the presence of carotenoids, increased salin-
ity can result in a higher concentration of bacteria, causing 
the water to appear orange (Lazrak et al. 2024). In contrast, 
as salinity decreases, bacteria cannot obtain the necessary 
resources, leading to the lysis process in which bacterial 
cell walls rupture and bacteria are annihilated (Dawson 
et al. 2023). In other words, the proliferation of Aquibacil-
lus halophilus can be effectively monitored and controlled 
through the control of wastewater salinity. In contrast, Aqui-
bacillus halophilus is typically regarded as nonpathogenic 
or opportunistic. It is a halophilic bacterium typically found 
in saline environments, such as salt lakes and salted edibles. 
Typically, it is not associated with human or animal disease 
transmission (Amoozegar et al. 2014a; b). Therefore, it can 
be concluded that this bacterium not only aids in removing 
heavy metals from the environment but also poses no hazard 
to the environment or human health. On the other hand, the 
ability of halophilic bacteria to remove and reduce harmful 
chemicals from petroleum fields has also been investigated 
and reported recently. Table 2 presents a compilation of 
numerous examples of such research.

The various varieties of halophilic bacteria that are 
effective at removing and reducing toxic substances under 

varying salinity conditions are detailed in Table 2. How-
ever, it should be noted that in this type of study, a number 
of variables, including oxygen concentration, pH, pressure, 
and temperature, play significant roles due to the variation 
in sampling depth and geological formation (Bailey and 
Ahmadi 2014; Matthiesen et al. 2015; Houben et al. 2018; 
Riedel 2019). It is evident from Table 2 that the majority of 
research conducted in recent years has been devoted more 
to eliminating specific kinds of distinct toxic substances like 
sulfide and phosphate (Ahmed et al. 2019). Moreover, find-
ings from Table 2 indicate that halophilic bacteria can effec-
tively grow and operate in diverse geological formations, 
demonstrating their ability to thrive across a broad range 
of geological conditions for the management of hazardous 
substances. Based on the literature review, so far, no study 
has found or reported on reducing the salinity of water-based 
mud using microbial methods. Conversely, most are focused 
on eliminating corrosive toxic substances (Table 2). Com-
paring the removal of toxic substances presented in Table 2 
to the ability to reduce a wide variety of heavy metals (or 
total water hardness), as shown in Table 1, which highlights 
the significance of this research, is of equal importance. By 
implementing this research, we can make significant strides 
toward attaining sustainable development goals 6 and 14 in 
this region. The quality of the water utilized in the region 
will not only be improved through the purification of water 
sources but the fragile ecosystem, which has been deteriorat-
ing, can also be revitalized and restored.

Table 2  An overview of research on halophilic bacteria in the petroleum field for the removal of toxic substances

Bacteria species Toxic substance Geological formation Salinity level

Desulfobacterota, Halanaerobiaeota, Sinergis-
tota, Pseudomonadota, and Bacillota

Sulfide Carbonate 6–11% salinity (Kadnikov et al. 2023)

Pseudodesulfovibrio thermohalotolerans sp. 
Nov.

Sulfate Sediment 3% salinity (Gaikwad et al. 2023)

Exiguobacterium mexicanum (Em), Terribacil-
lus saccharophilus ZY-1 (Ts), and Staphylo-
coccus warneri (Sw)

Petroleum 
hydrocarbon or 
crude oil

Sand body 84%, 50%, and 6% salinity, respectively (Su 
et al. 2023)

Marinobacter hydrocarbonoclasticus strain 
MAM1 (MF716467), Marinobacter sp. 
strain MAM2 (MF716468), and Marino-
bacter hydrocarbonoclasticus strain MAM3 
(MF716469)

PAHs Briny water and sediment 4% salinity (Jamal 2020)

Halanaerobium, Desulfovermiculus, Halo-
monas, and Marinobacter

Nitrate Shale oil field 0.6–3.6 mEq of NaCl (An et al. 2017)

Marinobacter sp. GN001 (KY818661), and 
Geobacillus sp. TK004

Sulfide Sandstone 0.52 ± 0.04 mEq of NaCl (Okpala et al. 2017)

Serratia sp. SL-12 Phosphate Soil 15% salinity (Singh and Jha 2016; Kapadia et al. 
2022)
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Conclusion and future perspectives

In accordance with the goals of SDG 6 (Clean Water and 
Sanitation) and SDG 14 (Life Below Water), the study’s 
findings indicate that Aquibacillus halophilus exhibited 
a remarkable ability to effectively mitigate a broad spec-
trum of heavy metals while concurrently reducing the total 
hardness. The bacterium demonstrated its effectiveness in 
enhancing water quality despite its rapid growth. In addi-
tion, the robust growth of Aquibacillus halophilus at pH 7 
indicates that the in-situ bacteria did not interfere with this 
halophilic bacteria while maintaining a stable pH level of 7, 
which is optimal for drilling operations. For effective reuti-
lization in the well-logging field, the water’s total hardness 
must remain below 800 ppm. If not, additional chemical 
substances, such as caustic soda, would be required to reduce 
the overall hardness. However, using Aquibacillus halophi-
lus provides an alternative strategy, potentially reducing reli-
ance on such chemicals. Consider a scenario where, conven-
tionally, 100% of materials are required to remediate effluent 
with a hardness of 19,100 ppm. By incorporating Aquibacil-
lus halophilus, it is possible to reduce material consumption 
and total hardness by approximately 80%, as only 19.37% 
of materials, such as caustic soda, are needed to effectively 
treat water with a significantly reduced total hardness down 
to 3700 ppm. Water use in well logging is subject to certain 
restrictions, one of which pertains to the maximum allow-
able hardness of the water used during drilling operations, 
which is 800 ppm. With the dramatic reduction of water 
hardness from 19,100 ppm to below 3700 ppm, attaining 
a total hardness level of less than 800 ppm makes reusing 
wastewater significantly easier. This reduction indicates a 
significant decrease in the resources required for the purifi-
cation process, contributing to SDG 6 by promoting sustain-
able practices and resource efficiency. In line with SDG 14’s 
objective to preserve aquatic life, this microbial technique 
reduces well-logging costs and protects the environment 
from hazardous substances, particularly heavy metals.
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