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Abstract
The application of nanotechnology is significantly revolutionizing the domain of fisheries. Nanotechnology tools are applied 
to tackle many challenges pertaining to fish productivity, health, reproduction, prevention and treatment of diseases. Fish 
growth performance can be improved by adding essential minerals in the form of nano-feed supplements. Moreover, nano-
technology is currently assuming a pivotal position in the domain of fish reproduction, alongside its application in fish 
medicine, including antibacterial therapies, medication delivery mechanisms, and nano-vaccination. Also, there are signifi-
cant evidences supporting the use of nanotechnology techniques for fish packing and water purification and remediation. 
In contrast, numerous nanoparticles possess harmful characteristics towards living organisms as a result of their tiny sizes, 
potent reactivity, and capacity to cross boundaries. They have the ability to modify several physiological activities and 
induce cytotoxicity, DNA damage, and histopathological alterations. Although nanotechnology has potential for enhancing 
growth performance and disease resistance in fish, there is ongoing debate about the potential toxicity of nanomaterials, their 
interactions with the environment, and their propensity to accumulate in animals. This review aims to clarify and analyze 
the different benefits and challenges associated with the application of nanotechnology in fish farming.
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Introduction

The increasing world population and rapid economic growth 
have stressed up for the requirement for protein. Aquatic 
protein products are highly valued for their beneficial health 
impacts and significant food compositional features (Shah 
and Mraz 2020a). The consensus among nearly all nations 
globally is that fish is an essential component of a human 
diet (Mohanty 2015). In order to maintain livelihoods, guar-
antee nutrition, and improve food security, fish are essential. 
They provide vital fatty acids, amino acids, vitamins, and 
important nutrients like iodine and selenium that are fre-
quently deficient in other foods or meats. They also function 
as a rich source of high-quality protein (Kwasek et al. 2020). 
Fish made up over 17% of all animal protein consumed 
worldwide in 2015; this percentage has been rising continu-
ously (Action 2020). In fact, traditional fishing techniques in 
freshwater or marine habitats are unable to fulfil the growing 
demands of the increasing population. Fish farming must 
thus be given top priority, and deliberate measures must 
be made to achieve fish output self-sufficiency. The main 
elements essential to guaranteeing aquaculture's long-term 
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survival and achieving a significant fish yield are optimal 
feeding, efficient disease control, and careful water quality 
management (Assefa and Abunna 2018; Khan et al. 2020).

Nanotechnology has become vital in its significance due 
to its explosive growth and development in a number of 
industries, including food, agriculture, medical, and environ-
mental science (Subramani et al. 2019; He et al. 2019). Inter-
national markets have over 300 nano-food items throughout 
the last decade (Narsale et al. 2024; Ramsden 2018). Nano-
materials possess distinct physicochemical features due to 
their small size, enabling them to endure high pressure and 
temperature (Ilangovan et al. 2021). Nanotechnology is also 
being used in order to increase development and mitigate 
the problems regarding fish farming (Khosravi-Katuli et al. 
2017; Luis et al. 2019).

Nanotechnology has both direct and indirect uses in fish 
aquaculture. Direct use of nanotechnology is increasing to 
improve fish growth, reproduction, and health (Sarkar et al. 
2022). For example, the use of nanomaterials can make feed 
supplementation easier, which usually entails adding vita-
mins, minerals, and trace elements to animal diets (Ashouri 
et al. 2015; Khan et al. 2017; Xia et al. 2019). Fish that 
consume component nano-forms have easier absorption and 
easier passage across the intestinal barrier, which improves 
fish immune system, development, and reproduction (Bhat-
tacharyya et al. 2015; Chris et al. 2018). In a study, iron 
nanoparticles (NPs) were found to enhance the growth rate 
of Carassius auratus and Acipenser gueldenstaedtii by 30% 
and 24% respectively (Srinivasan et al. 2016a). Nano sele-
nium (Se) source supplemented diets improved the growth, 
antioxidant status and muscle Se concentration of Carassius 
auratus (Zhou et al. 2009). A study has demonstrated that 
the inclusion of nano Zinc in the food of Pangasius hypoph-
thalmus resulted in enhanced survival and growth (Kumar 
et al. 2018). The effective management of viruses, bacteria, 
and fungus necessitates the timely identification and eradica-
tion of pathogens. Nanomaterials, which function on a com-
parable magnitude to particle-infecting viruses or diseases, 
have been identified as a potential solution for this purpose 
(Ismael et al. 2021; Nasr-Eldahan et al. 2021). The uses of 
nanomaterials in fish health involve the use of porous nano-
structures and nanosensors to create antibacterial or antifun-
gal surfaces. These surfaces are used in aquaculture systems 
to detect pathogens in water and to deliver fish medicines 
through fish meals (Abbas 2021; Nasr-Eldahan et al. 2021). 
Additionally, the utilization of chitosan-based wrapping as 
a nano encapsulation carrier for the purpose of effectively 
treating fish diseases caused by bacteria and viruses has been 
well-documented. This approach is advantageous due to the 
durability of nano encapsulated materials, which can with-
stand high temperatures and acidic environments (Abimbola 
et al. 2023). Moreover, nanomaterials are more effective than 
conventional antibiotics in treating fish diseases. Traditional 

therapies may cause bacteria to develop antibiotic resist-
ance, which would eventually reduce its effectiveness. These 
treatments may also leave behind toxic chemical residues 
and contaminate water supplies, creating threats to the envi-
ronment. Chitosan and polylactic-glycolic acid (PLGA) 
nanoparticles have a wide range of applications, including 
vaccines, medication delivery and hormone administration 
(Bhat et al. 2019a, b; Fenaroli et al. 2014; Mohd Ashraf 
Rather et al. 2013). Nano-vaccination is superior to con-
ventional methods due to its capacity to provide sustained 
release, enhance stability, improve absorption, and prolong 
residence duration (Kitiyodom et al. 2019; Rajesh Kumar 
et al. 2008; Rivas-Aravena et al. 2015).

The indirect uses of nanotechnology in aquaculture 
generally focus on improving water quality. This includes 
sterilizing ponds, reducing the need for water exchange, 
decreasing the concentration of nitrogenous compounds, 
and treating chemical or biological pollutants in the water 
(Huang et al. 2015; Khosravi-Katuli et al. 2017; Tayel 
et al. 2019). Furthermore, the utilization of nanotechnol-
ogy in water purification serves as an additional benefits 
by effectively inhibiting the advancement of infectious 
disorders caused by diverse microorganisms (Tayel et al. 
2019; Yu et al. 2002). Additionally, the anti-fouling prop-
erty of certain nanomaterials is a suitable application of 
nanotechnology, to attain high water quality in fish ponds, 
by lowering phosphate content and reducing the devel-
opment of algae and other microbes (Ashraf and Edwin 
2016).

Although nanotechnology has several benefits in fish 
farming. There are concerns for its safety for fish health, 
human health, and the environment. The existence of nano-
particles, specifically those made of metals, may harm a 
number of fish physiological functions. Reproductive hor-
mone levels may be disrupted antioxidant and enzyme activ-
ity can change, the survival of embryonic developmental 
stages may be impacted, and histopathological changes are 
possible (Aruoja et al. 2009; Jovanović et al. 2015; Klingel-
fus et al. 2019; Kumar et al. 2017; Rajkumar et al. 2016; 
Ren et al. 2018; Sumi and Chitra 2019; Zhu et al. 2012). 
There are still a lot of outstanding concerns about the pos-
sible toxicity of using nanotechnology in aquaculture, caus-
ing a need for further study in this particular field. Further 
research is required to determine the minimum effective 
dosage, duration and specially lethal and sublethal concen-
trations and also need to observe bioaccumulation, residue 
concentration, and environmental destiny. To protect the 
environment, laws regulating the creation and useful uses 
of nanomaterials should be implemented. The purpose of 
this study is to investigate the different uses of nanotechnol-
ogy in fish production, both directly and indirectly, and to 
look at the potential benefits and difficulties associated with 
such applications.
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Direct applications of nanotechnology 
in fish culture

Feed supplements

Fish in their natural environment feed on phytoplankton, 
zooplankton, and other tiny creatures. Fish cultured in fish 
farming need extra nutrients to ensure rapid and healthy 
growth. Fish meal should have protein (32%), carbohy-
drate (20–35%), fat (4–6%), fiber (< 4%), and dietary 
energy (8.5–9.5%). These main requirements differ by fish 
species and age (Abbas 2021). Fish feed supplements with 
minute organic and inorganic concentrations boost growth 
and immunity. Nano-materials are rapidly absorbed in low 
dosages and pass through the gastro-intestinal system and 
small intestine to enter the circulatory system, facilitat-
ing more efficient distribution to vital organs compared 
to bulk materials (Bhuvaneshwari et al. 2015). Selenium 
(Se), Zinc(Zn), and iron (Fe) nano-metals as feed additives 
may improve fish survival, growth, and health (Chris et al. 
2018). Chitosan also delivers micronutrients (Khosravi-
Katuli et al. 2017). Nano-Se high bioavailability, strong 
reactivity, low toxicity, antioxidant defense, immuno-
modulatory, and growth promoter effects have made it 
prevalent in aquaculture (Sonkusre et al. 2014; Xia et al. 
2019). Studies has revealed that as compared to fish fed a 
basal diet, fish supplemented with nano-selenium (nano-
Se) up to 0.68 mg n-Se/kg dry feed exhibited significantly 
higher weight gain, feed conversion efficiency, and spe-
cific growth rate specifically in masheer fish (Tor pulitora). 
It is important that fish provided the supplementary diet 
showed a significantly lower feed conversion ratio than fish 
fed the basal diet. Khan et al. (2017) conducted a 90-day 
feeding experiment to investigate the effects of zinc oxide 
(ZnO), zinc sulphate (ZnSO4), and zinc oxide nanopar-
ticles (ZnO-NP) on the growth and haematological indi-
cators of juvenile grass carp (Ctenopharyngodon idella). 
Fish given the ZnO-NP diet (30 mg  Kg−1) had significantly 
greater weight increases, specific growth rate, and feed 
conversion ratio. Faiz et al. (2015) conducted a research 
and found that giving grass carp (C. idella) nanoparticles 
as a food supplement improved their growth and red blood 
cell count. Supplementing the meal of Cirrhuinus mrigala 
with ZnO nanoparticles enhanced metabolism, although 
resulting in a decrease in the count of white blood cells 
(Rajan et al. 2021).

Supplementing fish diets with iron is critical as most 
natural iron sources have limited solubility and bioavail-
ability, making it difficult to meet dietary needs (Hilty 
et al. 2011). Iron improves the immune system and oxy-
gen transport, respiration, and fat oxidation. Due to its 
reduced solubility and bioavailability, bulk iron (Fe) 

sources cannot provide dietary iron (Fe) needs (V. Srini-
vasan et al. 2016b).The addition of iron nanoparticles, spe-
cifically iron oxide or iron nanoparticles (NPs), at a dos-
age of 63.75 mg/kg, has been observed to have prominent 
advantageous impacts on (Oreochromis niloticus) when 
included in their supplementary meal. The effects include 
enhanced growth, immune response, phagocytosis activity 
against foreign particles such as bacteria, decreased mor-
tality rate, elevated protein and lipid content, heightened 
muscle concentration, improved red and white blood cell 
counts, increased antioxidant capacity, and fortified dis-
ease resistance (El-Shenawy et al. 2019). Other studies 
on Nile Tilapia (O. niloticus) indicated that chitosan had 
positive effects on fish development. The study initiate that 
supplementing Nile tilapia feed with chitosan at a dosage 
of 0–8 g/kg dry food for 56 days resulted in the determina-
tion that 4 g/kg of chitosan was the most effective dose for 
promoting the greatest rates of body weight gain (BWG) 
and specific growth rate (SGR) (Wu 2020). Moreover, the 
addition of chitosan at a dosage of 5 g/kg to the diet of 
Nile tilapia for a duration of 60 days resulted in enhanced 
growth performance, body weight gain (BWG), specific 
growth rate (SGR), and feed conversion ratio (FCR) (Fadl 
et al. 2020).It has been shown that chromium nanoparticles 
added to the supplemental feed improve growth metrics, 
boost immunity, and lower insulin and cortisol levels. In 
particular, it has been shown that adding chromium nano-
particles to meals based on sunflower seeds at a dose of 
1.5–2 mg/kg − 1 body weight increases the growth factor 
of C. mrigala(Akter et al. 2018).Additionally, adding chro-
mium to Catla catla fingerlings at a dose of 2 mg/kg body 
weight enhanced their development, digestion, and hema-
tological parameters (Ahmad et al. 2022).Supplementing 
fish feed with selenium nanoparticles may successfully 
treat selenium insufficiency in fish. Insufficient presence 
of selenium nanoparticles in the feed might result in fish 
developing abnormalities (Abd El-Kader et  al. 2021). 
Research was carried out on Nile tilapia (O. niloticus), 
which showed that the addition of selenium nanoparticles 
(1 mg/kg) to their diet led to enhanced immune response, 
increased antioxidant capability, and better intestinal 
morphology(Dawood et al. 2020a, b).

Fish reproduction

Incomplete vitellogenesis in females is a frequent issue 
in artificial reproduction of commercial aquatic animals 
because it prevents the final oocyte from maturing and ovu-
lating. In order to solve this issue, we need to find ways 
to regulate reproduction. The endogenous hormone may be 
carried by chitosan NPs and released in a regulated manner 
(Khosravi-Katuli et al. 2017). Nanotechnology facilitated the 
delivery of fadrozole, an inhibitor of estrogen synthesis, to 



 International Journal of Environmental Science and Technology

Nile Tilapia (O. niloticus). Exposure to high concentrations 
of Fadrozole on PLGA nanoparticles, ranging from 50 to 
500 parts per million (ppm), for a duration of one month, 
resulted in a complete male population at concentrations of 
350 and 500 ppm (Joshi et al. 2019). In addition, (Clarias 
magur) fish were injected with chitosan nanoparticles and 
eurycomanone nanoparticles (extracted from Eurycoma 
longifolia plant, which had previously improved animal 
sexuality and fertility). The gonado-somatic index, calcium 
(Ca) and selenium (Se) concentrations, reproductive abil-
ity, and endocrine hormone gene expression increased after 
7 days (Bhat et al. 2019a, b).

Selenium nanoparticles (Se-N) supplementation of a 
plant protein-rich diet (60% of fish meal was replaced with 
a mixture of alternative PP sources) for three months was 
tested on Arabian yellowfin sea bream (Acanthopagrus ara-
bicus) males' sperm kinetics and fertilization capacity, and 
PP-rich diets received 0, 0.5, 1, 2, and 4 mg/kg Se-N. More 
sperm was detected in 2 mg Se-N/kg PP-fed fish. PP-rich 
foods improved Se-N, sperm motility, straight movement, 
lifespan, and fertilization. The maximum semen superoxide 
dismutase activity was found in fish given 4 mg Se-N/kg PP-
rich diets, whereas the lowest was 2 mg. Semen glutathione 
peroxidase activity was highest in fish fed 4 mg Se-N/kg of 
PP-rich diet and lowest in those fed 0 and 0.5 mg. Fish given 
1 or 4 mg Se-N/kg PP-rich diets have higher antioxidant 
capability. Fish given PP without Se-N had greater semen 
malondialdehyde levels. Arabian yellowfin seabream (A. 
arabicus) males had better sperm kinetics and fertility on a 
PP-rich diet with 2–4 mg Se-N/kg (Khademzade et al. 2022).

Fish medicine

Pathogens (viruses, bacteria, fungi, and parasites) cause 
substantial economic losses in fish aquaculture. The con-
ventional fish treatment methods included antibiotics and 
chemicals, which created antibiotic-resistant microorgan-
isms, water pollution, and chemical residues in fish tissues 
(Abbas 2021). One major problem in aquaculture was con-
trolling infectious diseases produced by microbial patho-
gens. Antibiotic overuse in fish aquaculture has led to several 
disease-causing bacteria in fish developing resistance to fre-
quently used antibiotics. This has necessitated the develop-
ment of novel treatment strategies to address this difficulty. 
Nanoparticles are suggested as alternative antimicrobials to 
address the issue of bacteria resistance to antibiotics in aqua-
culture (Okeke et al. 2022). Metal nanoparticles have shown 
effective antimicrobial properties against bacterial, fungal, 
and viral infections by destroying the microbial cell mem-
brane/cell wall, disrupting protein transports, inactivating 
key enzymes, and many other mechanisms (Nasr-Eldahan 
et al. 2021). The most common antimicrobial nanomate-
rials are metals and metal oxides: Silver (Ag), Gold(Au), 

Zincoxide (ZnO), Copper (Cu), and Titanium oxide  (TiO2) 
(Abbas 2021).

The most documented antibacterial is Nano-Ag (Abbas 
2021). The biologically synthesized nano-Ag particles 
derived from red algae (Portieria hornemannii) has shown 
antibacterial efficacy against four strains of fish pathogens 
(V. harveyi, V. anguillarum, V. vulnificus, and V. parahaemo-
lyticus) (Fatima et al. 2020). The ZnO nanoparticles also 
have shown significant antibacterial activity against a vari-
ety of microbes (Raghunath and Perumal 2017; Sirelkha-
tim et al. 2015). In a study was conducted to evaluate the 
in vitro antibacterial efficacy of ZnO nanoparticles (ZnO 
NPs) against a pathogenic strain of Streptococcus paraub-
eris. Zinc oxide nanoparticles (ZnO NPs) demonstrated sig-
nificant suppression of proliferation in a pathogenic strain 
of Streptococcus parauberis at concentrations of 0.125 mg/
ml and 0.250 mg/ml (Fadl et al. 2021). Nano-Au also affect 
microbial cell activities after interacting with proteins and 
lipopolysaccharides (Sumbayev et al. 2013). Nano-Au bio-
logically produced with cashew nut shell liquid inhibited the 
growth of A. bestiarum and p. fluorescens in laboratory tests 
(Velmurugan et al. 2014). A study showed the antibacterial 
activity of chitosan nanoparticles (CNP) against the bac-
teria isolated from Nile tilapia (O. niloticus). The highest 
inhibitory zones were seen for Aspergillus flavus, Mucor 
sp., and Candida sp. at 80 μg/ml CNP dosages, although 
less impacted, as were Aspergillus niger, A. fumigatus, and 
Fusarium sp. The examined bacteria showed the greatest 
inhibitory zones with 20 μg/ml of CNP (Abdel-Razek 2019).

In a study the nano-ZnO exhibited antifungal properties 
against Aphanomyces invadans, the primary agent of red 
spot disease in fish (Shaalan et al. 2017). Instead of poison-
ous and carcinogenic malachite green, nano-Cu has shown 
antifungal activity against Saprolegnia sp. in vitro (Kalate-
hjari et al. 2015).

Metal nanoparticles have shown beneficial effects in 
the treatment of many parasitic diseases (Brahmchari 
et al. 2023). One treatment of nano-Ag in a concentration 
of 10 ng/ml of nano-Ag exhibited anti-parasitic effects 
against Ichthyophthirius multifiliis infection in rainbow 
trout (Oncoryhnchus mykiss) both in vitro and in vivo. It 
resulted in a 50% death rate of I. multifiliis after 30 min and 
a 100% mortality rate within 2 h (Abdel-Baki et al. 2017). 
A study was carried out to examine the anti-parasitic effects 
of biologically synthesized iron nanoparticles against Argu-
lus siamensis in a controlled laboratory environment. The 
Fe-NPs had the highest argulocidal activity when used at 
a dose of 1.75 mg  ml−1 for juveniles and 2.00 mg  ml−1 for 
adult argulids. This resulted in a mortality rate of 100% for 
juveniles and 87% for adults over a period of 6 h (Brahm-
chari et al. 2023).

Producing efficient vaccinations and delivery systems 
to combat viral diseases is crucial to fish farming. Fish 
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are vaccinated by injection, immersion, or oral means. 
The orally encapsulated vaccine is the best because it 
inhibits antigens from exiting food granules, protects 
them from acidic stomachs, decreases fish stress, and is 
appropriate for mass vaccination purposes (Vinay et al. 
2018). Nanotechnology supports to eliminate harmful and 
carcinogenic chemical adjuvants in fish vaccination, and 
oral or immersion vaccinations are better than injections 
to avoid stress (Rivas-Aravena et al. 2015). Fish vaccina-
tions against the infectious salmon anemia virus (ISAV) 
have been created with the use of chitosan nanoparticles. 
One such vaccine uses an adjuvant made of the DNA cod-
ing for ISAV replicas. In terms of ISAV protection, this 
immunization showed > 77% protection rates (Rivas-Ara-
vena et al. 2015). Kole et al. (2018) vaccinated rohu fish 
(Labeo rohita) using chitosan nanoparticles combined 
with a bicistronic DNA plasmid containing the antigen 
Edwardsiella tarda glyceraldehyde 3-phosphate dehydro-
genase and the immune adjuvant gene Labeo rohita IFN-
γ. Rainbow trout (Oncorhynchus mykiss) that were immu-
nized against bacterial infection (Lactococcus garvieae 
and Streptococcus iniae) using a chitosan-alginate coated 
vaccine showed improved outcomes compared to fish who 
received a non-coated vaccination. These improvements 
included greater survival rates, increased expression of 
immune-related genes, and higher antibody levels (Halimi 
et al. 2019). Olive flounder (Paralichthys olivaceus) that 
received a vaccine against inactivated viral haemorrhagic 
septicaemia virus, which was encapsulated with chitosan, 
demonstrated successful immunization in the head kid-
ney, the primary organ responsible for initiating adaptive 
immunity in fish. Additionally, the vaccine was effective 
in stimulating immune responses in the skin and intes-
tine, which are the primary sites for antigen uptake and 
mucosal immunity. In addition to the increased expression 
of IgM, IgT, pIgR, MHC-I, MHC-II, and IFN-γ in the 
three tissues, caspase 3 was also significantly upregulated 
48 h after the challenge. This indicates the presence of 
cytotoxicity caused by a rapid T-cell response and inhibi-
tion of viral replication (Kole et al. 2019). Chitosan-based 
bivalent nano-vaccines, which included S. iniae and F. 
covae, were administered to Asian Seabass (Lates cal-
carifer) using immersion immunization at 30 and 40 days 
after hatching. The third vaccine was administered orally 
by food at 50 days after hatching. The results showed a 
significant rise in the levels of total IgM and specific IgM 
for both S. iniae and F. covae. Significantly greater levels 
of IgT, IgM, MHCIIα, and TCRα were seen in all vac-
cinated groups. Every group that received immunizations 
had higher survival rates when faced with the F. covae 
challenge (Meachasompop et al. 2024).

Nanoparticles as hormone and drug delivery 
vehicles

Significant progress has been made recently in the use of 
nanoparticles to deliver medicinal medications to their 
target sites(Obeid et al. 2017).The use of nanotechnology 
in drug delivery allows for unique characteristics such as 
controlled release, precise control over the size, shape, and 
surface charge of targeted materials, location-specific and 
multi-route delivery methods, and regulated degradation 
of the nanocarrier (Patra et al. 2018). In fish, chitosan and 
polylactic acid (PLGA) nanoparticles have been studied for 
their potential as medication delivery vehicles (Shaalan et al. 
2016). Polylactic-glycolic acid nanoparticles are a copoly-
mer. It is FDA-approved as biodegradable and non -toxic 
(Abbas 2021).

Chitosan nanoparticles have been used for medica-
tion delivery in research focused on promoting appropri-
ate gonadal development in aquaculture. Bhat et al. (2016) 
injected walking catfish (Clarias batrachus) with chitosan 
conjugated with salmon luteinizing hormone-releasing hor-
mone (sLHRH) to stimulate gonadal development. Chitosan-
conjugated sLHRH and naked sLHRH had comparable 
effects, causing a rise in Sox9 expression in the gonads and 
elevating levels of testosterone and 11-ketotestosterone in 
males, and testosterone and 17β-estradiol in females. Con-
jugating sLHRH with chitosan resulted in a continuous and 
regulated release of hormones, reaching maximum levels 
after 36 h. In contrast, administering naked sLHRH led to 
peak levels of circulating steroid hormones after 12 h (Bhat 
et al. 2016). Compared to administering naked kisspeptin-10, 
injecting chitosan-encapsulated kisspeptin-10 into immature 
female Catla catla caused a delayed but more significant 
increase in gonadotropin-releasing hormone, luteinizing hor-
mone, and follicle-stimulating hormone expression, as well 
as circulating levels of 11-ketotestosterone and 17β-estradiol 
(Rather et al. 2016). Chitosan was tested for gene delivery 
to influence gonadal development in fish. Chitosan nano-
particles conjugated with a plasmid encoding steroidogenic 
acute regulatory protein (StAR) administered intramuscu-
larly in walking catfish (Clarias batrachus) showed longer-
lasting stimulatory effects on the expression of key genes 
involved in reproduction, such as cytochrome P450 (CYP) 
11A1, CYP17A1, CYP19A1, 3β-hydroxysteroid dehydro-
genase, and 173β-hydroxysteroid dehydrogenase, compared 
to administration of the naked plasmid construct (Rathor 
et al. 2017). To encourage goldfish oogenesis, research sug-
gested oral delivery of chitosan nanoparticles along with 
a GnRH analog. Chitosan, 50 μg GnRHa/kg b.w., 100 μg, 
chitosan + 50 μg, and chitosan + 100 μg were administered 
to adult female goldfish. The width of the follicular layer 
(Fl), the thickness of the zona radiata (Zr), the diameter of 
the oocyte (OD), and the gonadosomatic index (GSI) were 
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measured. The metrics consistently rose in the group that 
received a dosage of 100 μg of GnRH or a combination of 
chitosan nanoparticles and 100 μg of GnRHa. The investi-
gation discovered that the use of oral chitosan in conjunc-
tion with a dosage of 100 μg GnRHa/kg b.w. significantly 
enhanced the maturation and expansion of ovarian oocytes 
(Kookaram et al. 2021). Direct applications of nanotechnol-
ogy in fish culture are summarized in Table 1.

Indirect applications of nanotechnology 
in fish culture

Water purification

Due to their unique features, greater surface area, and 
numerous absorption sites, nanomaterials immobilize and 
adsorb metals well, allowing them to remediate contami-
nated water and sediments. A variety of nanomaterials, 
including metal oxide nanoparticles, nano zero-valent iron, 
carbon nanotubes, and natural adsorbents, have been utilized 
in the remediation of heavy metals (Cai et al. 2019).

Metal oxide nanoparticles (MON) are  Fe2O3,  Al2O3, 
MnO, MgO, and  TiO2. MON also catalyzes the degrada-
tion of non-degradable pesticides including PCBs and 

Table 1  Direct applications of nanotechnology in fish culture

Applications Nano material Major Impacts References

Feed supplements Se Increase of immunological response, higher levels 
of total protein, enhanced antioxidant activity

Dawood et al. (2019)

Zn Enhancement in the rates of development, hemato-
logical parameters, and immune system reaction

Faiz et al. (2015)

Fe Improvement in survivability, growth, digestive 
enzymes activities, biochemical and hematological 
parameters

Srinivasan et al. (2016b)

Chitosan Activate antioxidants, growth and immune response 
enhancement

Abd El-Naby et al. (2020), Abd El-Naby et al. (2019), 
Abdel-Tawwab et al. (2019)

Fish reproduction PLGA Overloading PLGA nanoparticles with fadrozole 
induced 100% male at 350 and 500 ppm

Joshi et al. (2019)

Antimicrobial Ag Antifungal and antiparasitic properties to prevent 
red spot and white spot disorders; anti-parasitic 
action against Ichthyophthirius multifiliis

Daniel, Sironmani, Dinakaran, & Studies, (2016), 
Mona Saleh et al. (2017)

Au Antibacterial activity towards P. fluorescens and A. 
bestiarum, upregulation in immune genes, the high 
survival rate, and no hepato-pancreas toxicity

Tello-Olea et al. (2019), Velmurugan et al. (2014)

ZnO Antibacterial role against
V. harveyi, A. hydrophila, F. branchiophilum,E. 

tarda, S. aureus, and P. aeruginosa, antifungal 
effect against Aphanomyces invadans

Gunalan et al. (2012), Ramamoorthy et al. (2013), 
Shaalan et al. (2017), Swain et al. (2014)

TiO2 Antibacterial effect against E. tarda, S. iniae, Photo-
bacterium damselae infections and E. coli

Alhadrami & Al-Hazmi, (2017), Cheng et al. (2009), 
Cheng et al. (2011)

Cu Antifungal effect against Saprolegnia sp., Kalatehjari, M. Yousefian, & M. A. Khalilzadeh 
(2015)

Vaccination Chitosan Orally injected nano-chitosan containing inactivated 
contagious anemia virus protected against viral 
infection

Rivas-Aravena, Fuentes, Cartagena, Brito, Poggio, 
La Torre, Mendoza, Gonzalez-Nilo, Sandino, & 
Spencer, (2015)

PLGA Oral ingestion of outer membrane protein W with 
PLGA NPs prevents Acinetobacter hydrophila 
infection

Dubey et al. (2016)

Drug and hor-
mone delivery 
vehicle

Chitosan Injection of luteinizing Hormone conjugated with 
nanochitosan increase the egg fertilization rates

Mohd Ashraf Rather et al. (2013)

PLGA Injecting PLGA nanoparticles containing rifampicin 
boosted Mycobacterium marinum infection treat-
ment

Fenaroli et al. (2014)
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organochlorines (Abbas 2021). Nano zero-valent iron allows 
metal adsorption with its metallic iron core and iron oxide 
shell (Yirsaw et al. 2016). Bentonite, kaolinite, and mont-
morillonite can remove heavy metals, hence several research 
mixed them with chitosan nanoparticles to improve their 
adsorption (Abbas 2021).

Pathogens in the water supply are known to multiply in 
fish farms owing to the high population density and leftover 
food particles. Many infectious disorders in fish are caused 
by pathogens such viruses, fungus, bacteria, and protozoa. 
Risks to pathogen resistance, user health, aquatic wildlife, 
and the environment are only some of the consequences of 
using traditional anti-pathogen chemicals (Abbas 2021). 
Nanotechnology could solve water sterilization and disin-
fection issues (Tayel et al. 2019).

Moreover, the presence of heavy metals and microbes 
in these waterways results in fish mortality and growth 
retardation, which causes a significant economic loss for 
the fishing sector. Nanotechnology is widely used in aqua-
culture to clean water to provide a safe and favorable envi-
ronment for fish to spawn. From this angle, the scientific 
community supports photocatalysis and adsorption as the 
most cost-effective and efficient methods of water filtration. 
Furthermore, Fig. 1 demonstrates the practical function-
ing of several nanoparticle-based photocatalytic adsorbents 
and hydrogel biofilms in water purification. It demonstrates 
the recommended approach by showcasing the removal of 
nitrate  (NO3−), fluoride  (F−), and coliforms (E. Coli) from 
contaminated water (Shah and Mraz 2020b).

Bio‑fouling control

Nanoparticles that function as the major oxides of the metals 
may combat biofouling caused by bacterial assault. When 

additional contaminants, including poisonous metals, build 
up in the water, biofouling may seem much more perilous 
and cause the deaths of many fish and other aquatic species. 
Aquaculture production and prawn culture may both ben-
efit from the advancements in disease management, feeding 
formulation, and biofouling control that nanotechnology 
has made possible. To keep an eye out for undesired bac-
teria (as biofilm), nanostructures may be painted or coated 
with metal oxide nanoparticles like zinc oxide (ZnO), cop-
per oxide (CuO), and silicon dioxide  (SiO2), allowing for 
the monitoring of invertebrates like mussels and barnacles 
and algae like seaweeds and diatoms. Since nanotechnol-
ogy is the primary scientific technique by which such severe 
environmental contamination may be managed, this is the 
case (Munawar et al. 2021).Anti-fouling agents made from 
lanthanides (La) oxides nanoparticles have been shown to 
inhibit algal and microbial development by absorbing phos-
phate from the surrounding water (Ashraf et al. 2011; Gerber 
et al. 2012). One of the commercial solutions that deal with 
the management of fish culture is called Nano-Check. Its 
structure is built on 40 nm nano La, which has the ability 
to absorb phosphate from the water and, as a result, limit 
the production of algae (Ashraf et al. 2011). In addition, 
because of nano-Ag's antibacterial properties, biofouling 
may be prevented and controlled (Hassan and Abd El-latif 
2018; Vijayan et al. 2014a).

Fish packaging

Plastics, such as polyolefins, polyesters, and polyamides are 
gaining popularity among the wide variety of fish packaging 
materials due to the fact that they are readily available in 
large quantities at a low cost and have favorable functional-
ity characteristics. These characteristics include good tensile 

Fig. 1  Process of NPs-based 
adsorbents and hydrogel films 
remove E.coli,  NO3−, and  F− 
from polluted water
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and tear strength, good barrier properties to  O2 and aroma 
compounds, and the ability to be heat sealed. Unfortunately, 
with the exception of cellophane, the majority of polymers 
are not biodegradable, and as a result, they contribute to 
environmental contamination and the subsequent severe eco-
logical difficulties. In order to solve these problems, its use 
in any way, shape, or form ought to be limited and ought to 
be phased out gradually (Agarwal 2020).

Finally, nanotechnology can delay microbiological and 
enzymatic degradation to extend fish packaging and mar-
keting shelf life. Nano-materials in biodegradable food 
packaging act as antibacterial and antifungal agents, elimi-
nate oxygen, limit biological deterioration, and immobilize 
enzymes to promote product stability, according to several 
studies (Jiang et al. 2015; Kuswandi 2017; Rhim et al. 2013). 
Furthermore, nano-composites made from proteins, lipids, 
or polysaccharides are considered healthier packaging mate-
rials than petrochemical-based plastics (Can et al. 2011). 
Overview of indirect applications of nanotechnology in fish 
culture are given in Table 2 (Fig. 2).

Challenges of nanotechnology applications 
in fish culture

Environmental risk

Environmental concerns have been raised over the wide-
spread use of nanoparticles in several industries. However, 

nanoparticles and other foreign contaminants eventually 
find their way into the aquatic environment. In water, NPs 
can undergo chemical, physical, and biological changes 
through aggregation, adsorption, dissolution, and redox 
reaction. Because of this, NPs are modified to generate 
materials with novel attributes and reactivity (Odzak et al. 
2017; Yin et al. 2015). The interaction of new materials 
with the biological system, both inorganic and organic 
components, and live organisms that are not specifically 
targeted causes damage to all of these entities. Cytotox-
icity, malfunction of various cell organelles (including 
the cell membrane, mitochondria, and ribosomes), DNA 

Table 2  Indirect applications of nanotechnology in fish culture

Applications Nano material Example References

Water purification TiO2 TiO2 alters pollutant movement, accumulation, 
and toxicity

Li et al. (2018), Luo et al. (2018)

zero valent iron Reduced heavy metal availability and mobility, 
reducing their environmental toxicity

Fajardo et al. (2012)

Natural adsorbents Nano-Ag attracts to zeolite pores and reduces 
ammonia and nitrate in fish farms synergistically

Johari, Kalbassi, Soltani, & Yu, (2016)

Ag Nano-Ag-coated zeolite reduces Salmonella infec-
tion in rainbow trout eggs during water filtration

Johari et al. (2016)

Bio fouling control Ag Antibacterial effect W. T. J. E. S. Abbas & Research, (2021), Vijayan 
et al. (2014b)

Fish packaging Chitosan Nano-coating showed antibacterial action after 
9 days at 4℃, extending sample shelf life

Hajji et al. (2019)

T
TiO2

coloring agents Baranowska-Wójcik et al. (2020), Sungur et al. 
(2020)

The antimicrobial active films reduced Shewanella 
spp., Pseudomonas putida, and Aeromonas 
hydrophila and increased macrobrachium rosen-
bergii product shelf life by 1–2 days

Tang et al. (2018)

ZnO PE sheets with ZnO nanoparticles decreased 
gumminess, water loss, and adhesiveness in cod 
samples contained in boxes

Mizielińska et al. (2018)

Fig. 2  An illustration of the potential applications of nanotechnology 
in the fish culture
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damage and genetic toxicity meant that toxic effects might 
be passed to the fetus and increased while the fetus was 
developing (Fig. 3) (Zhang et al. 2018). Nanomaterials 
can be coated and interacted with organic compounds like 
humic acid and fulvic acid to change their physicochemical 
properties, behavior, and harmful impacts on living beings 
(Cai et al. 2019; Tang et al. 2014). Additionally, nanoma-
terials like apatite and biochar supported by Fe-phosphate 
increase water phosphorus levels, causing eutrophication, 
a major issue in fish culture (Qiao et al. 2017).

Technical producing difficulties

Nanoparticles are especially difficult to manufacture 
because they are prone to re-aggregation, transformation, 
and reaction with an extensive range of environmental 
variables (Zhang et al. 2018). Nanoparticles are difficult to 
characterize because of the high expense of the procedures 
required to determine their shape, size, and morphology 
(Patil and Kim 2017).

High cost

Until now, the high price of nanotechnology has prevented 
its widespread use in fish farming. This is especially true 
of nano-filters, nano-membranes, and nano-sensors. But 
its uses in egg and hatching ponds, as well as in the case 
of prized broad-stocks, have been documented (Bhattacha-
ryya et al. 2015).

Lack of information

There is a lack of information regarding how nanoparticles 
are absorbed, distributed, accumulate in the food chain, and 
excreted from living creatures, despite the widespread use of 
nanotechnology over the past decade (Tripathi et al. 2017). 
Most research on nanoparticles and their impact on fish have 
only been conducted in the laboratory or in vitro. Without 
further information and more study, it will be very difficult 
to move forward with field application.

Toxicity

Since nanoparticles are being used in so many different 
applications, scientists will inevitably look into their poten-
tial effects on humans as well as the environment. Overuse 
and incorrect disposal of nanoparticles lead to harmful con-
sequences and negative impacts on the environment, which 
in turn have detrimental effects on the health of living beings 
(Hu et al. 2016; Samrot et al. 2019).

Nanoparticles are so tiny that they may cross cell mem-
branes and induce genotoxicity within the cell. One of 
the primary toxicity mechanisms of nanoparticles is the 
increased synthesis of free radicals and reactive oxygen spe-
cies (ROS). It is possible that this will not only cause oxida-
tive stress and inflammation, but it may also cause problems 
with DNA and proteins. Evidence shows that exposure to 
nanomaterials may cause mutations in DNA and severe dam-
age to mitochondrial structure, which may ultimately lead to 
cell death (Majumder and Dash 2017; Meghani et al. 2020; 
Vicari et al. 2018). Studies in nanotoxicology have been 

Fig. 3  Toxicity of metal nanoparticles that have been transformed in the environment
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performed to better understand the regulatory framework 
and bio-distribution of these substances while also assess-
ing the possible molecular hazards they pose to ecosystems 
(Bello and Leong 2017).

It has been shown that several nano-materials employed 
in water remediation, such as nanoscale metallic iron 
(nZVI), are harmful to bacteria, crustaceans, fish larvae, 
and other aquatic and soil dwelling creatures(Stefaniuk et al. 
2016).After being exposed to  Al2O3-NPs, Nile tilapia (Oreo-
chromis niloticus) displayed symptoms of oxidative stress, 
as shown by a decrease in antioxidant enzyme (SOD, CAT, 
and GPx) activity (Temiz and Kargın 2022). Nile tilapia 
(Oreochromis niloticus) cytokine transcription was affected 
by copper oxide nanoparticles (Abdel-Latif et al. 2021a, b). 
Cells exposed to Cu-NPs or  CuSO4 may cause an eleva-
tion in malondialdehyde and reactive oxygen species levels. 
This can lead to a decline in mitochondrial bioenergetics 
and impair physiological functions. After then, caspase-3 
and caspase-9 were activated due to the release of Cyt-c 
from mitochondria into the cytosol, which prompted apop-
tosis. Cu-induced apoptosis in adolescent E. coioides was 
mediated via the mitochondrial route (Wang et al. 2015). 
The inability of cells to repair the damage to their mem-
branes that had been caused by lipid peroxidation as a result 
of being exposed to AgNP was what ultimately led to the 
death of the cells. The autophagy process was impacted by 
the nanoparticles that were internalized, which resulted in 
the discharge of nanoparticles into the cytosol. Because of 
this, the lysosomes were unable to function properly, and the 
mitochondrial membrane became more permeable (Quevedo 
et al. 2021). Toxicity NPs in fish culture using different 
parameters are also illustrated in Table 3.

Conclusion

The preceding situation suggests that, similar to other devel-
oping technologies, nanotechnology possesses positive as 
well as negative aspects. The use of nanotechnology in fish 
culture has the potential to completely transform them and 
address several fish culture challenges with more efficiency 
compared to traditional approaches. They have the ability 
to contribute to improving fish development performance 
and production, managing fish illnesses, purifying water, 
remediating contaminants, and ultimately prolonging the 
shelf-life of fish in packaging. Simultaneously, the use of 
nanotechnology in fish farming encounters several obsta-
cles, with the most significant being the potential toxicity 
of nanoparticles and their harmful effects on fish and other 
unintended creatures. However, it is essential to evaluate the 
absolute safety of using nanoparticles in fish farming and to 
determine their potential accumulation in the food chain to Ta
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ensure the health of the fish, the environment, and human 
consumption.
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