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Abstract
Water yield (WY) is a key provisioning ecosystem services that is sensitive to climate and land use changes. This study aimed 
to evaluate the impacts of climate and land use changes on WY in the Tajan watershed, northern Iran, from 2022 to 2052. 
Additionally, it investigated the relationship of WY to slope, elevation, and normalized difference vegetation index (NDVI) 
specifically in 2022. Land use change was simulated in the TerrSet v19 software using the Land Change Modeler, while 
climate change was projected based on the CMCC-CM model under RCP45 and RCP85 scenarios using the LARS-WG 6 
software. Six scenarios were designed according to climate and land use to evaluate the WY in the InVEST 3.13 software. 
Statistical analysis was performed using the Getis-Ord (G*) statistic, bivariate local Moran’s I (BLMI), and geographically 
weighted regression (GWR). The results revealed that WY had hotspots in the northern parts and cold spots in the central 
parts. The total WY volume ranged from 8.7 to 25.1  Mm3  y−1 based on all scenarios. It was clarified that land use change 
increased WY by 2–7%, while climate change decreased it by 47% and 65% under RCP45 and RCP85, respectively. The 
lowest WY was observed in the forest, while and the highest was in built-up areas. As indicated by the BLMI, the WY had 
a moderate spatial autocorrelation to elevation and slope, having Moran’s I of − 0.53 and − 0.62, respectively. In contrast, 
its spatial autocorrelation with NDVI was weak with Moran’s I of − 0.01. The GWR analysis revealed a significant spatial 
correlation of WY to elevation, slope, and NDVI, having  R2 values of 0.94, 0.90, and 0.96, respectively. This study showed 
that climate change has a greater impact on the WY than land use change. Furthermore, WY distribution is influenced by 
topography and vegetation. Therefore, it is necessary to implement regional management plans through water conservation 
policies and dealing with climate and land use changes to conserve the water resources of the Tajan watershed in the future.
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Introduction

Human societies rely heavily on natural ecosystems, which 
are self-organizing systems that provide a range of services 
to humans, including water, food, wood, fiber, agricultural 
products, and raw materials. Additionally, ecosystems 
maintain a balance among the different components of the 
environment, preserving biodiversity and purifying the 
environment (Costanza et al. 1997; Daily 1997; Millennium 

Ecosystem Assessment 2005). Each ecosystem has a unique 
structure and function that is significantly impacted by 
human activity and climate change. In recent decades, global 
climate change has posed a major threat to the preservation 
and sustainability of ecosystem services. According to the 
Millennium Ecosystem Assessment, approximately 60% of 
identified ecosystem services are degraded. Without proper 
management and planning, this degradation is expected to 
increase over the next 50 years (Millennium Ecosystem 
Assessment 2005; Wang et al. 2016).

Water yield (WY) is an ecosystem service that is affected 
by climate and land use changes (Guo et al. 2023; Hu and 
Gao 2020; Pei et al. 2022; Tijjani et al. 2022; Wang et al. 
2016). It refers to the availability of water resources in a 
watershed, which is influenced by changes in precipitation 
and evapotranspiration. WY is estimated based on the dif-
ference between precipitation and evapotranspiration. This 
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estimation is influenced by various factors, including climate 
change, agricultural and human activities, urban develop-
ment, population growth, and global warming, which can 
cause significant changes in precipitation and evapotranspi-
ration, ultimately leading to a reduction in WY. Therefore, 
it is essential to assess and measure the effects of climate 
change and human activities on WY to preserve and allocate 
water resources rationally across various regions (Guo et al. 
2023; Tijjani et al. 2022; Xiao et al. 2020; Yifru et al. 2021).

Previous studies have investigated the impacts of climate 
and land use changes on WY. Guo et al. (2023) used the 
Integrated Valuation of Ecosystem Services and Tradeoffs 
(InVEST) tool to examine the effects of climate and land 
use changes on WY in 17 sub-basins across China. They 
confirmed that these factors had serious impacts on WY 
according to the climatic, geographical, and socio-economic 
characteristics of the sub-basins. By utilizing the InVEST 
model, Mirghaed and Souri (2023) simulated WY in the 
Shoor River basin, southwestern Iran, and evaluated its 
relationship with land use changes, soil characteristics, 
and topographic features. Their study found that the 
topographic features had a higher contribution on WY than 
soil properties. Amiri et al. (2023) assessed the impacts of 
land use and climate change on the hydrological regime of 
the Tajan River in northern Iran using the soil and water 
assessment tools (SWAT). They reported that climate and 
land use changes will lead to water stress in their study 
region in the coming decades. Huang et al. (2023) conducted 
a study to investigate the changes in ecosystem services of 
WY and carbon sequestration in China’s Loess Plateau by 
combining InVEST and Carnegie-Ames-Stanford Approach 
(CASA) models. They concluded that climate change and 
human activities have mainly influenced the increase of WY 
in the region since 2001. Pei et al. (2022) analyzed annual 
changes in WY and their relationship with revegetation in 
northern China, encompassing past, present, and future 
effects. Their research indicated that changes in climate and 
land use were responsible for 88% and 12% of the changes 
in WY, respectively, from 2000 to 2019. Tijjani et al. (2022) 
used the General Circulation Model (GCM)-based SWAT 
model for two representative concentration pathways (RCP) 
namely RCP45 and RCP85 to assess the effects of short-term 
climate change on irrigation demand, green water scarcity, 
and crop yield in an agricultural watershed in southern New 
Jersey, USA. Their study demonstrated that increases in 
precipitation and temperature result in higher surface runoff, 
groundwater recharge, lateral flow, and total stream flow. 
Rafiei-Sardooi et al. (2022) simulated the effects of land 
use and climate change on WY, water supply, and water 
consumption in the Halil River basin in Iran using the 
InVEST software. In their study, the HadGEM2-ES model 
under RCP26, RCP45, and RCP85 was used to assess climate 
change, and the land change modeler (LCM) in TerrSet v19 

was applied to map land use change. Daneshi et al. (2021) 
investigated the yield, supply, and consumption of water in 
a catchment in northern Iran using the WY model of the 
InVEST tool. They conducted a combined modeling of the 
effects of climate and land use scenarios on water security to 
estimate the water stress and economic costs associated with 
reducing WY in the future. Benra et al. (2021) assessed WY 
using the InVEST in 224 watersheds in southern Chile. They 
conducted this study for three years, 1998, 2007, and 2013 
to investigate the effects of land use and climate change. Hu 
and Gao (2020) modeled WY over Shaanxi-Gansu Loess 
Plateau in China under climate and land use scenarios using 
the InVEST tool. Their study showed that the impact of 
climate change on the WY is much higher than that of land 
use change.

The impacts of land use and climate changes on the 
WY have been studied in various regions worldwide. 
Nevertheless, there have been limited investigations into 
their interactive effect on the WY in Iran. In previous 
studies, other critical factors such as topography and 
vegetation, which could impact the WY, have not been 
adequately evaluated. The Tajan watershed is a crucial 
component of the Hyrcanian forest ecosystem in northern 
Iran, serving as a vital habitat and ecological resource, 
as well as playing a significant role in providing regional 
water resources. In recent decades, environmental tensions 
and crises have arisen due to climate and land use changes, 
which have affected water resources and productivity in 
this region. Consequently, habitat conditions for humans 
and other creatures have been impacted. Therefore, this 
study investigated how land use and climate changes 
impact WY in the Tajan watershed, located in the north of 
Iran. Additionally, it sought to determine the relationship 
of WY to topography (slope and elevation) and vegetation 
(NDVI: Normalized Difference Vegetation Index). The study 
objectives were: (i) the simulation of climate and land use 
changes in the Tajan watershed over a 30-year period (2022 
to 2052), (ii) the modeling of WY in the study area using 
climate and land use scenarios through the InVEST 3.13 
software, and (iii) the assessment of the relationships of WY 
to elevation, slope, and NDVI at the sub-watershed level of 
the region in 2022.

Materials and methods

Study area

The Tajan River watershed, covering an area of about 
4720  km2, is situated between 52° 18′ 17″ E to 54° 9′ 
8″ E and 35° 55′ 57″ N to 36° 49′ 26″ N in Mazandaran 
province, northern Iran (Fig. 1). It boasted an average 
elevation and annual temperature of 1179 m and 25 °C, 
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respectively. The region is predominantly composed of 
mountains, plains, and coastal plains, which account for 
around 85% of its terrain. The remaining 15% is occupied 
by foothills, hills, and river terraces. Agriculture and con-
struction dominate the plains in the north, while forests 
and rangelands are found in the mountainous regions of 
the south and central watershed. The tributaries of the 
Tajan River, originating from the southern region, flow 
through the lowlands and highlands of the watershed, 
ultimately leading to the Caspian Sea. Most of the area is 
covered by Hyrcanian forests, demonstrating the ecologi-
cal significance of its habitats for conserving biodiversity.

Data collection

The dataset utilized in this study is presented in Table 1. 
The digital elevation model (DEM) was extracted from 
the shuttle radar topography mission (SRTM) images 
through the google earth engine (GEE). The GEE was 
also used to download Landsat 5, 7 and 8 images to cre-
ate land use maps for 1992, 2012 and 2022. The mete-
orological statistics from 14 stations in and around the 
region spanning 30 years (1992–2022) have been used to 
gather data on precipitation, temperature, and radiation. 
The plant available water content was estimated based 
on soil’s clay, sand, silt, and organic matter percentages, 

obtained from global soil grid data downloaded from the 
GEE.

Land use change simulation

Land use maps for the study area in 1992, 2012, and 2022 
were created by analyzing surface reflectance images 
from Landsat 5, 7 and 8, respectively, downloaded from 
the GEE platform and classified using a support vector 
machine (SVM) algorithm in the ENVI 5.3 software. 
The classification accuracy was evaluated through visual 
interpretation and a confusion matrix. The matrix was based 
on ground reference points taken from Google Earth images 
and used to calculate statistics including user’s accuracy 
(UA), producer’s accuracy (PA), commission error (CE), 
omission error (OE), overall accuracy (OA), and kappa 
coefficient. The statistics were computed using the following 
equations (Eastman 2012):

(1)UA =
1

n

(

n
∑

i=1

Pir

Ptr

)

× 100

(2)PA =
1

m

(

m
∑

j=1

Pjc

Ptc

)

× 100

(3)CE = 1 − UA

Fig. 1  Geographical location of the study area
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where Pir and Pjc represent the number pixels correctly clas-
sified in row i and column j of the error matrix, respectively. 
Ptr and Ptc show the total number of pixels in row i and 
column j, respectively. Pc is the number of correctly clas-
sified pixels, while Pt shows the total number of evaluating 
pixels. n and m are the number of rows and columns of the 
error matrix. It should be noted that the kappa coefficient 
greater than 0.8 indicates acceptable classification accuracy 
(Shivakumar and Rajashekararadhya 2018).

The land change modeler (LCM) in the TerrSet v19 soft-
ware was utilized to project land use changes for 2052. The 
LCM model integrates the Markov chain model, multi-layer 

(4)OE = 1 − PA

(5)OA =
Pc

Pt

× 100

(6)Kappa =

Pt ×
k
∑

i=1

Pc −
k
∑

i=1

Pir × Pjc

P2

t −
k
∑

i=1

Pir × Pjc

perceptron neural network, logistic regression, and multi-
objective land allocation, thereby rendering it highly effi-
cient in simulating land use changes. The LCM modeling 
follows four crucial steps, namely assessment of land use 
changes, modeling of transition force, modeling of land use 
change, and accuracy assessment. In the transition force 
modeling, the LCM model utilizes auxiliary variables to 
evaluate the potential of each pixel of an image to change 
from one land use type to another. Auxiliary variables are 
drivers that influence land use change. The correlation 
between variables and land use is measured using Cramer’s 
V, which ranges from 0 to 1. Variables with a Cramer’s V 
greater than 0.15 are considered useful for predicting land 
use changes (Eastman 2012).

In this study, the land use maps of 1992 and 2022 served 
as inputs of the LCM model to project land use map of 2052. 
The study utilized several auxiliary variables, including 
elevation, slope, aspect, distance from roads, distance 
from residential centers, distance from agricultural lands, 
distance from rangelands, and distance from waterbodies. 
These variables were selected based on the environmental 
conditions of the region and Cramer’s V higher than 0.15. 
The model was validated by comparing the ‘reference’ 

Table 1  Dataset used in this study

Data Type/ Resolution Description/Explanation Source/References

Elevation (m) Raster, 30 m Extracted from the digital elevation model of the 
study area prepared from the SRTM images

https:// code. earth engine. google. com

Slope (%) Raster, 30 m Prepared based on digital elevation model and using 
slope module in ArcGIS 10.7 software

NDVI Raster, 30 m Created using surface reflectance images of the red 
and infrared bands of Landsat 5 and 8 (related to 
1992 and 2022, respectively) in the Google Earth 
Engine system

https:// code. earth engine. google. com

Land use Raster, 30 m Prepared using the SVM method in ENVI 5.3 
software based on Landsat images for 1992 and 
2022

https:// code. earth engine. google. com

Precipitation (mm) Point Extracted from the statistics of 14 meteorological 
stations in and around the study area

https:// www. irimo. ir

Temperature (°C) Point Extracted from the statistics of 14 meteorological 
stations in and around the study area

https:// www. irimo. ir

Radiation (MJ  m−2  d−1) Point Extracted from the statistics of 14 meteorological 
stations in and around the study area

https:// www. irimo. ir

Evapotranspiration (mm) Point Calculated based on temperature, precipitation and 
radiance data according to Eq. 8

Root restricting layer depth (mm) Raster, 30 m Extracted from global soil grid data https:// www. isric. org
Available water content Raster, 30 m Extracted from global soil grid data https:// www. isric. org
Plant available water content Raster, 30 m Calculated based on the percentage data of clay, silt, 

sand and soil organic matter extracted from global 
soil grid data according to Eq. 9

https:// www. isric. org

Sub-watersheds Vector Produced based on the digital elevation model of 
the study area and using the ArcHydro extension 
in ArcGIS 10.7 software

Kc Decimal Extracted from scientific sources Mirghaed and Souri (2022)

https://code.earthengine.google.com
https://code.earthengine.google.com
https://code.earthengine.google.com
https://www.irimo.ir
https://www.irimo.ir
https://www.irimo.ir
https://www.isric.org
https://www.isric.org
https://www.isric.org
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map (the land use map of 2022 produced using the SVM 
method) with the ‘comparison’ map (the predicted land 
use map of 2022). The projected map of 2022 was created 
using the LCM model and the land use maps of 1992 and 
2012. To measure the validity and accuracy of the model, 
the kappa values (Kno, Klocation, KlocationStrata, and 
Kstandard), and the statistics of DisagreementGridCell, 
D i s a g r e e m e n t Q u a n t i t y,  A g r e e m e n t Q u a n t i t y, 
AgreementChance, AgreementGridCell, Hits, False Alarms, 
and Misses were calculated using the Validation module in 
TerrSet v19 software (Eastman 2012; Leta et al. 2021). For 
more information about the statistics, refer to Pontius and 
Suedmeyer (2004), Eastman (2012) and Leta et al. (2021).

Climate change projection

Various tools and models have been developed to project 
climate change. LARS-WG 6 has been frequently employed 
to project future climate changes through various global 
circulation models (GCMs). It is a user-friendly open-
source tool that can simulate future climate scenarios based 
on different greenhouse gas emission scenarios (Semenov 
et al. 2002). By applying the LARS-WG 6 software, climate 
changes in the study area were projected for 2052 based on 
the CMCC-CM model under two different representative 
concentration pathways (RCP) scenarios, namely RCP45 and 
RCP85. The CMCC-CM model outperforms other GCMs 
for simulating climate parameters, specifically temperature 
and precipitation, over Iran (Abbasian et al. 2019). The 
model was supplied with data inputs comprising of the daily 
minimum temperature, daily maximum temperature, daily 
precipitation, and daily radiation collected from 14 different 
meteorological stations situated in and around the region.

Water yield modeling

InVEST models WY using average annual rainfall 
(Px), actual evapotranspiration (AETx), reference 
evapotranspiration (ET0), plant available water content 
(PAWC ), edaphic-climatic characteristics, root-limiting soil 
depth and land use based on the water balance hypothesis 
according to Eq. 7 (Guo et al. 2023; Sharp et al. 2020).

(7)WY =

(

1 −

(

AETx

Px

))

∗ Px

where WY, Px, and AETx are based on mm/pixel. The ratio 
of AETx/Px for each land use is determined by applying the 
Budyko curve expression (Fu 1981; Zhang et al. 2004).

where PETx represents potential evapotranspiration and ω 
is an empirical parameter that represent natural edaphic-
climatic characteristics (Donohue et al. 2012; Hargreaves 
and Samani 1982).

where ET0 is the reference evapotranspiration and Kc (ℓx) 
is the plant evapotranspiration coefficient on pixel x. Kc 
regulates the ET0 values based on the crop type or vegetation 
cover. ET0 can be calculated using the following equation 
(Droogers and Allen 2002):

where RAD refers to the extraterrestrial radiation (MJ m−2 
d−1).  Tm shows the daily average maximum and minimum 
temperatures (°C). Td is the difference between the daily 
average minimum and maximum temperatures (°C). P 
specifies the monthly precipitation (mm).

PAWC, or plant-available water capacity, denotes the 
available water supply to plants, determined as the contrast 
between the field capacity and the permanent wilting point. 
The calculation for this is as follows (Sharp et al. 2020):

where CL%, SA%, SI%, and OM% demonstrate the 
percentage of clay, sand, silt, and organic matter, 
respectively. The model was calibrated using the Z 
parameter, an empirical index that expresses the local 
rainfall pattern and hydrological characteristics estimated 
using Eq. 12.

Available water content (AWC ) is the volume (mm) of 
the water that can be held by plants, determined by soil 
texture and effective rooting depth. It was calculated in 
this study using global soil grid data (Sharp et al. 2020). 
For more information about WY-InVEST model, refer to 
Sharp et al. (2020).

(8)
AETx

Px

= 1 +
PETx

Px

−

[

1 +

(

PETx

Px

)

�
]1∕�

(9)PETx = kc
(
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)

× ET
0

(10)
ET

0
= 0.0013 × 0.408 × RAD ×

(

Tm + 17
)

×
(

Td − 0.0123P
)0.76

(11)

PAWC =54.509 − 0.132 × SA% − 0.003 × (SA%)2 − 0.055 × SI% − 0.006 × (SI%)2

− 0.738 × CL% + 0.007 × (CL%)2 − 2.688 × OM% + 0.501 × (OM%)2

(12)Z =
(� − 1.25)Px

AWC
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Water yield scenarios

Six scenarios were designed based on land use and climate 
factors (precipitation and evapotranspiration) to project 
WY in the watershed for 2022 and 2052. As described in 
Table 2, each scenario considered the impacts of land use 
change, or climate change, or their combined effects on 
WY. The scenarios were implemented in the InVEST 3.13 
software by altering the inputs of the WY model, including 
annual precipitation, evapotranspiration, and land use.

Statistical analysis

The study employed statistical analyses of the Getis-Ord 
(G*) statistic, bivariate local Moran’s I (BLMI), and geo-
graphically weighted regression (GWR) to investigate the 
relationships under examination. The G* statistic is used to 
assess the spatial autocorrelation of a variable and identify 
its hot and cold spots in space, with values greater than the 
average denoting a high-high cluster or hot spot, and those 
smaller than the average indicating a low-low cluster or cold 
spot. BLME can be used to evaluate the spatial autocorrela-
tion of two variables and is more effective than the G* statis-
tic. The x-axis of the Moran scatter plot shows one variable, 
while the y-axis displays the spatial lag of another variable. 
The closer Moran’s I is to + 1 or − 1, the stronger the spatial 
autocorrelation, and if it approaches zero, it indicates weaker 
spatial autocorrelation (Anselin 1995; Getis and Ord 1992; 

Ord and Getis 1995). The GWR is an extended form of ordi-
nary least square (OLS) regression that evaluates the spatial 
correlation between two variables by considering their local 
spatial relationships. It examines heterogeneous spatial rela-
tionships between dependent and independent variables at 
every geographic location in an unstable space. This method 
enables the assessment of local correlation between geo-
graphic parameters (Brunsdon et al. 1998; ESRI 2016).

By applying the GeoDa 1.18 software, the G* statistic 
was used to investigate the hot and cold spots of WY at 
the sub-watershed level. Spatial autocorrelation of WY 
to elevation, slope, and NDVI was assessed through the 
BLMI statistic. Additionally, the spatial correlation of WY 
with elevation, slope, and NDVI was also evaluated using 
the GWR in ArcGIS 10.7. These statistical analysis were 
conducted with data from the region in 2022.

Results and discussion

Land use and climate changes

Figure 2 indicates the land use maps of 1992 and 2022, as 
well as the projected map of 2052 generated using the LCM 
model. Notably, the land use classification accuracy of 1992 
yielded a kappa coefficient, overall accuracy, producer’s 
accuracy, user’s accuracy, omission error, and commission 
error of 0.90, 93%, 91%, 95%, 9% and 5%, respectively. For 

Table 2  Description of Land use and climate scenarios

Scenario Land use Climate Explanation

LC22 2022 2022 Implemented based on the land use and climate conditions of 2022
LC52 2052 2022 Implemented based on the land use of 2052 and the climate conditions of 2022
CC45 2022 2052 Implemented based on the land use of 2022 and the climate conditions of 2052 projected according to RCP45
CC85 2022 2052 Implemented based on land use of 2022 and climate conditions of 2052 projected according to RCP85
LCC45 2052 2052 Implemented based on the land use of 2052 and the climate conditions of 2052 projected according to RCP45
LCC85 2052 2052 Implemented based on land use of 2052 and climate conditions of 2052 projected according to RCP85

Fig. 2  Land use maps of the study area for 1992, 2022, and 2052
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the 2022 land use classification, these metrics were esti-
mated at 0.91, 94%, 93%, 92%, 7% and 8%, respectively. 
These results demonstrated the classifications’ acceptable 
validation and accuracy. Ambarwulan et al. (2023) calcu-
lated the kappa coefficient and overall accuracy for modeling 
land use changes in the Cisadane watershed in Indonesia to 
be over 83%. Sisay et al. (2023) estimated the kappa coef-
ficient and overall accuracy in land use classification in the 
Goang watershed, Ethiopia, for different years to be higher 
than 84% and 86%, respectively. The model validation 
and accuracy were proven by the estimated kappa values 
(Kno = 0.97, Klocation = 0.98, KlocationStrata = 0.98, and 
Kstandard = 0.96) being above 0.8 (Viera and Garrett 2005). 

Additionally, the statistics of DisagreementGridCell, Disa-
greementQuantity, AgreementQuantity, AgreementChance, 
AgreementGridCell, Hits, False Alarms, and Misses were 
recorded as 0.01, 0.01, 0.20, 0.14, 0.64, 16.1%, 1.6%, and 
0.9%, respectively. These findings proved the acceptability 
of the model’s predictions (Eastman 2012; Leta et al. 2021). 
The area allocated to each land use is specified in Table 3. 
From 1992 to 2022, the forest, rangelands, agriculture, built-
up areas, and waterbodies decreased by − 78,440, − 413, 
+ 72,663, + 6097 and + 94 ha, respectively. Predictions 
showed that from 2022 to 2052, the mentioned land uses 
will further decrease by − 56,640, + 2117, + 46,229, + 7994, 
and + 3 ha, respectively.

The study revealed that the region experienced significant 
land use changes from 1992 to 2022. Approximately 22% 
(102,960 ha) of the region was affected by such changes. 
Forests experienced the highest decrease (-17%), while 
agricultural land increased the most (+ 15%) (Fig. 3). It is 
predicted that 17% (equal to 81,113 ha) of the watershed 
will undergo land use conversion from 2022 to 2052. For-
ests will experience the highest decline (− 12%), while agri-
culture will have the highest increase (+ 10%). In addition, 
Fig. 4 shows the changes in precipitation and evapotran-
spiration in the sub-watersheds of the region from 1992 to 
2052. Precipitation and evapotranspiration exhibited a rising 
trend from 1992 to 2022, with downward and upward trends 
forecasted for them from 2022 to 2052, respectively. The 
evaluation of uncertainty in predicting climate parameters 
was based on observational and historical data. The correla-
tion coefficient and the normalized root mean square error 

Table 3  The area allocated to 
each land use in 1992, 2022 and 
2052 and their changes

Land use 1992 2022 2052 1992–2022 2022–2052

ha % ha % ha % ha % ha %

Forest 274,358 58 195,918 42 139,578 30 − 78,440 − 17 − 56,340 − 12
Rangelands 101,012 21 100,599 21 102,717 22 − 413 − 0.1 + 2117 + 0.4
Agriculture 92,447 20 165,110 35 211,338 45 + 72,663 + 15 + 46,229 + 10
Built-up area 3753 1 9849 2 17,840 4 + 6097 + 1 + 7991 + 2
Waterbody 393 0.08 487 0.1 490 0.1 + 94 + 0.02 + 3 + 0.001
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Fig. 4  Changes in a precipitation (P) and b evapotranspiration (ET) of the study area in 1992, 2022, and 2052. P and ET related to 2052 are pro-
jected based on RCP45 and RCP85
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(NRMSE) were estimated, resulting in 0.95 < R < 0.99 and 
2% < NRMSE < 10%. These values demonstrate the validity 
and accuracy of the climate prediction.

Water yield

The InVEST 3.13 software was utilized to model the WY 
in the study area across six scenarios. The resulting data is 
demonstrated in Fig. 5 with an average WY of 4.9, 5.3, 2.6, 
1.7, 2.7, and 1.8 mm/pixel (30 × 30 m) for the LC22, LC52, 
CC45, CC85, LCC45, and LCC85 scenarios, correspond-
ingly. As presented in Table 4, the total volume of WY based 

on the aforementioned scenarios is estimated as follows: 
23.4, 25.1, 12.3, 8.3, 12.9, and 8.7  Mm3  y−1 (on average 
49.5, 53.3, 26.2, 17.6, 27.3 and 18.4  m3  ha−1, respectively). 
Figure 6 illustrates the classified maps of WY, while Table 5 
details the area allocation for each class. The WY of 0–10 
mm  ha−1 is dominant in most of the region, covering 35%, 
28%, 49%, 58%, 44% and 55% of its surface in the LC22, 
LC52, CC45, CC85, LCC45, and LCC85 scenarios, respec-
tively. The WY of more than 50 mm  ha−1 occupied 20%, 
23%, 10%, 8%, 11%, and 8% of the region calculated in the 
mentioned scenarios, respectively. Figure 7 elucidates the 
trend of changes in WY at the sub-watershed level in dif-
ferent scenarios. The sub-watersheds 4, 11, 17, 32, 31, and 
46 displayed the greatest changes in WY. Table 6 provides 
the WY for each land use type in all scenarios. Forests had 
the lowest WY calculated at 8, 18, 3, 2, 3, and 2  m3  ha−1 in 
the LC22, LC52, CC45, CC85, LCC45, and LCC85 sce-
narios, respectively, while the highest WY was found in the 
constructed areas estimated at 654, 642, 162, 82, 163 and 
81  m3  ha−1 in the mentioned scenarios, respectively.

Statistical analysis

The G* statistic was utilized to analyze the distribution of 
WY, as depicted in Fig. 8. The findings indicate that sub-
watersheds located in the northern parts of the region were 

Fig. 5  Maps of water yield resulting from the implementation of all scenarios in InVEST

Table 4  The volume of water yield in the study area predicted in all 
scenarios and its comparison with the LC22 scenario

Scenario Water yield Comparison with 
LC22

Mm3 m3  ha−1 Mm3 %

LC22 23.4 49.5 0 0
LC52 25.1 53.3 1.7 7
CC45 12.3 26.2 − 11.1 − 47
CC85 8.3 17.6 − 15.1 − 65
LCC45 12.9 27.3 − 10.5 − 45
LCC85 8.7 18.4 − 14.7 − 63
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WY hot spots (0.04 < G* < 0.14) across different scenarios. 
Meanwhile, sub-watersheds situated in central parts were 
cold spots (0.001 < G* < 0.01). Additionally, the BLMI 
statistic was employed to investigate the spatial autocor-
relation of WY with elevation, slope, and NDVI, as illus-
trated in Fig. 9. The estimated Moran’s I index for the WY 
with elevation, slope, and NDVI were − 0.53, − 0.62, and 
− 0.01, respectively. Furthermore, Fig. 10 clarifies the spa-
tial correlation of WY with elevation, slope, and NDVI ana-
lyzed using the GWR in ArcGIS 10.7. The coefficient of 

Fig. 6  Classified maps of water yield for all scenarios

Table 5  The area (ha) allocated 
to each water yield class in all 
scenarios

* I: 0–10, II: 10–30, III: 30–50, 
and IV: 50 < (mm/ha)

Scenario Water yield classes*

I II III IV

LC22 165 116 95 96
LC52 131 115 120 107
CC45 233 162 28 49
CC85 272 143 19 38
LCC45 208 185 29 50
LCC85 260 155 19 38
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Fig. 7  Water yield changes in the sub-watersheds of the region for each scenario
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determination  (R2) between WY with elevation, slope, and 
NDVI was found to be 0.94, 0.90, and 0.96, respectively.

Discussion

From 1992 to 2022, the study area experienced significant 
land use changes, resulting in land use conversion in 
22% of the region. The most notable alterations were the 
reduction of forests and the increase in agriculture, which 
covered 17% and 15% of the watershed, respectively. The 
findings indicated that the Tajan watershed was affected by 
land use changes during the aforementioned period. These 
changes reduced natural habitats and altered ecological 

conditions of the region. Agricultural activities have been 
one of the most important factors of land use change in 
the region, which has increased due to population growth 
and lack of proper land management in the past. Land 
use change is predicted to be severe from 2022 to 2052, 
significantly impacting the destruction of the region’s 
forests and reducing habitat quality. Additionally, it 
can impact water resources and soil conservation in the 
watershed.

The northern parts of the region had the highest WY, 
with the central parts having the lowest. This trend was 
consistent across all scenarios. Higher precipitation and 
more agriculture and construction in the northern parts were 
the primary factors behind the WY increase there. This study 
evaluated WY under various scenarios to measure the impact 
of climate change and land use, both separately and in 
combination, on WY variation in the region. The LC22 was 
the baseline scenario implemented based on land use and 
climate conditions of 2022. The LC52 scenario illustrated 
the effect of land use change on water yield, while the CC45 
and CC85 scenarios elucidated the impact of climate change. 
The combined impacts of climate and land use changes on 
WY were demonstrated by the LCC45 and LCC85 scenarios. 
The comparison of scenarios indicated that the LC52 
scenario yielded the highest water volume (25.1  Mm3  y−1 

Table 6  Mean water yield (mm  ha−1) for land uses in each scenario

Scenario Forest Rangelands Agriculture Built-up area

LC22 8 35 72 654
LC52 18 36 74 642
CC45 3 21 33 162
CC85 2 15 25 82
LCC45 3 21 36 163
LCC85 2 16 26 81

Fig. 8  Results of the Gettis-Ord (G*) statistic to determine hot and cold spots of water yield in all scenarios
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with an average of 53.3  m3  ha−1), while the CC85 scenario 
produced the lowest volume (8.3  Mm3  y−1 with an average 
of 17.6  m3  ha−1). Comparison of the LC22 scenario with 
the LC52, CC45, CC85, LCC45, and LCC85 scenarios 
exhibited that WY varied by 7%, − 47%, − 65%, − 45%, and 
− 63%, respectively. Additionally, it was demonstrated that 
land use change contributed 2% to 7% towards an increase in 
WY, while climate change contributed 47% and 65% (based 
on RCP45 and RCP85, respectively), towards a reduction in 
WY. It was also found that climate change based on RCP85 
impacts WY variation by 18% compared to RCP45. Accord-
ing to Yifru et al. (2021), WY varied from 8 to 48% in their 
study area due to the impact of climate change. Pei et al. 
(2022) confirmed that alterations in WY were predominantly 
due to climate and land use changes accounting for 88% and 
12% respectively. Rafiei-Sardooi et al. (2022) highlighted 
the significant impact of climate change compared to land 

use change on WY. Additionally, Hu and Gao (2020) esti-
mated that climate change had a contribution of over 92% 
on WY.

The results proved that the WY experienced limited 
changes under the influence of land use change (based on 
the LC52 scenario), but severe variations under the effect of 
climate change (under the CC45 and CC85 scenarios). The 
impact of climate and land use changes on extreme changes 
in the WY was also observed under LCC45 and LCC85 
scenarios. The study affirmed that the change in climate 
conditions and land use had a decreasing and increasing 
effect on WY in the study area, respectively. However, it 
should be noted that the effects of climate change could be 
much more severe than those resulted from land use change. 
Land use change results in variations in vegetation cover and 
soil permeability, which increases WY. On the other hand, 
climate change leads to a decrease in precipitation and an 
increase in evapotranspiration, thus causing a decrease in the 
total volume of the WY. Yifru et al. (2021) highlighted the 

Fig. 9  Results of bivariate local Moran’s I (BLMI) to determine the relationship of water yield to a elevation, b slope, and c NDVI

Fig. 10  Spatial correlation of water yield to a elevation, b slope, and c NDVI obtained from geographically weighted regression (GWR)
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significant impact of climate change scenarios on WY and 
hydrological processes in comparison to land use change. 
Pei et al. (2022) demonstrated that climate has a greater 
impact on WY changes than land use.

The lowest WY of 0–10 mm/ha was mainly observed 
in central forested areas of the region, while the highest 
WY (> 50 mm/ha) was estimated in the northern parts that 
encompassed agriculture and construction activities. The hot 
spot analysis also revealed that the sub-watersheds located 
in the northern parts were the primary hot spots of WY, 
while the central sub-watersheds were designated as cold 
spots. Built-up areas had the highest WY, while forests had 
the lowest. The order of WY for land uses was as follows: 
built-up areas > agriculture > rangelands > forest. The non-
permeable built-up surfaces increase WY, while the vegeta-
tion in forests helps to preserve and supply water, and thus 
reduces WY (Guo et al. 2023). Mirghaed and Souri (2023) 
evaluated the WY of the Shoor River basin in southwest 
Iran using the InVEST model and found that it is higher in 
built-up areas than in forest, rangeland, and agriculture. This 
is in line with the results reported by Yang et al. (2021) and 
Lang et al. (2017).

Analysis of hotspots in different scenarios revealed that 
the spatial distribution of WY in sub-watersheds varies 
due to the impact of climate and land use changes. This 
fact demonstrates that the effects of climate and land use 
changes vary depending on the local ecological conditions 
and human activities that govern each sub-watershed. As a 
result, the WY also differs among them. These differences 
can impact the water resources management in each sub-
watershed. Hence, Water resource conservation policies and 
programs should be customized to local conditions in each 
sub-watershed to mitigate the impact of climate and land 
use changes.

The spatial autocorrelation analysis revealed that WY 
has a moderate relationship with elevation and slope 
(-0.62 < Moran’s I < − 0.53). No significant relationship 
was found with NDVI (Moran’s I = − 0.01). These findings 
indicated that at the sub-watershed level, the spatial 
distribution of WY is almost opposite to that of slope and 
elevation in the region. However, there is no relationship 
between the spatial distribution of WY and vegetation. 
Mirghaed and Souri (2023) have also reported a significant 
spatial autocorrelation of WY to elevation and slope. Other 
studies have also highlighted the significant relationship 
between topographic features and ecosystem services, 
particularly with regards to WY (Ma et al. 2021; Shen et al. 
2021).

The results of GWR analysis indicated WY has varying 
local spatial correlations with elevation, slope, and NDVI 
at the sub-watershed level in the region. Moreover, in most 
sub-watersheds, WY exhibited a higher local correlation with 
NDVI compared to elevation and slope. In 37 sub-watersheds, 

the local spatial correlation of WY with elevation was deter-
mined to be low to medium (0 <  R2 < 0.6), while in 9 sub-
watersheds it was strong (0.6 <  R2 < 0.8). Similarly, the local 
correlation of WY with slope was found to be low to medium 
in 40 sub-watersheds (0 <  R2 < 0.4), and strong in 6 sub-
watersheds (0.6 <  R2 < 0.8). The local spatial correlation of 
WY with NDVI was estimated to be low to moderate in 27 
sub-watersheds (0.0 <  R2 < 0.6), strong in 16 sub-watersheds 
(0.6 <  R2 < 0.8), and very strong (0.8 <  R2 < 1.0) in 3 sub-
watersheds. These findings suggested that the local spatial 
correlation of WY with elevation, slope and NDVI is influ-
enced by the geographic location. Despite such differences at 
the level of sub-watershed, WY had a strong spatial correla-
tion with elevation, slope, and NDVI at the watershed scale 
(0.90 <  R2 < 0.96), implying that topography and vegetation 
have a significant impact on the WY in the study region. Ear-
lier studies have also referenced the influence of topography 
and vegetation on the WY (Ahmadi Mirghaed and Souri 2022; 
Kusi et al. 2020; Mirghaed and Souri 2023; Yang et al. 2021). 
It was concluded that the impact of topography and vegetation 
on WY can vary depending on the geographic location. These 
variations can influence water resource policies, planning, and 
management in each sub-watershed. Therefore, it is crucial to 
consider them for effective local water resource management.

Limitations and future prospects

This study has provided a significant understanding of WY 
under the influence of climate and land use changes in the 
Tajan watershed, northern Iran. However, it faced certain 
limitations. The lack of an appropriate database for the study 
area is considered to be a major limitation in this regard. Some 
of the inputs of the WY-InVEST model, such as plant rooting 
depth and Kc coefficient, were prepared based on scientific 
sources and global databases due to time and cost constraints, 
which may somewhat affect the results at the local scale. 
Therefore, it is important to establish a strong database in this 
regard in Iran for proper assessment and management of water 
resources.

InVEST evaluates WY based on the difference between 
annual precipitation and evapotranspiration. However, it has 
limitations. First, it is not able to evaluate WY at sub-annual 
scales (seasonal, monthly and daily). Second, it considers 
the characteristics of rooting depth and Kc coefficient to be 
the same for a land use type in different areas, which may 
increase the uncertainty of the results. Third, this model does 
not consider soil permeability and topographic features, which 
are important factors affecting WY.

More research is needed to study WY at different scales 
for water management strategies. Studying the effects of 
climate and land use changes on WY and their implications 
for sustainable water resources management is very important. 
Therefore, the development of advanced simulation methods 
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to predict and reduce the long-term effects of climate and 
land use changes on water supply and demand is of particular 
importance. In future research, it is necessary to consider 
appropriate approaches to evaluate various environmental, 
economic, social and political issues related to watersheds in 
the world, especially in Iran.

Conclusion

This study assessed WY due to climate and land use 
changes in the Tajan watershed, north of Iran, from 2022 
to 2052. The findings indicated that the northern parts of 
the watershed had the highest WY, while the central parts 
had the largest WY. In addition, land use changes led to 
a 2–7% increase in WY, whereas climate change caused a 
WY reduction of 47% under RCP45 and 65% under RCP85. 
There was a strong correlation between WY and elevation, 
slope, and NDVI. Moreover, their correlations can be varied 
depending on geographical location. In conclusion, this 
study confirmed that climate change had a greater impact 
on WY than land-use changes. Additionally, WY can be 
influenced by local topography and vegetation conditions. 
This study suggested that managers and planners should 
adopt appropriate strategies to conserve water in the future 
regarding water conservation policies, dealing with climate 
and land use change, and ecological conditions of the region.
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