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Abstract
Ultraviolet (UV) disinfection technologies are well-known tools for microbial prevention in indoor public places which are 
frequently employed for disinfecting air, surfaces, and water. Such technologies have drawn a great deal of interest due to 
its potential application, especially in the domain of healthcare. This article discusses the shortcomings of chemical disin-
fectants and analyzes the current research standing on the development of various types of UV disinfection technologies 
for their prospective usage in the healthcare industry. Furthermore, the article provides a thorough analysis and in-depth 
evaluation of the current antibacterial studies using UV lamps and light-emitting diodes (LEDs) for the treatment of fre-
quently encountered pathogens associated with healthcare. According to the systematic review, UV-LEDs have shown to be 
a potential source for delivering disinfection which is equally efficient or more effective than traditionally used UV lamps. 
The findings also provide valuable considerations for potentially substituting conventional lamps with LEDs that would be 
less expensive, more efficient, more robust, non-fragile and safer. With greater effectiveness and advantages, UV-LEDs have 
shown to be the potential UV source that could fundamentally be able to transform the disinfection industry. Therefore, the 
study supports the employment of UV-LED technology as a better and workable approach for effective disinfection applica-
tions. The study also offers insightful information that will help to direct future studies in the domain of hygienic practices 
used in healthcare facilities.
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Abbreviations
HAI  Healthcare associated infection
ICU  Intensive care unit
EPIC  Extended Prevalence of Infection in 

Intensive Care
NI  Nosocomial infection
HCW  Healthcare worker
MDR  Multidrug-resistant
S. aureus  Staphylococcus aureus
E. faecium  Enterococcus faecium
K. pneumoniae  Klebsiella pneumoniae
A. baumannii  Acinetobacter baumannii
P. aeruginosa  Pseudomonas aeruginosa
MRSA  Methicillin-resistant S. aureus
E. coli  Escherichia coli
S. pneumoniae  Streptococcus pneumoniae
SSIs  Surgical sites infections
CDC  Centers for disease control and 

prevention
BSI  Bloodstream infection
CRBCI  Catheter-related bloodstream 

infections
LRTI  Lower respiratory tract infections

UTI  Urinary tract infection
C. albicans  Candida albicans
VAP  Ventilator-associated pneumonia
S. maltophilia  Stenotrophomonas maltophilia
HAP  Hospital-acquired pneumonia
K. oxytoca  Klebsiella oxytoca
S. marcescens  Serratia marcescens
S. maltophilia  Stenotrophomonas maltophilia
A. fumigatus  Aspergillus fumigatus
H. influenzae  Haemophilus influenzae
VRE  Vancomycin-resistant enterococcus
C. auris  Candida auris
P. mirabilis  Proteus mirabilis
C. parapsilosis  Candida parapsilosis
A. fumigatus  Aspergillus fumigatus
L. monocytogenes  Listeria monocytogenes
E. cloacae  Enterobacter cloacae
NTM  Nontuberculous mycobacteria
GN  Gram-negative
BWI  Burn wound infections
NB  Nosocomial bacteremia
REACH  Researching Effective Approaches to 

Cleaning in Hospitals
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NTD  No-touch automated disinfection
VHP  Vaporized hydrogen peroxide
HPV  Hydrogen peroxide vapor
aHP  Aerosolized hydrogen peroxide
UV  Ultraviolet
LED  Light-emitting diode
PX  Pulse xenon
Hg  Mercury
LP  Low pressure
MP  Medium pressure
GaN  Gallium nitride
AGaN  Aluminum gallium nitride
SMD  Surface mount device
TB  Tuberculosis
M. luteus  Micrococcus luteus
HED  Handheld electronic devices
ORs  Operating rooms
UR-UVGI-LEDs  Upper-room UV germicidal irradia-

tion LEDs
SPD  Spectral power distribution
MVL  Mercury vapor lamps
AB  Aerobic bacteria
UNEP  United Nations Environment Program
EPS  Extracellular polymeric substances
DSB  Dry surface biofilms

Introduction

Healthcare-associated infections (HAIs) are a substantial 
contributor to patient mortality and morbidity as well as 
growing healthcare costs (Magill et al. 2018; Haque et al. 
2018). When obtaining care, especially in hospitals, nurs-
ing homes, and other ambulatory settings, many infections 
can be acquired. Through invasive treatments, surgery, and 
medical equipment, bacterial, viral, or fungal infections 
can spread and result in an infection. Compared to 6.5% 
in the European Union/European Economic Area, 3.2% of 
Americans have HAI, and the frequency is likely higher 
internationally (Suetens et al. 2016; Allegranzi et al. 2011). 
Modern medicine frequently uses invasive medical equip-
ment such as ventilators and catheters, which are typically 
associated with a rise in HAI (CMS 2023). HAIs, according 
to statistics, are a major issue in both developed and devel-
oping countries, with 10 out of 100 hospitalized patients in 
developing countries and 7 out of 100 hospitalized patients 
in developed countries, respectively, at risk of contracting 
such infections (Danasekaran et al. 2014). Intensive care unit 
(ICU) patients, burn patients, organ transplant recipients, 
and neonates are a few of the groups who are most prone to 
HAI (Aljerf 2016). The Extended Prevalence of Infection 
in Intensive Care (EPIC II) study found that the proportion 
of infected patients in the ICU might occasionally reach a 

disconcerting 51%. HAIs are more common than before 
and are associated with a number of adverse outcomes, 
such as prolonged hospitalization, long-term disability, 
increased antimicrobial resistance, economic disturbances, 
and increased mortality rates (Vincent et al. 2009). Unfortu-
nately, the lack of accurate data on the severity of this issue 
is mostly due to insufficient monitoring systems and weak 
preventive measures (Allegranzi 2011).

Location of the research: V01, Department of Biomedi-
cal Engineering and Health Sciences, Universiti Teknologi 
Malaysia, Johor Bahru-81310, Malaysia.

Rise in nosocomial infections (NIs) 
in healthcare settings

The substantial issue of NI, also known as HAIs, has drawn 
notable attention as a result of contamination in healthcare 
settings as illustrated in Fig. 1. These infections not only 
lower the quality of life for the patients but also increase 
medical costs. However, healthcare workers (HCW)s can 
work together to prevent and manage hospital-based infec-
tions by putting into practice crucial methods including 
early diagnosis and isolation of infected patients, effective 
use of personal protective equipment, and environmental 
cleaning and disinfection (Aljerf 2016). Such events could 
also give researchers crucial information about how to pre-
vent and manage the spread of NI in the future (Du et al. 
2021). NI is still a problem in infant care despite the fact 
that advances in medicine have already made it possible for 
weakened and smaller infants to survive. Longer hospital 
stays, elevated death rates, and short- and long-term mor-
bidity are all linked to such infections (Ramasethu 2017). 
Hospital infection rates were also the focus of studies by Li 
et al. (Li et al. 2017) that emphasized on how NI surveillance 
systems influenced hospital infection rates. The study found 
that continuous surveillance exhibited a favorable impact on 
NI rates, with odds ratios/risk ratios varying from 0.43 to 
0.95, respectively.

Overview and rate‑influencing factors 
for nosocomial infection (NI) in healthcare

Common NI cases, which, despite the availability of anti-
biotics, continue to be a serious public health concern. The 
microorganisms which trigger NI infections frequently 
are addressed in Table 1. These infections might lead to 
extended hospital stays, greater rates of morbidity and 
death, more frequent use of antibiotics, and higher costs. 
Multidrug-resistant (MDR) bacteria such Staphylococcus 
aureus (S. aureus), Enterococcus faecium (E. faecium), 
Klebsiella pneumoniae (K. pneumoniae), Acinetobacter 
baumannii (A. baumannii), and Pseudomonas aeruginosa 
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(P. aeruginosa) pose a severe threat to public health and 
have emerged as a result of antibiotic overuse (Darvishi et al. 
2020). The three frequently isolated bacterial pathogens such 
as A baumannii, K. pneumoniae, and methicillin-resistant 
S. aureus (MRSA) have shown to be a major cause of such 
infection (Ananda et al. 2022). The studies have found 54 
pathogenic microorganisms to be prevalent in 6.9% of cul-
ture-confirmed nosocomial infections (NIs). Among them, 
Gram-positive bacteria made up 55.6% such as S. aureus 
(18.5%), Escherichia coli (E. coli) (16.7%), and Streptococ-
cus pneumoniae (S. pneumoniae) (14.8%), being the most 
frequently isolated microorganisms. The most frequently 
infected surgical sites infections (SSIs) were accounted to 
be 31.5% which were followed by the bloodstream which 
were 25.9%. The most prevalent pathogens identified in sur-
gical sites were coagulase-negative staphylococci (17.6%), 
P. aeruginosa (17.6%), and S. aureus (29.4%). Likewise, S. 
pneumoniae (41.6%) and Klebsiella spp. (25%) were the top 
two pathogens isolated from the upper respiratory tract, and 
E. coli (36.3%), Proteus spp. (18.2%), and Enterococcus spp. 
(18.2%) were most frequently isolated from urinary tract 
infections. It was also found that S. aureus and E. coli with 
the prevalence 28.6 and 21.4%, respectively, were the most 
commonly isolated microorganisms associated with blood-
stream infections (Tolera et al. 2018). Surgical site infections 
(SSIs), which affect 2–5% of patients undergoing surgery, 
have posed a serious and prevalent complication of hospitali-
zation. According to studies by Anderson et al. (2011), SSIs 
have been found to be mostly caused by S. aureus, which is 
contributing to up to 37% in community hospitals and 20% 

in hospitals that reported to the Centers for Disease Control 
and Prevention (CDC).

MRSA is not just the most frequent infection in tertiary 
care facilities and academic institutions, but also the main 
contributor to SSI in community hospitals. In hospitalized 
patients, bloodstream infections (BSI), catheter-related 
bloodstream infections (CRBSI), lower respiratory tract 
infections (LRTI), and urinary tract infections (UTI) tend 
to be caused by microorganisms as reported by Bardi et al. 
(2021). Furthermore, coagulase-negative staphylococci and 
Enterococcus faecalis (E. faecalis) were the most common 
bacteria found in patients with primary BSI. Gram-positive 
bacteria were also accounted for a large number of CRBSI 
cases, with Candida albicans (C. albicans) being the most 
common cause, followed by E. faecalis, Enterococcus fae-
cium (E. faecium). Gram-negative bacteria such as P. aerugi-
nosa was the most often isolated bacterium in patients with 
ventilator-associated pneumonia (VAP) and tracheobron-
chitis. Gram-negative microbes were also observed to be 
the most common cause of LRTI. Moreover, S. aureus was 
shown as commonly isolated pathogen in the patients with 
VAP and tracheobronchitis, with a high resistance rate to 
methicillin observed in 87% of cases. Aspergillus spp. were 
identified in three cases of LRTI. Enterococcus faecium and 
E. faecalis were also the most common cause of UTI. Also, 
according to one article, Enterobacterales and non-ferment-
ing Gram-negative bacilli, such as A. baumannii and Steno-
trophomonas maltophilia (S. maltophilia), were occasionally 
identified as the causative agents of bacteremia, LRTI, UTI, 
and soft tissue infections. Pseudomonas aeruginosa was 

Fig. 1  An illustration of the signs of nosocomial infections (NI) in the medical setting. The circled region demonstrates the origin pathways of 
NIs
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also found to be responsible for HAIs that can manifest as 
bloodstream infections, urinary tract infections, pneumonia, 
and infections at surgical sites. It accounted for approxi-
mately 7.1–7.3% of all HAIs, according to studies (Magill 
et al. 2014a; Weiner et al. 2016). Moreover, over the past 
ten years, P. aeruginosa infections have grown increasingly 
prevalent (Williams et al. 2010; Parker et al. 2008). As much 
as 22% of all HAIs are caused by hospital-acquired pneu-
monia (HAP) and VAP, which impose a significant burden 
on the healthcare system (Kalil et al. 2016). Pseudomonas 
aeruginosa is second only to S. aureus in VAP infections, 
accounting for 10–20% of the isolates (Magill et al. 2014a).

Microbial contamination on environmental surfaces

Recent studies have shown that the transmission of Multi-
drug Resistant Organisms (MDROs), viruses, mycobacte-
ria, and fungi as the main causes of HAIs that contribute 

to morbidity and mortality among the patients admitted in 
hospital which is substantially affected by environmental 
contamination (Rosenthal et al. 2016; Weber et al. 2010). 
Reports have also shown that such contamination has a 
substantial impact on the transmission of these microorgan-
isms (see Table 2) in healthcare settings (Dancer 2014; Sood 
and Perl 2016; Kirk Huslage 2010). In healthcare environ-
ments, the long-term persistence of a variety of nosocomial 
pathogens including S. aureus, Vancomycin-resistant Ente-
rococcus (VRE), MRSA, A. baumannii, C. difficile, and P. 
aeruginosa has been observed (Boyce 2007; Kramer et al. 
2006; Chemaly et al. 2014). These microorganisms con-
tinued presence in the environment can act as a source of 
transmission and spread in hospital settings (Esteves et al. 
2016). The type of surface—whether it is smooth, porous, 
rough, dry, moist, new, or old, influences the degree of con-
tamination. Since rough or porous surfaces tend to harbor 
more bacteria than smooth ones, it might be challenging 

Table 1  Illustrates the most commonly reported bacterium known to cause nosocomial infection in healthcare settings, as identified in the litera-
ture

Microorganisms Association References

Escherichia coli BSI, UTI, SSI, intestinal Tolera et al. (2018), Magill et al. (2014b), Ding et al. 
(2019), Diseases and Organisms in Healthcare Set-
tings (2016)

Proteus spp. Urinary tract Tolera et al. (2018)
Enterococcus spp. UTI, CRBSI, HAP Torok et al. (2016)
Staphylococcus aureus HAP, SSI, Skin, BSI, VAP Tolera et al. (2018), Anderson (2011), Magill et al. 

(2014b), Liu et al. (2017), Jamal et al. (2017), 
Nelson and Gallagher (2012), Blanco-Cabra et al. 
(2019), Rice (2008), Pal et al. (2019), Apisarn-
thanarak et al. (2003)

Streptococcus pneumoniae HAP, BSI Tolera et al. (2018), Ding et al. (2019)
Klebsiella spp., K. pneumoniae, Klebsiella 

oxytoca (K. oxytoca),
HAP, SSI, CRBSI, BSI, gastrointestinal Tolera et al. (2018), Bardi et al. (2021), Magill et al. 

(2014b), Ding et al. (2019), Diseases and Organ-
isms in Healthcare Settings (2016), Rice (2008), 
Karlowsky et al. (2017)

Pseudomonas aeruginosa SSI, BSI, VAP, surface acquired, HAP Tolera et al. (2018), Bardi et al. (2021), Kalil et al. 
(2016), Liu et al. (2017), Jamal et al. (2017), Rice 
(2008), Maldonado et al. (2020)

Acinetobacter HAP, VAP, human milk Bardi et al. (2021), Rice (2008), Joshi and Acineto-
bacter Baumannii (2013), Engur et al. (2014)

Serratia marcescens (S. marcescens) BSI Bardi et al. (2021)
Bacteroides spp. BSI Bardi et al. (2021)
Coagulase-Negative Staphylococci BSI, CRBSI Bardi et al. (2021)
Candida albicans CRBSI Bardi et al. (2021)
Enterococcus faecalis CRBSI Bardi et al. (2021)
Stenotrophomonas maltophilia (S. maltophilia) VAP, HAP Bardi et al. (2021)
Aspergillus fumigatus (A. fumigatus) HAP/tracheobronchitis Bardi et al. (2021)
Haemophilus influenzae (H. influenzae) HAP/tracheobronchitis Bardi et al. (2021)
Enterobacter spp. Rice (2008)
Enterococcus spp. Torok et al. (2016)
Klebsiella pneumoniae SSI, BSI Ding et al. (2019), Rice (2008), Karlowsky et al. 

(2017)
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to effectively clean and disinfect the surface. Additionally, 
microorganisms have the capacity to form biofilms on sur-
faces, which may provide a secure habitat that enables them 
to persist for a longer period of time (Boer 2006). While 
certain pathogens can survive for a few days, others can 
last for weeks or even months. HCW can also contaminate 
their hands with MRSA, GRE, and Gram-negative bacilli 
when they come into contact with colonized or infected 
patient’s environments (Bernard et al. 1999; Bhalla et al. 
2004). High-touch surfaces, devices, equipment, and life-
support systems require advanced disinfection techniques in 
hospital settings to avoid contaminating inanimate surfaces 
(Hayden et al. 2008; Adams et al. 2017). Bacterial contami-
nation may also occur through transmission directly from 
infected or colonized patients or through the hands of HCWs 
(see Fig. 2). Objects near patients are more likely to become 
contaminated, and infections frequently lead to higher lev-
els and rates of bacterial contamination (Rohr et al. 2009; 
Bonten et al. 1996). Huslage et al. (2010) found out that the 
bed rails, bed surfaces, supply carts, over-bed tables, and 
intravenous pumps were among the most frequently touched 
surfaces by HCW (Shams et al. 2016). In addition, medical 
equipment and devices like hemodialysis machines, infusion 
pumps, stethoscopes, electronic thermometers, and blood 
pressure cuffs may act as potential reservoirs for the trans-
mission of nosocomial infections (Sehulster 2003).

In addition, there is a growing consensus that bacteria in 
dry surface biofilms may contribute to HAI. The risk of HAI 
is also derived from the direct transfer of pathogens from 

biofilms to patients, especially when cleaning and decontam-
ination are insufficient. By touching surfaces, individuals, 
including staff, patients, and visitors, might acquire infec-
tions on their hands and fingertips. They may then inoculate 
a possible infection site or spread pathogens to additional 
sensitive regions. This raises serious concerns regarding 
the effectiveness of typical cleaning techniques for hospi-
tal surfaces. These microbial occupants develop defense 
mechanisms to ensure their survival while also increasing 
their chances of transferring to more favorable environments 
(Chowdhury et al. 2018; Tahir et al. 2019). As a result, a 
biofilm can be thought of as a “microbial village,” with a 
distinct infrastructure that supports a diversified population 
of bacteria, viruses, fungi, protozoa, and spores contained 
within extracellular polymeric substances (EPS) (Lindsay 
et al. 2006).

One study focused on the occurrence of dry biofilms 
on hospital surfaces, which has gotten minimal attention 
compared to wet biofilms associated with medical devices. 
According to the study, the practically ubiquitous presence 
of multi-species dry biofilms of Gram-positive bacteria were 
discovered in three UK hospitals. Notably, MRSA was found 
in 58% of the samples. Despite a uniform physical cleaning, 
there were differences in dominant species among hospi-
tals. The study further emphasized the possible underesti-
mating of dry biofilms’ significance in HAI transmission, 
particularly when combined with ineffective cleaning tech-
niques. It implied that present cleaning processes should be 
reassessed and improved in order to successfully manage 

Fig. 2  Spread of nosocomial infection posing threat to the environment and individuals versus best practices and strategies for preventing it
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this often-overlooked source of infection (Ledwoch et al. 
2018). In addition to this, another study (Chowdhury et al. 
2018) looked into the transmission of dry surface biofilms 
(DSBs) in hospitals. The researchers sought to determine 
if DSBs were potentially transferred from surfaces to the 
hands of HCWs. As per findings, 5.5–6.6% of DSB bacteria 
were reported to be migrated to hands with one touch. The 
study confirmed hands as the potential transmission route 
of DSB bacteria, implying their persistence as pathogen 
sources and emphasizing their potential significance in HAI 
transmission.

To counter such challenges, one study (Desrousseaux 
et al. 2013) sought to investigate potential solutions associ-
ated with device-related infections in healthcare. A specific 
technique involved coating or covalently bonding a bioc-
idal chemical onto materials, with the potential for bioc-
ide release or contact killing without release. The study 
emphasized on modifying the chemical or physical surface 
characteristics of materials to prevent microbe attachment. 
Another study (Uneputty et al. 2022) highlighted the mul-
tifunctional approaches to combat biofilms on surfaces, 
categorized into four main groups: anti-adhesive, contact 
active, biocide attached/biocide release, and topographical 
alteration to prevent bacterial biofilms on the surface. The 
anti-adhesive procedures may attempt to minimize bacterial 
attachment to solid surfaces, hence preventing contamina-
tion, contact active techniques may entail attaching antibac-
terial chemicals to offer continuing antibacterial properties, 
biocide attached/biocide release may combine the controlled 
release of toxic substances to combat microorganisms on 
surfaces, and topographical alteration may generate minor 

structural elements that target biological components in 
order to eradicate microorganisms. To date, fresh approaches 
to addressing the challenge of biofilm formation on surfaces 
are being investigated, particularly in response to the grow-
ing problem of antibiotic resistance.

Understanding the microbial transmission pathways

Patients may get transmitted from a wide variety of sources 
such as HCWs who have not properly or routinely main-
tained hand hygiene, low- and high-touch surfaces, air and 
water, which subsequently increases the risk of infection and 
prolong the recovery period. Aspiration, inhalation, contact 
with infected people, exposure to contaminated surfaces or 
medical equipment, and numerous other ways could be a rea-
son of microorganism or virus transmission. These possible 
routes of transmission highlight the need of putting in place 
comprehensive infection prevention strategies in hospital 
settings, including rigorous hand hygiene, regular surface 
cleaning, and disinfecting medical equipment (Sehulster 
2003).

Airborne and water transmission

Concerning airborne transmission, direct transmission can 
occur when individuals come into contact with substantial 
aerosolized droplets (> 5 μm) coming from the infected 
individual’s oral or nasal secretions, while indirect trans-
mission can take place when tiny spores (1–5 μm) contain-
ing viable microorganisms shed over long distances with 
the help of air circulation (Fig. 3) (Gamage et al. 2016). 

Fig. 3  Major origins, reservoirs, and trends in the transmission of pathogens in patients admitted and visiting to hospitals
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Nontuberculous mycobacteria (NTM) and Gram-negative 
(GN) bacteria are commonly linked to the first four modes 
of transmission, including contact, droplet, airborne, and 
vector-borne, according to studies by Sehulster et al. (2003). 
In addition to being linked to various different mechanisms 
of transmission, NTM and Acinetobacter species may also 
thrive in moist settings. According to the study, a number of 
sources, including air conditioning units, ornamental foun-
tains, showers, respiratory therapy devices, humidifiers, and 
taps, develop contaminated aerosols that are associated to 
pathogen outbreaks in hospital settings (Kanamori et al. 
2016). According to studies by Beggs et al. (2015), S. aureus 
can travel through the air from contaminated mattresses and 
clothing, depositing itself on a variety of surfaces. It has 
been reported that patients may come into direct contact 
with Legionella and other GN bacteria like Pseudomonas 
through the aerosols produced by showers and faucets. 
Moreover, microorganisms including Legionella, Pseu-
domonas, Aeromonas, Burkholderia, Acinetobacter, ESBL-
producing and carbapenem-resistant Enterobacteriaceae, 
Aspergillus, and NTM, are able to transmit through water 
causing rise in HAIs. The healthcare environment, especially 
hospital water systems, is shown to be a significant reservoir 
of Pseudomonas spp. According to studies, hospital water 
systems are the primary source of P. aeruginosa propagation 
(Juan et al. 2017).

Transmission through direct contact or indirect contact

Vulnerable patient groups, particularly those who work in 
healthcare facilities, are at high risk of developing infections 
owing to these kinds of transmission. Another study found 
that HCWs who come into contact with patients who are 
sick either directly or indirectly through contaminated high-
touch surfaces may pass along MRSA to patients (Boyce 
et al. 1997). Person-to-person transmission of VRE when 
exposed to contaminated HCW hands, contaminated sur-
faces, and equipment such as thermometers and electrocar-
diogram machines, as well as previous exposure to VRE-
contaminated rooms, according to one recent study, are all 
risk factors for VRE acquisition (Drees et al. 2008; Falk 
et al. 2000). Pathogenic bacteria, such as C. difficile, VRE, 
and MRSA, have been found frequently persist on hospital 
floors and may come into contact with HCW by means of 
frequently touching objects (as schematically depicted in 
Fig. 3), yet they are often overlooked as potential sources of 
infection transmission (Koganti et al. 2016).

Transmission through low or high‑touch surfaces

Additional studies have shown a number of surfaces that 
are susceptible to infection and aid in the spread of patho-
gens, including those near patients like bedrails, bedside 

tables, taps, and knobs in wards (Allegranzi et al. 2007). 
Additionally, “non-classical” surfaces such as oxygen 
humidifiers, medical workers’ personal computers, and 
the protective lead jackets worn in operating rooms are 
all linked to transmission. Considering the possibility 
that they could get infected while performing caregiving 
responsibilities by getting interaction with contaminated 
objects or infected individual (Allegranzi and Pittet 2009; 
Squeri et al. 2016). Another research discussed concerning 
the prevalence of A. baumannii, a bacterium which is con-
sidered more resistant to dry surfaces than E. coli and can 
survive there for longer than 4 months and can remain on 
glass surfaces for more than 20 days when left at ambient 
temperature. This demonstrates the toughness of A. bau-
mannii and its ability to survive for a long time on inani-
mate objects (Lee et al. 2011). Clostridium difficile, a type 
of bacteria which is known to cause HAI, has been identi-
fied on several high-touch surfaces and equipment within 
healthcare facilities. Moreover, the hands of healthcare 
professional, cellphones, computers, doorknobs, medical 
equipment such as pulse oximeter finger probes and elec-
tronic rectal thermometers, prescription carts, bed, mop 
pads, portable beds, and sinks, aid in transmission of vari-
ous pathogens (Sooklal et al. 2014; Dumford et al. 2009; 
Best et al. 2010). In neonatal and critical care units, which 
are high-risk environments for contamination, there has 
been an increase in the frequency of infections brought on 
by C. parapsilosis over the past 20 years (Guinea 2014). 
Based on a review (Ramasethu 2017), HCW represent a 
substantial source of microorganism transmission in neo-
natal care. According to the analysis, bacterial counts on 
healthcare professionals’ hands range from 3.9 ×  104 to 
4.6 ×  106 CFU/cm2 (Bolon et al. 2016), potentially con-
taining bacteria such as S. aureus, K. pneumoniae, Entero-
bacter, Acinetobacter, and Candida. Human skin sheds live 
organisms on a daily basis, which adds to contamination 
of patient clothing, bed linen, and furnishings. Transmis-
sion occurs when healthcare personnel' hands are not prop-
erly washed or disinfected before and after contact with 
patients. Even in the absence of prior colonization, C. par-
apsilosis can survive and proliferate in hospital settings by 
horizontal transmission from medical devices or outside 
sources (Trofa et al. 2008). According to the literature 
(Schechner et al. 2011), contamination by P. aeruginosa 
is also found out as a significant cause of several kinds 
of infections in healthcare such as burn wound infections 
BWI, and NB, with a mortality rate exceeding 30%. These 
infections can be quite threatening for individuals who are 
having a weaker immune. The importance of improved 
cleaning procedures in reducing the spread of MRSA and 
VRE in hospital rooms previously occupied by patients 
colonized with these pathogens were demonstrated in 
one of the studies by Datta et al. (2011). Moreover, the 
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recent investigations by Akiko et al. (2017) examined the 
S. aureus isolates swabbed from the palms and fingers 
of mobile phone users and from their respective mobile 
phones. The findings imply that mobile phones may serve 
as a potential reservoir for the spread of infection in hos-
pital environments. The study emphasized the signifi-
cance of using proper hand hygiene prior interacting with 
patients, which remains to be the most effective way to 
decrease HAIs. Even so, MRSA and S. aureus could also 
cause serious infections notably CRI, BI, lung infections, 
and wound infections (Bal et al. 2016). Staphylococcus 
aureus is noteworthy as the second-most common cause 
of HAIs poses a serious threat to the safety of patients 
and their treatment (Smith and Hunter 2008; Dantes et al. 
2013). Research has demonstrated that the presence of a 
biofilm matrix can increase resistance to disinfectants, 
as it encapsulates and protects the underlying cells (Per-
cival and Cutting 2010; Abdallah et al. 2015). Another 
recent study by Dancer et al. (2019) used well-established 
staphylococcal epidemiology techniques to investigate S. 
aureus transmission routes within a 10-bed intensive care 
unit. Over the course of 10 months, the study thoroughly 
screened a variety of hand-touch surfaces, staff members’ 
hands, the air, and patients, followed by spa typing, epide-
miological analysis, and whole-genome sequencing. The 
findings showed that there were several cases of transmis-
sion between patients and different ecological repositories. 
The findings provide significant data for the implementa-
tion of successful preventative and control strategies as 
well as for a better understanding of the epidemiology 
of S. aureus in hospital settings. It is also observed that 
S. aureus can easily be spread by the touch and has been 
proven to stay on surfaces for lengthy periods of time, 
up to 7 months (Kumari et al. 1998). Among the most 
recent investigations, Samreen et al. (2023) evaluated the 
prevalence of S. aureus in the hospital environment by 
collecting 245 environmental samples from a 1030-bed 
tertiary care hospital. The percentage of S. aureus con-
tamination on hospital environmental surfaces in the cur-
rent study was noted to be 19.1% which was comparable 
to prior research in Pakistan (Khattak et al. 2015). The 
hospital environment’s role in the transmission of HAIs 
is still being debated, but there’s scientific evidence that 
nosocomial bacteria can exist as a significant reservoir in 
various hospital environments such as surfaces, medical 
equipment, and water systems. Contamination can occur as 
a result of patients, their family, or healthcare employees, 
while improper antibiotic administration may result in the 
selection of multi-drug resistance microorganisms that can 
thrive and spread within the hospital. Additionally, health-
care workers behavior can facilitate pathogen cross-trans-
mission via environmental and patient-to-patient routes. 
Proper and routine hospital environmental cleaning, 

antibiotic management, and educational initiatives aimed 
at promoting appropriate behavior among healthcare staff 
are potential answers to this problem.

Strategies for tackling MDRO and mitigating 
antibiotic resistance in nosocomial infections

In the current scenario, patients referred to hospitals fre-
quently acquire infections triggered by MDR bacteria, which 
frequently leads to complications and increased mortality 
rates. The transmission of these diseases in the healthcare is 
linked to a number of different circumstances. It is critical to 
implement preventive measures at several levels to precisely 
address these elements in order to disrupt the transmission 
chain (Schinas et al. 2023). Preventive measures such as 
isolation protocols and environmental cleaning are critical 
in preventing MDR bacteria cross-contamination and dis-
semination. Despite ongoing issues in achieving compli-
ance, monitoring and resolving hand hygiene adherence are 
critical components of healthcare hygiene practices. Inno-
vative technology, such as advanced disinfection methods 
and stringent monitoring systems, can help to reduce the 
impact of MDR bacteria transmission (Boyce et al. 2016a; 
Brêda, et al. 2021). Furthermore, advances in healthcare 
architecture and hospital engineering have demonstrated 
remarkable possibilities for combating MDR transmission 
(Elbehiry et al. 2022).

Hand hygiene

The recently published update of “Strategies to Prevent 
Healthcare-Associated Infections through Hand Hygiene” 
by the Society for Healthcare Epidemiology of America 
(SHEA), which was put together through a robust joint effort 
by numerous notable organizations, has comprehensively 
addressed the essential practices for preventing HAIs in the 
healthcare, particularly in ICU (Glowicz et al. 2023). Advo-
cating for the hygiene of the hands and fingernails, using 
alcohol-based hand sanitizers (ABHS) in various clinical 
situations, and complying to hand hygiene protocols out-
lined by the CDC or WHO (prior to patient contact, before 
aseptic procedures, after exposure to body fluids, following 
patient contact, and after touching the patient’s surroundings 
are practical guidelines that promote hand hygiene in acute-
care settings (Chou et al. 2012). Promoting short, natural 
fingernails and making hand moisturizers widely available 
are essential for reducing dermatitis among healthcare work-
ers. Essential practices also include selecting suitable hand 
hygiene products, assuring supply accessibility, proper glove 
use, and minimizing environmental contamination near 
sinks and drains. According to research, altering washbasin 
modification, such as increasing washbasin bowl depth and 
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lowering water flow rates, reduces the danger of infection 
dispersion significantly (Gestrich et al. 2018).

Cleaning of environment

Mechanical, chemical, and human factors are the three basic 
categories of environmental hygiene interventions. Mechani-
cal interventions, such as plastic isolators, negative pres-
sure ventilation, and air curtains in patient rooms, as well as 
technologies like as ultraviolet (UV) disinfection and port-
able high-efficiency particulate absorption (HEPA) filters, 
have shown efficacy in reducing certain multidrug-resistant 
(MDR) infections and bacterial contamination on diverse 
surfaces and equipment in specific environments (Peters 
et al. 2022). Chemical interventions are frequently used 
in efforts to sterilize environmental reservoirs of MDRs. 
Testing numerous active chemicals and formulations, such 
as ethanol, propanol, formaldehyde, peroxides, inorganic 
chlorine releasers, and phenol derivatives, is the founda-
tion of sterilization efforts. When selecting disinfectants for 
use in healthcare, it is critical to evaluate their effective-
ness against a wide range of pathogens, including bacteria, 
viruses, yeasts, mold spores, and bacterial spores (Tapouk 
et al. 2020).

Determining factors associated with colonization risk

Given the variable efficacy of preventative techniques 
against specific bacterial species, additional research is 
needed to find the best effective measures for preventing 
MDR bacterial colonization. High colonization pressure 
is typically associated with the proliferation of MDROs in 
healthcare settings, indicating an increased risk of patient 
cross-transmission. According to one study, colonization 
pressure was discovered as an independent risk factor for 
MDR bacteria in the ICU in a single-center prospective 
cohort research (Odds Ratio (95% CI) 4.18 (1.03–17.01), 
p = 0.046), emphasizing its importance in contributing to 
the spread of such organisms (Masse et al. 2017). The rec-
ognition of patient risk factors for MDR bacterial coloniza-
tion in healthcare is a proposed method that could serve as 
both a preventive intervention and a treatment strategy in 
certain patient populations, such as immunocompromised 
individuals.

Monitoring and responsible management of antimicrobials

The ability of physicians, chemists, microbiologists, and 
infection control specialists to work together effectively 
is essential to the success of these programs. Understand-
ing the role, paths, and patterns of contamination from the 
environment in the transmission of MDR bacteria enables 
physicians and researchers to implement better procedures, 

reducing risks in healthcare settings. Environmental cul-
tures, including as swab tests, agar slides, and air and water 
samples, provide vital information about the presence and 
persistence of MDRs in the environment. These approaches 
aid to establishing a clearer link between environmental con-
tamination and pathogen uptake. Direct observation, as pre-
viously stated, as well as the use of fluorescent markers and 
adenosine triphosphate (ATP) bioluminescence, are other 
approaches for objectively assessing environmental cleanli-
ness (Chen et al. 2021).

Contemporary technological innovations in antimicrobial 
coatings

Active antimicrobial coatings Antimicrobial coatings with 
active qualities contain antiseptics or antibiotics that are 
either ionic or covalently linked inside a polymeric matrix 
(Polívková et  al. 2017). Coatings containing noble met-
als can be injected into or coated onto polymeric surfaces 
as an alternative strategy (Dizaj et  al. 2014). Bactericidal 
characteristics are exhibited by certain metallic compounds 
or their oxides, including silver (Ag), selenium (Se), silver 
oxide  (Ag2O), titanium dioxide  (TiO2), iron oxides  (Fe2O3, 
 Fe3O4), zinc oxide (ZnO), and copper oxide (CuO). These 
materials can be used in the form of nanoparticles or ions, 
especially when the increased toxicity of the bulk metal is a 
concern for in vivo applications (Barnes et al. 2019; Gusev 
et al. 2022; Kranz et al. 2019; Toplitsch et al. 2021). Due 
to its exceptional antimicrobial activity, coatings contain-
ing zinc oxide (ZnO) and silver oxide  (Ag2O) have recently 
gained popularity, owing to breakthroughs in nanotechnol-
ogy (Dizaj et al. 2014).

Antimicrobial metal coating For more than three decades, 
silver has been widely studied for its antibacterial character-
istics. It has been used successfully in applications such as 
urinary catheters. It is now being investigated as a covering 
for endotracheal tubes (ETTs), which are a substantial con-
tributor to VAP infections. Silver coatings have now been 
commercialized for medicinal uses due to their success in 
several clinical trials (Kollef et al. 2008).

Antimicrobial photodynamic therapy (aPDT) Antimicrobial 
Photodynamic Therapy (aPDT) is made up of three main 
components. It requires a visible light source with a cer-
tain wavelength to properly activate the photosensitizer, a 
non-toxic photosensitizer (PS), and the presence of ambi-
ent oxygen. When initiated, this process produces cytotoxic 
reactive oxygen species (ROS), which cause the targeted 
cells to be inactivated. It has recently emerged as a unique 
and noninvasive therapeutic approach, with success in treat-
ing localized and superficial infections caused by bacteria in 
biofilms, fungi, and viruses. This novel process offers novel 
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therapeutic approaches and has implications in dentistry for 
the treatment of biofilm-caused oral infections (Koshi et al. 
2011).

Therapeutic mouthwash Therapeutic mouthwash has the 
ability to improve oral hygiene by lowering dental plaque 
and gingivitis efficiently. Dental plaque, which is mostly 
made up of bacteria, creates a biofilm on teeth and can 
cause dental decay and gum inflammation. Mouthwash’s 
antibacterial qualities contribute to its antiplaque efficiency, 
using common antiseptic components such as chlorhexidine 
(CHX), Listerine and essential oils. CHX is widely used as 
a disinfectant in a variety of medical sectors, including der-
matology and surgery, due to its powerful antibacterial char-
acteristics (Lim 2008). One recent study (Liu et al. 2023) 
examined on how short-term gargling with chlorhexidine 
(CHX) and Listerine® mouthwashes affected oral flora in 
hospitalized patients. According to the findings, both mouth-
washes caused considerable changes in the composition of 
oral bacteria, with differences noted in the specific bacterial 
genera affected and the magnitudes of these changes. Nota-
bly, CHX had more significant effects, but its use has been 
linked to higher mortality, possibly due to nitrate-reducing 
bacteria. Listerine, despite exhibiting lesser magnitude 
changes than CHX, targeted bacterial species that were less 
related to nitrate reduction.

General practices for cleaning applied in healthcare

Microorganisms have the ability to survive on surfaces for 
extended periods of time and can transmit to patients through 
direct contact with nearby surfaces or indirectly through 
the hands of HCWs, particularly in situations where HCW 
hand hygiene compliance is low, with reported rates hover-
ing around 40% (Otter et al. 2011; Sunkesula et al. 2017). 
Many investigations have shown that if persistent surface 
contamination remains after terminal cleaning and disinfec-
tion, subsequent patients have a chance of contracting the 
same pathogen as the prior individual (Mitchell et al. 2015; 
Chen et al. 2019; Shaughnessy et al. 2011). The findings of 
the Researching Effective Approaches to Cleaning in Hos-
pitals (REACH) trial show that comprehensive environmen-
tal cleaning has a substantial influence on the prevention of 
HAIs (Mitchell et al. 2018). Various studies have suggested 
to implement a comprehensive cleaning strategy that must 
incorporate training, technique, product, audits, and commu-
nication components, and the performance and the knowl-
edge services staff could be improved (Mitchell et al. 2018; 
Mitchell et al. 2019a; Hall et al. 2020). Enhanced cleaning 
and disinfection techniques have been shown to reduce the 
prevalence of HAIs (Donskey 2013). Additionally, Dancer 
et al. (2009) demonstrated the inclusion of an extra environ-
mental cleaning services to perform enhanced hand-touch 

site cleaning in surgical wards having high prevalence of S. 
aureus resulted in a 32.5% reduction in microbial contami-
nation levels and a 26.6% decrease in new MRSA infections 
in comparison with control wards. Also, the enhanced ter-
minal cleaning resulted in a 94% reduction in contamination 
with epidemiologically significant pathogens, according to 
a prospective research by Rutala et al. (2018).

It is vital to distinguish between critical and non-critical 
surfaces as well as low-touch and high-touch surfaces when 
assessing risks related to patient care, staff safety, and patho-
gen transmission. Low-touch surfaces, such as floors and 
walls, are less likely to have contact with skin since they are 
not often handled by patients or HCWs. On the other hand, 
because it is close to patients and are frequently touched 
by HCWs, high-touch surfaces like bedrails, door knobs, 
and medical equipment pose a serious threat of spreading 
diseases (Weber et al. 2010; Kirk Huslage 2010; Adams 
et al. 2017; Otter et al. 2011; Boyce et al. 1997; Koganti 
et al. 2016; Sunkesula et al. 2017). The fact that surfaces and 
locations outside the patient zone, such hospital canteens or 
elevator buttons, can potentially host germs, makes them 
it a significant concern (Christiansen et al. 2004; Matthew 
Mulle and Armstrong 2018). However, critical surfaces have 
a higher risk of infection than non-critical surfaces since it 
comes into contact with objects like needles and intravenous 
catheters, as well as blood and intravenous catheters (Dis-
eases and Organisms in Healthcare Settings 2016; Friedman 
et al. 1996). As a result, there is a substantial risk of infec-
tion even from low-touch surfaces used for medical proce-
dures or the administration of intravenous medication. In 
order to reduce the transmission of infections, it is impera-
tive to adopt the proper cleaning and disinfection methods 
for all types of surfaces.

Cleaning is the process of physically removing dirt and 
dust until the area is clearly clean using water, either with or 
without detergent, and physical action. To reduce the danger 
of infection and prevent cross-contamination, disinfection, 
on the other hand, aims to eliminate the majority or all harm-
ful bacteria (Matthew Mulle and Armstrong 2018; Peters 
et al. 2018; Rutala et al. 2008). Disinfection is typically done 
in conjunction with cleaning to lessen the impact of organic 
matter and the amount of contamination. Because of this, 
normal cleaning and disinfection are frequently integrated, 
performed once daily on general wards, as well as in tar-
geted measures immediately after surfaces are contaminated 
with blood or other human fluids (Christiansen et al. 2004; 
Matthew Mulle and Armstrong 2018). If necessary, a disin-
fectant is often used for cleaning. Once a patient has been 
released, terminal cleaning and disinfection is carried out in 
order to stop the spread of dangerous infections to the subse-
quent patient using a hospital room. In this process, surfaces 
that are generally hard to reach when a room is occupied, 
including the mattress and other ones that could have gone 
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unnoticed during the patient’s stay, are cleaned in addition 
to those that are routinely cleaned (WHO 2019).

An overview of commonly employed disinfectants 
for cleaning and disinfection

There are a number of novel disinfection products on the 
market or in research, in addition to the frequently utilized 
disinfectants like alcohol, chlorine, aldehyde, amine, oxida-
tive (such hydrogen peroxide and peracetic acid), phenolic 
and quaternary ammonium compounds. They include liq-
uid disinfectants that contain enhanced hydrogen peroxide, 
peracetic acid and hydrogen peroxide combinations, hydro-
gen hypochlorite, and polymeric guanidine. Additionally, 
there are cleaning/disinfectant products that combine both 
functions available on the market (Matthew Mulle and Arm-
strong 2018; WHO 2019). However, with the benefits, there 
are several significant drawbacks of using such disinfectants 
that must be considered (see Table 3).

No‑touch UV disinfection systems: exploring 
microbial control strategies with disinfection 
technologies

Surfaces in health centers are frequently infected with 
harmful microorganisms that may endure routine clean-
ing and disinfection (Rutala and Weber 2013). The utili-
zation of hydrogen peroxide mist, vapor, or UV radiation 
is what has conventionally been the focus for most of the 
studies in regards of no-touch disinfection systems (Sim-
mons et al. 2013; Rutala and Weber 2016b; Sitzlar et al. 
2013). Additional no-touch methods, such as high-intensity 
narrow-spectrum light, quaternary ammonium fogging, 
and alcohol-mist (Jury et al. 2010), ozone gas, superoxide 
water, and steam vapor, have also been developed (Sexton 
et al. 2011). The use of no-touch automated disinfection 
(NTD) is a successful and promising method for lessen-
ing the prevalence of HAIs. NTD systems use a variety of 
disinfectants to clean surfaces and equipment in healthcare 
facilities, including vaporized hydrogen peroxide (VHP), 
hydrogen peroxide vapor (HPV), chlorine dioxide, gaseous 
ozone, dry mist of hydrogen peroxide (DMHP), and aero-
solized hydrogen peroxide (aHP). To increase the effective-
ness of these disinfectants, they are frequently combined 
with other substances including silver cations, aerosolized 
peracetic acid, quaternary ammonium compounds, high-
intensity narrow-spectrum (405 nm) light, ultraviolet (UV) 
light-emitting diode and pulsed-xenon UV (PX-UV) radia-
tion. Healthcare facilities can successfully lower the risk 
of HAIs by implementing NTD systems, which might also 
improve patient health outcomes, lower healthcare costs, and 
maximize patient satisfaction (Aljerf 2016). NTD systems 
are especially helpful in settings with complex equipment 

or high-touch surfaces when conventional cleaning and dis-
infection techniques are ineffective or impractical (Dancer 
2014; Rutala et al. 2008; Otter et al. 2014).

UV radiations

When compared to aHP systems, germicidal UV-C radia-
tion disinfection is much quicker. It provides methods that 
are controlled and effective for eliminating bacterial con-
tamination specially within medical facilities. Healthcare 
facilities can offer a secure environment for patients and 
healthcare staff and lower the risk of HAI by implementing 
these no-touch disinfection techniques (Kelly et al. 2022; 
Andersen et al. 2006). UV light refers to radiation with 
wavelengths between 100 and 380 nm. It is divided into 
three zones: UV-A (320–380 nm), UV-B (280–320 nm), and 
UV-C (100–280 nm). UV-A, comprising about 6% of solar 
energy, is considered the least harmful. Conversely, UV-B, 
accounting for approximately 1.5% of UV light, can have 
adverse effects on plants. The most harmful type, UV-C or 
deep UV-C, poses severe risks to living organisms. Thank-
fully, the ozone layer acts as a natural shield, absorbing most 
UV-C radiation, safeguarding the Earth’s biosphere from its 
harmful impact. Short-wavelength UV radiation (UV-C in 
the 200–280 nm range) causes DNA/RNA damage in micro-
organisms, hindering cellular metabolism and replication. 
Employing portable UV-C lamps or ceiling-mounted fix-
tures for microbial decontamination significantly contrib-
utes toward the disinfection processes (Guerrero-Beltr and 
Barbosa-C·novas 2016; Hollosy et al. 2002; Conner-Kerr 
et al. 1998).

Development of UV‑based technologies for disinfection 
purpose

Mercury vapor technologies Low-pressure mercury (Hg) 
vapor lamps are the conventionally used in UVGI air dis-
infection applications. Although these lamps resemble con-
ventional Hg fluorescent bulbs, there are two key distinc-
tions. First off, there is no fluorescent phosphor in the lamp’s 
tube. Second, fused quartz is employed to build the tube 
rather than glass. Commercially available lamps are essen-
tially divided into two groups: low output powered by tradi-
tional magnetic ballasts; high output powered by electronic 
ballasts (Van Osdell et al. 2002). Many variables, including 
lamp pressure, electrical current, voltage, excitation wave-
form, discharge ignition, and internal gas composition, have 
an impact on the energy production and spectrum properties 
of lamps. The high-output lamps are driven at greater power 
by increasing the current input into the bulbs to produce 
more output radiation, whereas low-output lamps are nor-
mally operated at low power. LP amalgam lamps are one of 
the newer technologies produced by recent improvements in 
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lamp hardware which can have input conversion efficiencies 
that are greater than 38%, and operate at higher tempera-
tures (Miller et al. 2013). A germicidal lamp emits UV radi-
ation in the 200–300 nm region (Ryan et al. 2010; Kowalski 
et al. 2009). LP mercury systems do not have spectral emis-

sion profiles. They effectively emit monochromatically at 
254 nm. The very small 185 nm peak is filters by the quartz 
sleeve (Kowalski et al. 2009). In contrast, an MP lamp emits 
a wide spectrum of wavelengths from 200 to 600 nm and is 
mostly utilized for advanced oxidation, water treatment, and 

Table 3  Summary of benefits and drawbacks of conventionally used disinfectants for cleaning and disinfection

Disinfectants used Benefits Drawbacks References

Alcohol (60–80%) Effective against bacteria, fungus, 
viruses, mycobacteria

Harmless
Inexpensive
Rapid acting
Non-staining
Non-corrosive
Can be submerged for cleaning

Requires cold storage
Requires a ventilated environment 

for storage
Flammable
May dissolve shellac lens mount-

ings
Coagulates protein
Can harden or swell plastic tubing
Harmful to silicone
Can cause glue to degrade
Can render brittleness
Neutralizes organic materials

Sehulster (2003), Rutala and Weber 
(2016a), Canada (1998), Omid-
bakhsh et al. (2014)

Sodium Hypochlorite (Bleach) Effective against bacteria, fungus, 
viruses, mycobacteria

Inexpensive
Quick acting
Non-flammable
Resistance to water hardness
Safe and dependable

Requires a higher concentration to 
effectively serve against micro-
organisms

Corrosive to metals
Can be neutralized by organic 

material such as blood
Can cause skin irritation
Should be immediately used after 

dilution
Should be stored in closed con-

tainers
Should be stored away from heat
Can cause degradation

Rutala and Weber (2016a), Canada 
(1998), Han et al. (2015)

Hydrogen Peroxide Solution 
(0.5%)

Non-toxic
Environmentally Sage
Works swiftly
Non-corrosive
Non-flammable
Non-staining
Active with organic compounds
Serve as good cleaning agent

Should not be used on non-ferrous 
metals such as copper and brass

Rutala and Weber (2016a), Canada 
(1998), Rutala et al. (2008)

Hydrogen Peroxide Solution 
(4–5%)

Harmless
Provides environmental protection
Effective against spores

The gel formation allows the 
disinfectant to stick to vertical 
surface

Expensive
Not recommended for screens, 

monitors, televisions

Rutala and Weber (2016a), Han 
et al. (2015)

Phenol Non-flammable
Non-staining
Can serve as additional detergent 

for cleaning purpose
Effective against microorganisms

Poses threat to infants and new-
born

Not recommended to apply it on 
equipment that comes near to 
infants

Not recommended to apply them 
to areas that come into contact 
with food

Has the ability to absorb through 
the skin

Leaves a coating on ambient 
surfaces

Penetrates porous materials

Rutala and Weber (2016a), Canada 
(1998), Han et al. (2015), Rutala 
et al. (2008)
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surface treatment (Kowalski et  al. 2009; Kowalski 2009). 
Mercury-based UV-C lamps are still employed in UVGI 
systems despite the fact that Minamata Convention on Mer-
cury’s 2013 which made a stipulation against any device 
containing mercury be banned by 2020 for the protection of 
human health and the environment. Nonetheless, as shown 
by recent research in this field, attempts are still being made 
to substitute out such lamps with UV-C-LEDs (Kessler 
2013). The production of ozone using LP mercury lamps 
is constrained by technical and financial factors including 
efficiency and lamp lifetime, according to one of the recent 
researches by Levin et al. (2013). Nevertheless, LP lamps 
are now more efficient and dependable as a source of vis-
ible (V) vacuum UV ozone formation. In one research, the 
author contrasts the effectiveness of LP UV irradiation with 
UV-LEDs against E. coli and MS-2. The study achieved 
4-log10 reductions in E. coli and reduction in non-enveloped 
virus (MS-2) with both lamp and LEDs at 260 nm (Sholtes 
et al. 2016).

Limitations Despite its advantages and germicidal 
potency, the lamp continues to have a lot of shortcom-
ings. For monochromatic performance, the lamp works at 
around 130 degrees Celsius, and for polychromatic activ-
ity, at a minimum temperature of 300 °C up to more than 
500 °C. Also, MP only have a maximum lifespan of 8000 h 
before they need to be replaced, and LP have a limited 
lifespan of 8000–10,000 h throughout the germicidal UV 
lifecycle.

Development of  PX‑UV technologies PX-UV, which uses 
intense UV light pulses to deliver a powerful germicidal 
effect, is a possible alternative to traditional UV technolo-
gies. Since PX-UV exposure is rapid and intense, it could 
take less time to reach fatal dosages, making it a desirable 
alternative. PX-UV light, as opposed to other UV lamps, 
may be more efficient due to its broad spectrum and higher 
intensity. In a laboratory environment, PX-UV is a strong 
substitute for conventional UV methods for producing ger-
micidal effects (Levin et al. 2013). According to study by 
Haddad et  al. (2017), using PX-UV as an additional step 
to a regular cleaning routine causes levels of bacterial con-
tamination to drop. Studies by Jinadatha et al. (2014, 2015) 
found PX-UV as an effective technology by successfully 
reducing the presence of identified pathogens in compari-
son with conventional manual room terminal cleaning by 
offering an efficient and effective method of disinfection. A 
source of UV that is not abundantly observed in commercial 
disinfection equipment is xenon. The absence of mercury 
vapor has been described as one of its primary benefits over 
LP. In contrast to mercury, it produces UV radiation using 
Xenon gas, which hold promise in generating UV-C with 
a wavelength range of 185–600 nm (Chemaly et al. 2014; 
Bolton et al. 2008).

Limitations The primary disadvantages of xenon lights 
are related to their operational requirements, which result in 
significant power consumption and high working tempera-
tures of about 500 °C, requiring considerable maintenance, 
warmup requirement etc. Moreover, the lamp’s lifespan is 
limited and its output light consistency is inefficient, neces-
sitating frequent lamp replacement that simultaneously add 
huge cost to the users (Lamont et al. 2004).

Development of  UV‑LED technologies The research and 
development industries have given UV-LED technology a 
significant amount of focus, which has caused a surge in 
UV-LED producers in recent years. UV-LEDs have proven 
to be a strong contender, especially for disinfection appli-
cations, due to the rapid advancement that is replacing 
conventional disinfection techniques. Advancements in 
nitride semiconductors have led to the commercial avail-
ability of UV-C LEDs. III-nitrides, which emit UV light 
at wavelengths spanning from 210 to 365 nm, are the most 
widely used UV-LED materials. Examples include gallium 
nitride (GaN), aluminum nitride (AIN), and aluminum gal-
lium nitride (AGaN) (Jang et al. 2010). According to recent 
research, UV-LEDs are a useful tool for disinfecting water, 
food, and healthcare applications since they are most effi-
cient at germicidal activity with wavelengths between 100 
and 300  nm (Khan et  al. 2005), since Pankove et  al. cre-
ated the first AGaN LED in 1972 (Crawford et  al. 2005), 
which have advanced in a remarkable way. These LEDs 
have broad spectrum, spanning from infrared to UV spec-
tral ranges attributed to the widespread usage of group III 
nitride materials (Pankove et al. 1873). The development of 
high-efficiency deep UV-LEDs as a potential replacement 
for low-pressure mercury lamps has been encouraged by the 
International Minamata Convention of 2013, which aims 
to protect the environment. These LEDs have flexibility to 
change the light-emitting band by modifying the epitaxial 
structure, making them suitable for a variety of applica-
tions. It should be noted, nevertheless, that some organic 
substances can release UV-C radiation. Organic molecules 
are colorless in solution and transparent to high-energy light 
in the UV (200–400 nm) and visible (400–700 nm) regions 
of the electromagnetic spectrum (Han et al. 1998; Lambert 
et al. 1998).

Limitations In spite of the numerous advantages of UV-
LEDs, such as their potent antibacterial properties, com-
pact package sizes, extended lifespan, affordability, and 
low operating voltage and temperature, they do have certain 
limitations. Notably, UV-LEDs tend to offer lower intensity 
and face challenges in achieving high irradiance at longer 
distances, in comparison with traditional lamps. However, 
recent research has indicated the possibility of enhancing 
the intensity and improving the disinfection capabilities by 
integrating multiple arrays of LEDs into a single circuit.
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Overall, the use of no-touch disinfection sources that 
employ UV-C is replacing the use of chemical disinfect-
ants in the context of environmental cleaning, which is 
experiencing a technological revolution depicted in Fig. 4. 
Despite the fact that UV-C has been shown to be effective 
against bacteria and viruses, advances in UV-C technology 
have compelled professionals to come up with a tool that is 
robust, energy-efficient, operates at lower temperatures, and 
is inexpensive. In such regards, UV-C SMD LED sources 
have exhibited various advantages to accomplish overcome 
the limitation posed by traditional UV lamps. The compari-
son of aforementioned commercially available UV sources 
is compared in Table 4.

UV absorption, penetration, spectral power 
distribution (SPD), and penetration depth to human 
skin

Radiation having wavelengths between 100 and 380 nm 
is referred to as UV light. UV-A (320–380 nm), UV-B 
(280–320 nm), and UV-C (100–280) are the three zones 
that fall under such category (Guerrero-Beltrán et  al. 
2004). UV-A’s spectrum is thought to be the least dam-
aging region of the UV radiation spectrum and makes up 
around 6% of all solar energy. Contrarily, UV-B is known 
to have a variety of negative impacts on plant while mak-
ing up just around 1.5% of the entire UV light spectrum. 

Fig. 4  The progression of technology from traditional methods to 
modern innovations. A Microorganism and pathogen transmission 
pathways, B manual cleaning method by employing liquid disinfect-

ants, C robotic disinfection systems that use mercury vapor or Xenon 
gas for UV– C generation, D UV-C LEDs directly mounted over 
SMD chips which comes in various package sizes

Table 4  Comparison of commercially available UV technologies

Mercury vapor lamp PX UV lamp LEDs References

Power Requirement (W) ∼15–1000  ∼500  1-10 Kushwaha (2011), Miyashita et al. (2001), Arques-
Orobon et al. (2020)

Warm up requirement Yes Yes No Kushwaha (2011), Sheikh et al. (2023)
Warm up time (min) ∼15  No No Sheikh et al. (2023), NLPIP (2010), Gaston et al. (2012)
Heat generation (°C) ∼500–950  ∼500  Negligible Sheikh et al. (2023), Gaston et al. (2012)
Lifecycle (h) ∼8000  ∼463  ∼9000/15,000 Gaston et al. (2012), Rajkhowa (2020)
Fragile Yes Yes No Kushwaha (2011)
Mercury content (mg/lamp) 5–200  No No Bolton et al. (2008)
Hazardous Yes Yes No Kim et al. (2016)
Maintenance Yes Yes No Sheikh et al. (2023), Claus (2021)
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The most harmful kind of UV radiation, known as UV-C 
or deep UV-C (Sharma and Demir 2022), is capable of 
severely damaging living organisms. Yet, the ozone layer 
in the stratosphere serves as a natural filter and absorbs 
most UV-C radiation, protecting the Earth’s biosphere 
from its negative affects (Hollosy et al. 2002). Microor-
ganisms undergo DNA/RNA damage from short-wave-
length UV radiation in the 200–280 nm range, or UV-C. 
This damage actively prevents cellular metabolism and 
replication. Using either portable UV-C lamps or ceiling-
mounted UV-C light fixtures to irradiate various surfaces 
and spaces for microbial decontamination can enhance the 
disinfection effectiveness of UV-C radiation (Kowalski 
et al. 2009). Pyrimidine dimerization is associated with 
increased incidence for the photoinduced harm caused 
to microorganism’s DNA and RNA. Particularly, thy-
mine, which is only found in DNA, produces cyclobu-
tene dimers when exposed to UV light. This dimerization 
prevents nucleic acid replication, and even when replica-
tion does occur, it typically produces errors that make 
the microbe unviable (Conner-Kerr et al. 1998). UV-A 
is nearly visible and is known to cause damage to skin 
cells. Due to its shorter waveband, UV-B is also a signifi-
cant contributor to skin damage and sunburn throughout 
the day. Both UV-A and UV-B cause harm to our skin 
because of its deep penetration into human tissue (Kow-
alski 2009). It is known that all UV wavelengths have 
some photochemical effects, but high-energy photons 
in the UV-C range preferentially harm cells as they are 
absorbed by proteins as well as DNA and RNA (Fig. 5A). 
The germicidal peaks between 260 and 265 nm, which 
also happens to be when bacterial DNA and RNA absorbs 
the most UV energy (Kowalski et al. 2009). Figure 5C 
depicts spectral comparisons between different UV light 
sources in relation to the typical absorption spectra of 
DNA/RNA (also known as the germicidal effectiveness 
curve (GEC)) and the absorption spectrum of proteins. 
As demonstrated in Fig. 5C, low-pressure mercury lamps 
are particularly effective at killing pathogens since they 
emit the majority of their optical output (around 85%) 
at a wavelength of 254 nm, which is quite close to the 
GEC peak (260–265 nm). Recently, excimer lamps have 
also gained popularity due to their emission at 222 nm, 
which is thought to be safer due to their shallow depth 
of penetration in human tissue (Fig. 5B). The 254 nm 
UV-C range is largely absorbed by DNA/RNA, as shown 
in Fig. 5B, and it can penetrate further into the epider-
mal layer of the human skin and disrupt DNA in skin 
cells, which may lead to the development of cancer. The 
polychromatic emission pattern of MP UV lamps has a 
strong peak at about 365 nm. Figure 5C illustrates the 
monochromatic emissions of LP UV lamps, which are 
instead centered around 254 nm. LP UV lamps have been 

used in disinfection as a result because their emission is 
close to the germicidal curve’s peak (Schalk et al. 2005). 
Because the far-UV-C wavelength range only penetrates 

Fig. 5  A The absorption spectrum for DNA and RNA, also known 
as the germicidal effectiveness curve, peaks at 265 nm (shown with 
a vertical dashed line). While the absorption spectrum for proteins 
tends to increase toward shorter wavelengths. B The wavelengths 
showing the depth to which UV radiation can penetrate human skin 
in addition to the degree to which it scatters. The penetration depth 
and scattering values are specifically 18 μm, 27 μm, and 32 μm over 
the wavelengths of 222 nm, 254 nm, and 265 nm, respectively. C The 
typical absorption spectra of DNA/RNA and proteins are compared to 
those of various UV-C light sources. Reprinted from “Bright Future 
of Deep-Ultraviolet Photonics: Emerging UVC Chip-Scale Light-
Source Technology Platforms, Benchmarking, Challenges, and Out-
look for UV Disinfection,” Kumar, ACS Photonics, Copyright 2022 
(Sharma and Demir 2022)
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a relatively small depth into human skin, excimer lamps 
are thought to be safer than mercury lamps (see Fig. 5B) 
(Sharma and Demir 2022).

Overall, while UV radiation is highly effective in disinfec-
tion, it possesses the ability to penetrate beyond the superficial 
layers of the skin and reach the epidermal layer where our skin 
cells are located. When UV radiation comes into contact with 
these skin cells, it has the potential to induce DNA disruption. 
This DNA disruption within skin cells can have severe con-
sequences, as UV-induced DNA damage is a well-established 
risk factor for skin cancers. Furthermore, Erythema devel-
ops as a consequence of a photochemical reaction in which 
the skin turns red as a result of high UV-B and UV-C light 
exposure, namely about 30 J/cm2 at a wavelength of roughly 
270 nm. Moreover, the initial challenge lies in the fact that 
UV-C light requires an unobstructed passage to an object in 
order to disinfect it efficiently. However, it is conceivable that 
the light will be obstructed by other objects or will only reach 
one side of the object. This is known as “shadowing,” and 
it indicates an increased risk of active pathogens remaining 
in places that are not exposed to light (Kowalski et al. 2009; 
Kowalski et al. 2009; Schalk et al. 2005).

Nevertheless, the compact size of UV-LEDs (Bolton et al. 
2008; Khan et al. 2005), on the other hand, stands out as a 
main advantage, allowing for the combination of single or 
several wavelength outputs to maximize pathogen inactiva-
tion. Furthermore, the availability of UV-LEDs in various 
compact sizes allows for easy integration into a wide range 
of applications, particularly those featuring intricate designs. 
When faced with challenges like shaded areas or obstructed 
passages that can impede traditional UV disinfection equip-
ment, UV-LEDs emerge as an ideal choice for fostering the 
development of handheld disinfection systems, employing UV 
SMD LEDs. This flexibility highlights UV-LEDs’ significant 
potential as a powerful tool in future advancements. In addi-
tion, the use of photocatalytic oxidation using titanium dioxide 
 (TiO2) coating and mild ultraviolet A (UVA) light to reduce 
bacterial contamination on surfaces has been explored as a 
promising alternative to conventional disinfection system in 
one study (Klaus et al. 2003). This method produces reactive 
OH-radicals that effectively kill microorganisms. Rather than 
using direct UV-C irradiation, the study deployed focused light 
guiding and a UVA-transmittant Plexiglass layer to ensure bac-
terial inactivation across the entire surface, overcoming the 
challenges posed by shaded and obstructed areas.

Recent studies on microbial inactivation using UV 
technologies

Mercury vapor lamps inactivation experiments

LPML, in particular, are frequently used as the main UV 
source for disinfection purposes on an industrial scale 

due to its high wall plug efficiency, which is over 30–35% 
(Koutchma et al. 2019). Furthermore, their monochromatic 
emission is close to the peak of DNA absorption which 
is about 260 nm (Fig. 7A). Various researches have been 
conducted to evaluate the efficacy of mercury vapor lamps 
against environmental bacteria. One of the studies by Cor-
rea et al. (2017) assessed the efficacy of a handheld device 
(Surface UV) against diverse clinical pathogens obtained 
from various surfaces of a public health hospital by employ-
ing LPML for treatment. The study showed reduction by 
a factor of 6.5, 6.7, 6.2, 5.4, 5.4 and 6.7  log10 inactivation 
against S. aureus, S. mutans, S. pneumoniae, E. coli, P. aer-
uginosa and C. albicans, respectively, upon exposure to the 
dose of 0.78 J/cm2, demonstrating a noteworthy reduction 
in microorganisms in the healthcare setting. Another study 
addressed the usage of germicidal mercury vapor UV lamp 
for treating airborne particles, including tuberculosis (TB). 
The researchers developed a test procedure in a 36  m3 room 
where bacterial samples are cultured. Upon treatment, the 
findings indicated that the concentrations of B. subtilis, Mic-
rococcus luteus (M. luteus), and E. coli were all suppressed 
by 50% and nearly 100%, respectively, by a single 15 W 
germicidal lamp(Miller and MacHer 2000). Another study 
aimed to determine at what extent an automated UV-C lamp 
could eradicate bioburden from hospital’s computer key-
boards. Upon treatment against Staphylococcus, Streptococ-
cus, Enterococcus, Pseudomonas, Pasteurella, Klebsiella, 
Acinetobacter, and Enterobacter, a reduction of greater than 
99% in bacteria was observed when pre- and post-UV decon-
tamination median CFU counts were compared. The study 
therefore validated the performance of UV lamps for disin-
fecting keyboards existed in healthcare (Gostine et al. 2016).

PX‑UV lamps inactivation experiments

Several researches have revealed the effectiveness of PPX-
UV in reducing the total environmental bioburden, which 
suggests its potential to be utilized in conjunction with 
standard cleaning techniques (Green et al. 2017). One study 
has shown the effectiveness of a UV-C disinfection system 
(Codonics D6000™) in lessening contamination on mobile 
device screens and protective cases. According to the study, 
the Codonics D6000™ PX-UV-C disinfection equipment 
managed to keep tablets and cell phones used in health-
care facilities disinfected following the routine treatment 
(Muzslay et al. 2018), proving Codonics D600™ as an effec-
tive tool for disinfection. Three distinct types of handheld 
electronic devices (HEDs) that are regularly used in hospi-
tals were identified as having infections in a various study. 
The effectiveness of employing UV-Smart® D25 to disin-
fect these devices with PX-UV-C radiation was investigated 
by the researchers (Cremers-Pijpers et al. 2021). The study 
employed 800 samples obtained from two departments. The 
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results showed that colony-forming organisms were present 
in more than 50% of the initial measurements in moderately 
or highly contaminated settings. Yet, compared to the origi-
nal measurement, 87% of samples following disinfection 
showed no signs of CFU. According to the study, the UV-
Smart® D25 could serve as an effective method for routinely 
disinfecting non-critical HEDs. In Japan, the effectiveness of 
PX-UV disinfection in reducing contamination of medical 
facilities was studied. MDRO containing C. difficile spores 
were subjected to PX-UV which are often found in hospitals. 
The results showed that PX-UV disinfection for 15 min sig-
nificantly reduced the growth of C. difficile spores by more 
than 3-log CFU/cm2, while PX-UV disinfection for 5 min 
significantly reduced the growth of all MDRO by more than 
5-log CFU/cm2. According to the study, clinical MDROs 
containing C. difficile responded effectively to PX-UV dis-
infection (Kitagawa et al. 2020). In one similar study, the 
research was carried out in 23 hospitals across the USA to 
validate the PX-UV disinfection’s capability for minimizing 
contamination on high-touch surfaces in operating rooms 
(ORs) following manual cleaning. Surface specimens from 
732 high-touch surfaces in 136 ORs were obtained. The 
results revealed that manual cleaning alone only eliminated 
67% of the bacteria from surfaces, whereas PX-UV disinfec-
tion reduced the number of positive surfaces to 38%, indi-
cating a reduction of 44%. According to the study, PX-UV 
disinfection, when used after deep cleaning, significantly 
lowers the contamination on high-touch surfaces specially in 
ORs (Simmons et al. 2018). The viral load on hard surfaces 
and N95 respirators was also examined by Simmons et al. 
(2021) to evaluate the performance of PX-UV disinfection 
system. According to the findings, the PX-UV disinfection 
for 1, 2, and 5 min lowered the viral load on hard surfaces 
by 3.53  log10, > 4.54  log10, and > 4.12  log10. N95 respira-
tors were disinfected with PX-UV for five mins, which 
lowered the pathogen load by > 4.79  log10. These findings 
confirmed the efficiency of PX-UV at reducing the load of 
SARS-CoV-2 on N95 respirators as well as on hard sur-
faces. Another study assessed the effect of portable PX-UV 
devices on the microbiological load in four Veterans Affairs 
hospitals. The study compared the manual cleaning and 
PX-UV disinfection at two locations. As compared to only 
25–30% with manual cleaning alone, the results showed 
that PX-UV significantly reduced aerobic bacteria counts 
and MRSA by 75.3 and 84.1%, respectively. The researcher 
recommends using PX-UV devices in routine cleaning to 
lessen the infectious burden typically brought on by aero-
bic bacteria and MRSA (Zeber et al. 2018). Another study 
looked at how well a PX-UV disinfection system worked to 
reduce the environmental bacterial load and pathogens that 
form biofilms on surfaces in clinical laboratories (Chen et al. 
2020). According to the results obtained, PX-UV was able to 
significantly reduce the colony counts of P. aeruginosa, S. 

aureus, and K. pneumoniae. The authors suggested the use 
of PX-UV as a potent UV source for disinfection in clini-
cal laboratories. In a similar research, another investigation 
examined PX-UV against two Candida species: C. auris and 
C. parapsilosis, that are commonly associated with epidem-
ics in hospital environments and persist on surfaces for a 
prolonged time. During a 5 min cycle at 1 m distance, the 
study reported 99.4 and 98.5% reduction in C. auris and in 
C. parapsilosis, respectively, making PX-UV a significant 
approach for disinfection (Maslo et al. 2019).

UV‑C LEDs inactivation experiments

UV-C LEDs have recently come into focus by researchers 
due to the several advantages over conventional lamps and 
robots. In one recently investigated study, Nunayon et al. 
(2020) evaluated the antimicrobial efficacy of upper-room 
UV germicidal irradiation LEDs (UR-UVGI-LEDs) at 
270 nm (schematically represented in Fig. 6) for disinfect-
ing bioaerosols in enclosed environments. The efficiency 
of the UR-UVGI-LED at 270 nm was contrasted with that 
of the more traditional UR-UVGI mercury vapor lamps at 
254 nm. The results revealed that the effectiveness of both 
systems for disinfection against S. marcescens and E. coli 
was comparable, and that the UR-UVGI-LED system had 
the most potential to be a credible source of disinfection 
against indoor airborne pathogens. Another study utilized 
UV-C LED irradiation to evaluate the antibacterial effec-
tiveness on toilet seats against three bacterial strains (Lai 
and Nunayon 2021). The study utilized three different com-
binations (3, 5-two variants, and 8-LEDs), as well as two 
different 5-LED configurations for evaluation. According 
to the study, the effectiveness of disinfection initially rose 
with the number of LEDs but decreased with 8 LEDs. This 
concluded the mean disinfection efficiency for surfaces and 
aerosols, which varied from 8.81 to 72.80% and 24.16 to 
70.70%, respectively. Another recent review highlighted the 
key factors which offers several advantages to LEDs in com-
parison with traditional mercury vapor lamps (MVL), such 
as longer lifecycle, robustness, compactness, flexibility, and 
the absence of non-hazardous material. The review found 
that UV-C LEDs have been applied in various fields, ranging 
from health applications to wastewater or food decontami-
nation, and in some cases, LEDs even provide better results 
than MVLs. The complexity of the targets being decontami-
nated, such as multilayers or thicker individual layers, might, 
however, reduce the effectiveness of UV-C disinfection 
(Nicolau et al. 2022). The SMD LEDs are not being in focus 
by the researchers due to its compact design and availability 
of various package sizes. One of the most recent studies 
by Sheikh et al. (2023) evaluated the effectiveness of Ever-
light’s 275 nm UV-C surface mounted device (SMD) against 
S. aureus by quantifying inhibitory zones at varied exposure 
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settings. The results reported that at longer exposure times 
larger inhibition zones were produced. In a similar study by 
Sheikh et al. (2021), the impact of 275 nm UV-C LED on 
human skin fibroblast cells and bacteria (P. aeruginosa, S. 
aureus) was investigated for prototyping a wound disinfec-
tion system. The study employed quantitative analysis in 
which bacterial inhibition zones at three exposure distances 
and two exposure durations were assessed. The results dem-
onstrated that greater inhibition zones were caused by longer 
exposure durations and distances. The study also confirmed 
that the low exposure duration did not affect human skin 
cells and found out the viability within the acceptable level 
which can be adequate for wound treatment. A regular 3 mm 
LED emitting visible light was also compared to UV-A LED 
in one of the investigations by Malik et al. (2017) against E. 
coli. In comparison, the UV-A LED samples reached maxi-
mal inactivation with only 0.0043 × 106 CFU/mL, while the 
conventional LED, which lacks UV light emission, failed to 
achieve any microbial inactivation. Another study assessed 
the inactivation of biofilm-bound P. aeruginosa by employ-
ing a 265 nm UV-C LED. The bacterial load was observed 
to reduce to a factor of 1.3 ± 0.2  log10, which was lower than 
that of planktonic P. aeruginosa when inactivated by UV-C 
LEDs. This result attributed to the greater UV inactivation 
resistance shown by bacteria that were already attached to 
biofilms (Gora et al. 2019). In another recent research by 
Nyangaresi et al. (2023), the efficacy of single UV-C and 
combined UV-A and UV-C LED irradiation in eradicating 
various waterborne bacteria was evaluated. The study found 
that the sensitivity of the different bacteria to UV radia-
tion varied, and that only E. coli produced evidence of heal-
ing. The synergistic effect seen in E. coli and B. spizizenii 
spores was attributable to the different inactivation processes 
of UV-C and UV-A wavelengths. In comparison with the 

267 nm UV-C LED, which had the highest inactivation 
efficiency, the 278 nm UV-C LED had a better inactiva-
tion efficacy and required less energy. Yang et al. (2019) 
additionally evaluated the Hyper Light Disinfection Robot, 
an automatic mobile device that used UV-C irradiation to 
kill pathogens that are MDR, including P aeruginosa, A. 
baumannii, MRSA, VRE, M. abscess. After 5 min of UV-C 
irradiation at a distance of 3 m from the device, vegetative 
bacteria colonies were reduced by a factor of more than 3 
 log10 with the exception of VRE and M. abscessus, proving 
the device's effectiveness in eliminating MDR pathogens. 
Also, at a distance of 1 m, substantial reductions in colony 
counts were seen for all examined microorganisms, regard-
less of exposure time. The effectiveness of various UV-C 
radiation wavelengths for inactivating SARS-CoV-2 on high 
and low-touch surfaces and in indoor air was also examined 
in the study by Liang et al. (2021). The efficacy of the pro-
totype UV-C light devices was examined using cell-based 
assays using UV-C light with wavelengths of 275, 254, and 
222 nm. The UV-C LED (275 nm), followed by the mercury 
lamp (254 nm) and the excimer lamp (222 nm), exhibited 
the best viricidal activity against SARS-CoV-2, according to 
the data. In comparison with the other lights, the UV-C LED 
(275 nm) showed superior SARS-CoV-2 disinfection activ-
ity. Furthermore, in one study, the effectiveness of 222-nm 
UV-LED in eradicating MRSA and aerobic bacteria (AB) 
on mobile phone surfaces was investigated by Kaiki et al. 
(2021). It was reported in the study that mean  log10 MRSA 
CFU reductions of 2.91 and 3.95, respectively, were attained 
following exposure for 1.5 and 2.5 min. Moreover, 9 mJ/
cm2 of dose was required to significantly decrease mobile 
phone AB contamination. In a different pilot crossover trial 
that was carried out in November 2017, surgical tools that 
had been infected with S. aureus, E. faecalis, P. aeruginosa, 

Fig. 6  Schematic representation of UVGI system using LED for disinfecting bioaerosols contamination in an enclosed environment
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and S. marcescens were placed in a box reactor comprising 
a number of UV-C LED light sources. It was noticed after 
being exposed for 10 min, the findings revealed no evidence 
of bacterial growth, demonstrating the high degree of disin-
fection efficacy of the UV-C device. These findings suggest 
that the device’s capacity to eliminate bacterial contamina-
tion from surgical instruments may have a significant effect 
on the reduction in infections associated with medical care 
(Spataro et al. 2019). The study conducted by Guettari et al. 
(2021) also examined the use of UV-C LED radiation as a 
physical disinfectant to prevent the spread of COVID-19 in 
confined spaces including hospitals, public transportation, 
and airlines. The article researchers claimed that the i-Robot 
UV-C robot was able to eradicate 99.999% of bacteria and 
viruses using i-Robot.

Various studies (see Table 5) have been conducted using 
UV technologies for the purpose of disinfection and to 
assess their antimicrobial efficacy. One such comparative 
investigation (Raeiszadeh and Adeli 2020) was conducted 
to evaluate the effectiveness of MP, LP, and UV-C LEDs 
by comparing the actual UV susceptibility of E. coli bacte-
rium and MS-2 virus to the UV absorption value of DNA 
and RNA (Fig. 7A). It was observed that a UV-LED with 
a peak wavelength of 265 nm had 1.15 times higher germi-
cidal power than a standard 274 nm mercury UV lamp for 
inactivation. In other words, compared to a UV disinfec-
tion system with a 254 nm, a system with a 265 nm emit-
ting UV source required lower UV dose to accomplish the 
same amount of DNA/RNA damage. In order to determine 
the germicidal effectiveness of a UV disinfection system, it 
is essential to comprehend how the SPD of the UV source 
being used (Fig. 7C) interacts with the UV susceptibility 
of microorganisms over the UV-C spectrum. Moreover, as 
illustrated in Fig. 7B, absorbed UV-C photons could severely 
damage the genomic structure of microorganisms, impair-
ing their ability to replicate and survive. The adenine–thy-
mine bond collapses, and a covalent linkage identified as a 
pyrimidine dimer develops between two adenines as a result, 
rendering the cell incapable of replicating. Because of this, 
the impact of UV irradiation on microorganisms is referred 
to as “inactivation” rather than “killing.”

Study remarks, gaps, and future perspective

The hospital contaminated environment has shown to be an 
issue of serious concern and it continues to be a major origin 
for transmitting microorganisms to the healthy individuals. 
The everyday use of chemical disinfectants for cleaning 
and disinfection has raised serious concerns due to the fact 
that it gives rise to several complications while delivering 
insufficient disinfection (Sehulster 2003; Rutala and Weber 
2016a; Canada 1998; Omidbakhsh et al. 2014; Han et al. 

2015; Rutala et al. 2008). Also, it has been seen that the pro-
cedures that involve chemical products for cleaning purposes 
are less effective regardless of how expensive the products 
are Sheikh et al. (2021). However, for such concerns, exten-
sive studies have already been conducted to identify the 
methods which could significantly substitute the usage of 
chemical with “no-touch” disinfection technology for dis-
infection practices. As a result, the interest in an alternative 
disinfection method is continuing to grow particularly in 
healthcare facilities. In such regards, researchers have come 
across UV technologies which have drawn a significant 
attention due to its efficient and practical capacity to disin-
fect water, food, air, and surfaces (Kaiki et al. 2021; Duering 
et al. 2023; Hessling et al. 2023, 2021; Mariita et al. 2022; 
Nunayon et al. 2022; Nyhan, et al. 2021; Gardner et al. 2021; 
Grist et al. 2021; Rios de Souza et al. 2020; Cheng et al. 
2020; Vernez et al. 2020; Mitchell et al. 2019b; Wallace 
et al. 2019; Alhmidi et al. 2018; Kim et al. 2017; Kim et al. 
2015; Boyce et al. 2016b; Anderson et al. 2013; Mahida 
et al. 2013; Moore et al. 2012; Sommers et al. 2010; Rutala 
et al. 2010; Yaun et al. 2004; Palma et al. 2022). Convention-
ally, low pressure (< 1 atm.) mercury lamps are employed 
(Liang et al. 2021; Kaiki et al. 2021; Spataro et al. 2019; 
Guettari et al. 2021; Raeiszadeh and Adeli 2020) to generate 
shorter wavelength UV radiation.  Despite of its high level 
of disinfection, the component; mercury,  poses hazard to 
the environment (Torok et al. 2016), rapidly absorbs into the 
skin or respiratory system, accumulates  in the body, and fre-
quently have a deadly toxic impact on human being (Palma 
et al. 2022). As a result, the United Nations Environment 
Program (UNEP) has formally announced an unconditional 
ban on the production of mercury-containing products after 
2020 with the Minamata Convention on Mercury in 2013 
(Larson 2014). This also implies that new approaches are 
required to replace mercury lamps, which could serve as 
reliable substitute of such technology and effectively serve 
as potential source for antibacterial procedures. In such 
regards, UV technologies have grabbed the attention due 
to its potential characteristics and advantages over liquid 
disinfectants as demonstrated in Fig. 8.

With recent advancements, all such limitations are cer-
tainly sidestepped by UV-C LEDs, which is why LEDs 
are gaining popularity in the recent times. Nevertheless, 
in addition to UV-C LEDs, other UV lamp types, such 
as the excimer technology (pulsed xenon lamps, krypton-
chloride excimer lamps), have gained popularity and have 
shown to be a worthy replacement to LP mercury vapor 
lamp. Such technology has several benefits in common 
with UV-C LEDs, such as being free from the mercury 
component, longer lifespan with no warm-up requirement 
time. However, due to the pulsatile nature of these lamps 
and their poor efficacy, the use of excimer lamps, such 
as pulsed xenon lamps, in a continuous air disinfection 
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Table 5  Analysis on the recent studies: antimicrobial efficacy evaluation using UV disinfection systems for reducing the surface bacterial burden

Authors (Year) ↓ Bacteria/virus UV-C wave-
lengths

Required dos-
age

Log reduction Percentage 
reduction

Bacterial asso-
ciation

References

Duering et al. 
(2023)

Escherichia coli 272 nm 150 mJ/cm2 1.5 NA Dry surface Duering et al. 
(2023)

Hessling et al. 
(2023)

Staphylococcus 
aureus

222 nm 23 mJ/cm2 1.9 90% Hand/ gloves Hessling et al. 
(2023)

Mariita et al. 
(2022)

Human noro-
virus

269 nm 22.5 mJ/cm2 3 99.9% Hospital surface Mariita et al. 
(2022)

Nunay et al. 
(2022)

Escherichia coli NA 0.134 mJ/cm2 NA 84.6% Upper-room Nunayon et al. 
(2022)

Liang et al. 
(2021)

SARS-CoV-2 275 nm 3.192 mJ/cm2  > 6 99.9999% Hospital surface Liang et al. 
(2021)

Nyhan et al. 
(2021)

Escherichia coli 270 nm 32 mJ/cm2 3.8 NA Plastic surface Nyhan et al. 
(2021)

Nyhan et al. 
(2021)

Salmonella 
Typhimurium

270 nm 16 mJ/cm2 4 NA Plastic surface Nyhan et al. 
(2021)

Nyhan et al. 
(2021)

Listeria mono-
cytogenes

270 nm 64 mJ/cm2 2.2 NA Plastic surface Nyhan et al. 
(2021)

Kaiki et al. 
(2021)

MRSA 222 nm 15 mJ/cm2 3.95 NA Healthcare asso-
ciated mobile 
phone

Kaiki et al. 
(2021)

Gardner et al. 
(2021)

peritonitis virus 265 nm 101 mJ/cm2 3 NA Media Gardner et al. 
(2021)

Grist et al. 
(2021)

SARS-CoV-2 254 nm 1000 mJ/cm2  > 3 99.9% Facepiece Grist et al. (2021)

Hessling et al. 
(2021)

Staphylococci 254 nm 40 mJ/cm2 5 99.999% Touchscreen Hessling et al. 
(2023)

De Souza et al. 
(2020)

Penicillium 
expansum

277 nm 500 mJ/cm2 2 99% Food de Souza et al. 
(2020)

Cheng et al. 
(2020)

Listeria innocua 280 nm 7.13 mJ/cm2 5 NA Stainless steel Cheng et al. 
(2020)

Cheng et al. 
(2020)

Escherichia coli 280 nm 22.18 mJ/cm2 6 NA Stainless steel Cheng et al. 
(2020)

Vernez et al. 
(2020)

Staphylococcal 
bacteriophages

254 nm 60 mJ/cm2  > 3 NA Facepiece Vernez et al. 
(2020)

Mitchell et al. 
(2019)

Clostridium 
difficile

16 mJ/cm2 3 NA Stainless steel Mitchell et al. 
(2019b)

Wallace et al. 
(2019)

MRSA, 
Clostridium 
difficile

254 nm 625.4 mJ/cm2 2.3 99.83 Glass coupons Wallace et al. 
(2019)

Alhmidi et al. 
(2018)

MRSA 254 nm 3330 mJ/cm2 3.2 NA Touchscreen Alhmidi et al. 
(2018)

Kim et al. 
(2017)

Escherichia coli 266, 270, 275, 
279 nm

0.2 mJ/cm2 5 NA Food Kim et al. (2017)

Kim et al. 
(2017)

Listeria mono-
cytogenes

266, 270, 275, 
279 nm

0.2 mJ/cm2 1 NA Food Kim et al. (2017)

Kim et al. 
(2017)

Staphylococcus 
aureus

266, 270, 275, 
279 nm

0.2 mJ/cm2  > 2 NA Food Kim et al. (2017)

Boyce et al. 
(2016)

Clostridium 
difficile

254 nm 67.56 mJ/cm2 3 NA Hospital surface Boyce et al. 
(2016b)

Petti et al. 
(2016)

MRSA TiO2 NA 1.16 93% PVC surface Petti (2016)

Kim et al. 
(2015)

Salmonella 
Typhimurium

275 nm 0.7 mJ/cm2  > 5 NA Food Kim et al. (2015)

Anderson et al. 
(2013)

Acinetobacter 254 nm 12 mJ/cm2 1.71 NA Hospital surface Anderson et al. 
(2013)
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system is limited (Szeto et al. 2020; SHCHEER 2017; 
Jarvis et al. 2019). UV-C LEDs, on the other side, have 
overcome such limitations in a number of ways, such as 
an absence of hazardous component such as mercury, non-
pulsatile treatment and employing a metallic substance 
at a little extent that do not leak out in the case of break-
down or disposal. These LEDs additionally do not produce 
ozone nor have a high-power density and sustain minimal 
harm from repeated cycles. Moreover, it does not require 
warm-up time for maximum intensity output and emits 
light with various wavelengths. These benefits along with 
nearly swift starts and adjustable wavelengths offer an 

abundance of design autonomy for UV-C LED ballasts. It 
is also essential to emphasize the cost of UV-C LEDs as 
compared to conventional lamps where UV-C LEDs are 
typically thought to be more cost-effective. Furthermore, 
UV-C LEDs have a longer lifespan, which minimizes the 
need of frequent replacement, eventually giving benefit 
in terms of buyer’s expense by reducing the maintenance 
and replacement costs. UV-C LEDs are also a long-term 
financial option because of its lower energy consumption, 
which also lowers overall power expenses. By implement-
ing such technology for disinfection in healthcare or other 
indoor settings, the operational expenses could be lessened 

Table 5  (continued)

Authors (Year) ↓ Bacteria/virus UV-C wave-
lengths

Required dos-
age

Log reduction Percentage 
reduction

Bacterial asso-
ciation

References

Anderson et al. 
(2013)

Clostridium 
difficile

254 nm 22 mJ/cm2 1.16 NA Hospital surface Anderson et al. 
(2013)

Anderson et al. 
(2013)

VRE 254 nm 12 mJ/cm2 1.68 NA Hospital surface Anderson et al. 
(2013)

Mahida et. al 
(2013)

MRSA 254 nm 22 mJ/cm2  > 4 99.99% Hospital surface Mahida et al. 
(2013)

Moore et al. 
(2012)

Klebsiella pneu-
moniae

NA 159 mJ/cm2 2.76 Blood pressure 
gauge

Moore et al. 
(2012)

Moore et al. 
(2012)

Acinetobacter 
baumannii

NA 159 mJ/cm2 3.44 Blood pressure 
gauge

Moore et al. 
(2012)

Moore et al. 
(2012)

VRE NA 159 mJ/cm2  > 5.11 Patient call 
button

Moore et al. 
(2012)

Moore et al. 
(2012)

Clostridium 
difficile

NA 318 mJ/cm2 4.40 Hospital surface Moore et al. 
(2012)

Sommers et al. 
(2010)

Salmonella 
enterica,  
Listeria mono-
cytogenes, 
Staphylococ-
cus aureus

254 nm 3000 mJ/cm2 1.1–2.8 NA Food Sommers et al. 
(2010)

Rutala et al. 
(2010)

VRE 254 nm 661 mJ/cm2 3.90 NA Patient bed Rutala et al. 
(2010)

Rutala et al. 
(2010)

Acinetobacter 
baumannii

254 nm 627 mJ/cm2 4.21 NA Patient bed Rutala et al. 
(2010)

Rutala et al. 
(2010)

Clostridium 
difficile

254 nm 2123 mJ/cm2 4.04 NA Patient bed Rutala et al. 
(2010)

Rutala et al. 
(2010)

MRSA 254 nm 472 mJ/cm2 4.31 NA Patient bed Rutala et al. 
(2010)

Yaun et al. 
(2004)

Escherichia coli 253.7 nm NA 3.3 99.9% Food Yaun et al. (2004)

Klaus et al. 
(2003)

Escherichia coli 356 nm +  (TiO2) NA 6 NA Microbiology 
laboratory

Klaus et al. 
(2003)

Klaus et al. 
(2003)

Pseudomonas 
aeruginosa

356 nm +  (TiO2) NA 6 NA Microbiology 
laboratory

Klaus et al. 
(2003)

Klaus et al. 
(2003)

Staphylococcus 
aureus

356 nm +  (TiO2) NA 6 NA Microbiology 
laboratory

Klaus et al. 
(2003)

Klaus et al. 
(2003)

Enterococcus 
faecium

356 nm +  (TiO2) NA 6 NA Microbiology 
laboratory

Klaus et al. 
(2003)

Klaus et al. 
(2003)

Candida albi-
cans

356 nm +  (TiO2) NA 2 NA Microbiology 
laboratory

Klaus et al. 
(2003)
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while maintaining effective disinfection procedures by 
implementing the routine disinfection practices.

Conclusion

Ultraviolet (UV) disinfection technologies are tool for 
microbial prevention in indoor public places which are fre-
quently employed for disinfecting air, surfaces, and water. 
In conclusion, our research supports the use of UV-C LEDs 
for environmental disinfection purposes due to its variety 
of advantages over chemical disinfectants and convention-
ally used other disinfection procedures utilizing UV tech-
nologies. Moreover, it is advisable to combine multiple 
LED arrays to enhance the overall irradiance and achieve 
greater disinfection over longer distances. Further research 

on the arrangement of LEDs and configuration of arrays 
to maximize intensity while guaranteeing uniform and suf-
ficient UV-C radiation dispersion has a valuable prospect. 
However, the scalability and efficiency in various applica-
tions such as for outdoor environments where the treatment 
could be affected with the interference of other light sources 
should be examined. Additionally, ongoing research should 
also continue to investigate the possible threats to health 
and safety posed by UV-C LED technology in order to pro-
vide useful guidelines and safety measures. By considering 
all of this, UV-C LED can offer an effective and affordable 
solution for disinfection, improving hygiene and environ-
mental sustainability. Therefore, it is clear that UV-C LED 
technologies are promising for disinfection of microorgan-
ism present in air, water, food or surface in the healthcare 
environment.

Fig. 7  A The germicidal 
region’s relative UV susceptibil-
ity of a generic RNA or DNA, 
as well as E. coli bacterium 
and MS2 virus, B Thymine 
dimerization schematic rep-
resentation for a UV-exposed 
double-stranded DNA, C SPD 
of various germicidal UV 
sources. Reprinted from “A 
Critical Review on Ultraviolet 
Disinfection Systems against 
COVID-19 Outbreak: Appli-
cability, Validation, and Safety 
Considerations,” M. Raeisza-
deh., ACS Photonics, Copyright 
2020 (Raeiszadeh and Adeli 
2020)
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