
Vol.:(0123456789)

International Journal of Environmental Science and Technology (2024) 21:8361–8374 
https://doi.org/10.1007/s13762-024-05609-5

ORIGINAL PAPER

Microplastics in the sediments of the Tijuana River Basin, Mexico

T. J Piñon‑Colin1  · F. T. Wakida1  · E. Rogel‑Hernandez1 · A. T. Wakida‑Kusunoki2  · E. Garcia‑Flores1 · 
H. Magaña1 

Received: 19 June 2023 / Revised: 13 December 2023 / Accepted: 10 March 2024 / Published online: 3 April 2024 
© The Author(s) under exclusive licence to Iranian Society of Environmentalists (IRSEN) and Science and Research Branch, Islamic Azad University 2024

Abstract
The current study evaluates the abundance and characteristics (shape, color and chemical composition) of microplastics 
(MPs) of the Tijuana River Basin, a binational river system shared by Mexico and the USA and located in the northwest 
corner of Mexico. The investigation was conducted on microplastics in the riverbed and river shoreline of 11 sites along 
the main tributaries of the Tijuana River. The median abundance of riverbed and river shoreline sediments was 118 and 
183 MPs  kg−1, respectively. The dominant shape found was fiber (65%) followed by fragments (19%) and films (10%); the 
predominant identified polymers were PP polypropylene (46%), PE polyethylene (34.3%) and PS polystyrene (11.4), with 
lower numbers of polyacrylic, polyamide (PA) and polyethylene terephthalate (PET). Eleven colors were recorded, the 
most abundant being black (43.7%) and transparent (22.6%). Wastewater treatment plant (WWTP) discharges, littering and 
inappropriate or insufficient solid waste management are the main sources of MPs. The results highlighted the widespread 
distribution of MPs in the Tijuana River Basin sediment.
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Introduction

In 2019, approximately 460 million tons (Mt) of plastic was 
produced, including the resins used for textile fibers, and 
it is estimated that plastic use will almost triple by 2060 
(OECD 2022a). According to a recent study, 22 Mt of plas-
tics were released into the environment in 2019, comprising 
88% macroplastics and 12% microplastics (MPs). Moreover, 
the estimated amounts of plastic accumulated in oceans and 
rivers globally were 30 and 109 Mt, respectively (OECD 
2022b). On the other hand, the plastic recycling rate world-
wide is approximately 9% (Wen et al. 2021), varying from 
country to country. For example, developed economies that 

encourage recycling have a recycling rate of approximately 
30%, and developing countries with a minimum level of 
industrialization have a recycling rate of approximately 0% 
(d’Ambrières 2019). In Mexico, the recycling rate is approxi-
mately 6% (Calderon 2022). However, the most notable 
circular economy in Mexico involves the recycling of PET 
bottles, for which the recycling rate is approximately 60% 
(Ángeles-Hurtado et al. 2021).

Microplastics are classified as primary or secondary 
according to their mode of generation. The first consists 
of small particles designed for commercial use, for exam-
ple, the microbeads or fragments used in personal care 
products, the spheres used as virgin material in molding 
processes and spheres for shot blasting (Eerkes-Medrano 
et al. 2015; Gregory 1996). Although these products have 
been banned in the USA (Kettenmann 2016), they are still 
used in body and face scrubs, shampoos and toothpaste 
in Mexico. Secondary microplastics result from the frag-
mentation and environmental degradation of larger plas-
tic items (Cooper and Corcoran 2010), for example, films 
produced by the fragmentation of bags and wraps (Nor 
and Obbard 2014).

Rivers and urban runoff have been identified as essential 
transport routes by which microplastics are conveyed from 
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land to the marine environment (Depledge et al. 2013; Bal-
lent et al. 2016; Piñon-Colin et al. 2020). It is estimated that 
80% of the microplastics found in the marine environment 
originate from land-based sources, which include storm-
water runoff, rivers, discharges from wastewater treatment 
plants, road marking paints, sewage, tire wear and tourism 
activities (Yonkos et al. 2014; Browne 2015; Avio et al. 
2016; Horton et al. 2017). One of these land-based sources is 
effluent from wastewater treatment plants (WWTPs), which 
contains fibers from laundry wastewater and microspheres 
from personal care products (Browne et al. 2011; Hoellein 
et al. 2017; McCormick and Hoellein 2016; Habib et al. 
1996; Zubris and Richards 2005). The amount of micro-
plastics in washing machine effluent has been estimated to 
be between 8000 and 35,500 fibers/L (Dris et al. 2018; De 
Falco et al. 2018). The microplastic abundance in WWTPs 
was found to be between 0.3 and 14,000 particles  L−1 (Lin 
et al. 2018; Mintenig et al. 2017). Recently, Ramírez-Álvarez 
et al. (2020) found microplastic abundance in WWTP efflu-
ent from Ensenada, Mexico, between 81 and 1556 pp/m3, the 
most abundant being microplastic fibers, which accounted 
for 65% of the total microplastic content. Treated industrial 
wastewater is another source of microplastics in receiv-
ing water. Although these are highly dependent on indus-
try type, Chan et al. (2020) reported a mean concentration 
of 362.6 ± 24.5 fibers  L−1 in a textile factory. Wang et al. 
(2020) sampled effluents from 5 industrial wastewater treat-
ment plants and wastewater from 10 industrial plants includ-
ing several types of industries; the microplastic abundances 
ranged between 6 and 12 and 8–23 MPs  L−1, respectively. 
Another microplastic source in urban wastewater is hospi-
tal effluent. Kamani et al. (2023) reported a microplastic 
abundance of 15 MPs  L−1 in hospital effluent. More alarm-
ingly, MPs from hospital wastewater have been identified 
as vectors that help antibiotic-resistant microorganism dif-
fuse across long distances (Tuvo et al. 2023). However, no 
direct hospital wastewater discharge occurs to streams in 
the Tijuana River Basin. Stormwater runoff has also been 
identified as a critical microplastic source for rivers. Piñon-
Colin et al. (2020) reported median microplastic abundances 
in stormwater samples from industrial and residential land 
use sites of 66 and 191 particles  L−1, respectively, with esti-
mated annual microplastic loads of 8 ×  105 and 3 ×  106 par-
ticles  ha−1, respectively.

Microplastic abundance in rivers or freshwater sys-
tems has been linked to urbanization (De Carvalho et al. 
2021; Huang et al. 2021; Su et al. 2020), population den-
sity (Sekudewicz et al. 2021; Kataoka et al. 2019; Fan et al. 
2019) and other specific land cover types, such as industrial 
land use (Fan et al. 2019; Klein et al. 2015; Liu et al. 2020; 
Deng et al. 2020). Microplastic abundance in freshwater sys-
tems has also been linked to inappropriate and insufficient 

solid waste management and littering (Akindele et al. 2019; 
Battulga et al. 2019; Barcelo and Pico 2020).

Considering river dynamics is important for determin-
ing the microplastic abundance in river sediments. In areas 
where the river flow is high, microplastics are transported 
as fine particles, such as silt and clay. However, in slow-
moving rivers, microplastics likely sink along with other 
sediment particles (Horton and Dixon 2017). This phenom-
enon is common in rivers located in semiarid areas where 
wet and dry seasons produce marked differences in the flow 
of currents and in the MP concentration in sediments (Nel 
et al. 2018; Xia et al. 2021). Higher concentrations of micro-
plastics occur in the sediments due to low turbulence dur-
ing low river flow. This promotes MP sedimentation, while 
high flows lead to resuspension. River sediments are becom-
ing temporary microplastic sinks (He et al. 2020a). Several 
authors have indicated that microplastic abundance is related 
to fine river particles (Corcoran et al. 2019; He et al. 2020a).

Microplastics have been linked to several environmen-
tal impacts. Due to their small size, these particles can be 
ingested by many marine and terrestrial organisms (Wright 
et al. 2013; Cheung et al. 2018; Alvarez-Andrade et al. 2023; 
Thrift et al. 2022). Other researchers have shown other 
impacts on marine organisms, such as reduced fecundity, 
survival rate and hatching success (Cole et al. 2014, 2015; 
Devriese et al. 2015). Moreover, the presence of micro-
plastics in the food chain and their ubiquity in the environ-
ment are risks to human health (Yee et al. 2021). Several 
studies have shown that micro- and nanoplastics can cause 
serious adverse effects on the human body. These include 
inflammation (Brown et al. 2001; Deng et al. 2017), oxida-
tive stress and apoptosis (Inkielewicz-Stepniak et al. 2018; 
Paget et al. 2015), and metabolic homeostasis (Xia et al. 
2016; Jin et al. 2019). Recently, MPs have been detected in 
lung tissue (Jenner et al. 2022), blood (Leslie et al. 2022), 
human placenta (Ragusa et al. 2021), feces (Zhang et al. 
2021), breastmilk (Ragusa et al. 2022), urine (Pironti et al. 
2023) and sputum (Huang et al. 2022). MPs originating from 
stool and urine are treated in WWTPs. The impact of micro-
plastics on bacteria has been studied recently. For example, 
Yi et al. (2021) reported that microplastics have an impact 
on the growth of certain bacteria, such as Escherichia coli. 
However, recent studies have shown that microplastics in 
sediments are suitable substrates for biofilm formation. Wu 
et al. (2020b) reported that the microbial communities in 
microplastics differ from those in sediments or water and are 
enriched in specific types of bacteria. Moreover, the authors 
described the abundance of potentially pathogenic bacteria 
such as Pseudomonas and Bacillus. Therefore, MPs can be 
regarded as a new microbial niche in the environment (Yang 
et al. 2020).
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Therefore, it is essential to know the degree to which 
microplastic contamination exists in different environmental 
compartments. There are few studies on microplastic abun-
dance in rivers in Mexico and Latin America and none in 
the border region between the USA and Mexico, where the 
consumption habits of the population and environmental 
challenges are different from those in the rest of Mexico. 
Moreover, there are no published studies on the concentra-
tion of microplastics in streams where the flow is made up 
almost entirely of treated wastewater or urban runoff from 
informal settlements. In this study, we aimed to quantify and 
characterize microplastic pollution in the Mexican region of 
the Tijuana River Basin.

Materials and methods

Study area and sampling sites

The USA and Mexico share the Tijuana River Basin, which 
encompasses a watershed area of 4430  km2, approximately 
72% of which is in Mexico. The US part of the basin is 
rural, while in Mexico, the river passes through two cities, 
Tijuana (1,922,523 inhabitants) and Tecate (108,440 inhabit-
ants) (Inegi 2020). The climate of this region is classified as 
Mediterranean, with wet winters and hot and dry summers, 
with annual precipitation ranging from 150 to 500 mm and 
average annual temperatures ranging between 10 and 16 °C 
(SDSU-COLEF 2005). The Tijuana River Basin has two 
main tributaries. The first is Alamar Creek, whose source is 
in the US Laguna Mountains, where water is received from 

Cottonwood Creek, Pine Creek and the Tecate River. The 
other main tributary is Las Palmas Creek, which originates 
in the Mexican region through the Arroyo Las Calabazas 
River and begins on the slopes of the Sierra de Juárez at an 
altitude of 1860 m above sea level (Fig. 1). The tributaries 
merge in the urban area of Tijuana, flowing approximately 
6 km before crossing back into the USA and emptying into 
the Pacific Ocean 2.2 km north of the border. The Tijuana 
River and all of its tributaries are intermittent, so under natu-
ral conditions, water flows only during storm events. How-
ever, discharges from wastewater treatment plants in Tecate 
and Tijuana and settlements with no sewerage have produced 
perennial streams of water with poor quality (Wakida et al. 
2008). The flow in the Alamar-Tecate tributary is approxi-
mately 181 L  s−1 and begins in the urban area of Tecate. Its 
flow is controlled by the discharges of the Tecate WWTP 
and a brewery factory. On the other hand, Las Palmas Creek 
has an approximate 386  L−1 discharge product from the two 
WWTPs.

The primary industry in the area is manufacturing, 
encompassing a wide range of fields, such as plastics, medi-
cal devices, aerospace, toys, automotive, furniture, electron-
ics, metalworking, tools, cables and others (Tijuana 2019).

Eleven sites were sampled in the basin. Eight sites are in 
the Alamar-Tecate drainage basin, and three are in the Las 
Palmas drainage basin. Figure 1 shows the sampling site 
locations. The riverbed at sites S1 and S2 was dry during 
sampling. These sections of the channel only have water 
flow during rain events. Site S3 is located downstream of 
the discharge zone of a brewery plant. Site S4 is located 
approximately 50 m downstream of Tecate's municipal 

Fig. 1  Study area and sampling 
site locations
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wastewater treatment plant. All the sites were in the urban 
area of Tecate. Sites S5 and S6 are in the suburban area of 
Tecate, and S7 is in a rural area, also known as Tecate. Site 
S8 is in a suburban area of Tijuana with no sewerage or 
garbage dumps nearby. Sites S9 and S10 are in the Las Pal-
mas drainage basin in the urban area of Tijuana; these sites 
receive water from WWTPs. Finally, Site S11 is at Abelardo 
L. Rodriguez Dam, where there has been little control of 
domestic wastewater discharge from new housing develop-
ment in recent years. The general characteristics are shown 
in Table S1 of Online Resource 1.

Four composite samples were taken at every location—
two from sediments along the river shoreline and the oth-
ers from the riverbed. The sediment samples from the river 
shoreline were taken from two ten-m-long sections of the 
shoreline, a meter away from the river, in which multiple 
subsamples 3 cm deep by 5 cm × 5 cm were taken until 
approximately 2 kg wet weight of sample was obtained. The 
samples were collected with a metal trowel. The riverbed 
sediment composite samples were collected by taking sub-
samples from the same 10 m sections and the upper 3–5 cm 
section with a metal bucket. Therefore, at each sampling site, 
two composite samples of river shoreline sediment (n = 22) 
and two composite samples of riverbed sediment were col-
lected (n = 22).

MP extraction

The process of microplastic extraction was carried out as 
follows: A kilogram of sediment or soil sample was dried 
for 24 h at 40 °C, sieved with a < 1 mm particle size sieve 
and transferred to a 2-L glass container. Subsequently, 2 L 
of filtered saturated saline solution (120 g of NaCl per liter) 
was added, and the mixture was stirred for 15 min. The sus-
pension was allowed to rest overnight if it was cloudy. The 
supernatant was then transferred to a clean glass container 
using a vacuum pump, and the liquid was passed through 
a 25 µm metal sieve. This extraction process was repeated 
three times. The metal sieve was washed with distilled water 
prior to filtration (Whatman 969). The filtrate was filtered 
through a fiberglass filter (Whatman 969). Finally, the fiber-
glass filter with the MPs was placed in an oven to dry at 
40 °C for 24 h to eliminate humidity in the samples before 
placing it in glass plates.

No plastic equipment was used to avoid plastic contami-
nation throughout the extraction process. Additionally, all 
glassware utilized in the procedures was rinsed three times 
with filtered deionized water and covered with aluminum 
foil to avoid airborne contamination. A 0.4-μm-pore-
diameter fiberglass filter (Whatman 969) was used to filter 
the water used to rinse the glassware and NaCl solutions 
utilized for the extractions to avoid contamination. Before 

every extraction process, all surfaces were cleaned with a 
70% ethanol solution. The operators washed their hands 
frequently and used cotton laboratory coats. The filtration 
processes were conducted in laminar flow chambers, and 
cotton laboratory coats were used throughout. Three blanks 
were generated, resulting in a background MP abundance 
less than three, most of which were blue fibers.

Visual counting and FTIR spectroscopy

Particle shapes were analyzed with a binocular optical ste-
reoscope (Motic Digital Microscope DM143, NTSC System 
with W10 × 20 lens) to record the number of microplastics 
and classify them by shape (fibers, spheres, fragments and 
films) and color. Fibers or microfibers (as other authors call 
them) are fragile synthetic fibers made of polyester or poly-
amides (nylon). These particles are detached from clothes 
made of these materials, either due to washing or use. 
Spheres were defined as spherical particles used in exfoliat-
ing cosmetic products. Microplastics defined as fragments 
have irregular, sometimes flat, and broken shapes that result 
from the fragmentation of plastic items. Finally, films are 
defined as thin plastic films produced by the degradation of 
larger pieces of plastic, such as plastic bags, packaging film 
or plastic mulching film (Ruimin et al. 2020). Microplastic 
identification was conducted using FTIR-IR (Thermo Sci-
entific Nicolet iS5). This analysis was carried out in reflec-
tion mode with 30 scans at a resolution of 10  cm−1 and in 
the range of 400–4000  cm−1. The polymers were identified 
by comparing bands corresponding to specific chemical 
functional groups with spectra of reference polymers in the 
literature.

Statistical analysis

All statistical analyses were conducted using Minitab®15. 
Using the Kolmogorov‒Smirnov test, we determined that 
the microplastic abundance data did not follow a normal 
distribution. Thus, the Mann‒Whitney U test was used to 
compare the microplastic concentrations in the river shore-
line and riverbed sediments. The average and other standard 
statistical parameters were also calculated for comparison 
reasons.

Results and discussion

Microplastic abundance in sediments and soils

Table 1 shows the microplastic abundances and the basic 
statistics of the sampling sites. The MP abundance was 
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between 59 and 586 particles  kg−1 in the riverbed sediment 
and 57 and 469 particles  kg−1 in the river shoreline sedi-
ments. The relative percentage difference (RPD) is highly 
variable, ranging between 14 and 116% and 11 and 106% for 
sediments and river shoreline soils, respectively. This indi-
cates the high variability in MP abundance in sediment and 
soil. The highest average MP concentrations in the sediment 
and soil were found at Site S8. This site is in the suburban 
area of Tijuana, which has many potential sources of micro-
plastics, such as untreated wastewater from informal settle-
ments, illegal trash dumps, urban runoff and MP deposition 
from the metropolitan area. The second highest abundances 
in the soil and sediments were observed at Site S5, with 
391 and 273 particles  kg−1, respectively. This site is located 
approximately 1.2 km downstream of the Tecate Municipal 
WWTP. The high abundance of MPs observed could be due 
to solid sedimentation from self-purification of the stream 
since these solids can trap microplastics. Hidayaturrahman 
and Lee (2018) stated that preliminary treatment, includ-
ing sedimentation, can reduce 56.8–64.4% of microplastics. 
Moreover, an additional 18.2–27.8% can be eliminated from 
wastewater by activated sludge treatment. Therefore, sedi-
mentation and biological processes can eliminate suspended 
solids such as microplastics from water.

Table S1 of Online Resources 1 provides the average size 
of the particles at the sampling sites. The highest micro-
plastic abundance was observed at the site with the lowest 
particle size (Site S8). This behavior was also reported by 
He et al. (2020b) in the Brisbane River in Australia. Moreo-
ver, Liu et al. 2021 reported a positive correlation between 
MP abundance and the silt fraction. This difference may be 

related to different velocities of river flow that enable finer 
particles to settle and microplastics to form. However, no 
correlation was found between sediment particle size (D50) 
and microplastic abundance, although there was a moderate 
correlation between microplastic abundance and silt + clay 
content (r = 0.61).

The mean and median abundances of MPs in the riv-
erbed sediment were 197 and 118 MP  kg−1 and 187 and 
122 MP  kg−1, respectively, in the sediments from the river 
shoreline. The Kolmogorov‒Smirnov test revealed that the 
abundances in the soils and sediment did not follow a nor-
mal distribution. Therefore, the Mann‒Whitney U test was 
carried out to compare the medians of the concentrations 
of microplastics in the sediments and soils of the Tijuana 
River Basin. No significant difference was found between 
the concentrations (118 MPs  kg−1 in riverbed sediment and 
122 MPs  kg−1 in shoreline sediment).

Table 2 shows a comparison of the microplastic abun-
dance found in this study with that from other studies. The 
table also provides general details about the basin and sam-
pling studies and the significant shapes and polymers found 
in these studies. The microplastic abundance per kilogram 
found in the Tijuana River Basin sediment is lower than 
that reported in rivers in densely populated urban areas in 
China (Huang et al. 2021), the Rhine River (Mani et al. 
2019) and the Tisza River in Hungary (Kiss et al. 2021). 
The microplastic abundances of these rivers are 6–19 times 
greater than the abundances found in this study. Conversely, 
the concentrations found in the Lower Ganga River in India 
(Singh et al. 2021) and Quin River in China (Zhang et al. 
2020) were lower than the microplastic abundance found in 
this study, while the abundances found in the Atoyac River 
in Mexico (Shruti et al. 2019), Manzhou River in China 
(Wu et al. 2020a) and Brisbane River in Australia (He et al. 
2020a) are within the range found in this study. The vari-
ability in microplastic abundance in river sediment may 
result from sampling methods and seasons, land use and 
anthropogenic activities in the basin area, and river dynam-
ics (Lagarde et al. 2016; He et al. 2020a; Xia et al. 2021).

Characterization of microplastics

Type and shape

Thirty-five particles were analyzed to determine their 
chemical composition. The types of polymers identified 
were propylene (PP), polyethylene (PE), polystyrene (PS), 
polyacrylic, polyamide (PA) and polyethylene terephtha-
late (PET). The polymer showing the highest percentage 
abundance was PP (46%), followed by PE (34.3%) and PS 
(11.4%). The first two are the polymers most commonly 
reported in studies of MPs in freshwater systems, along with 
PET and PS. Rodrigues et al. (2018) reported that PE and PP 

Table 1  Microplastic mean abundance in the sampling sites

Relative percentage difference (RPD) values in parentheses

Site Riverbed (particles 
 kg−1)

River shoreline 
(particles  kg−1)

S1 86 (50) 120 (66)
S2 59 (81) 199 (29)
S3 105 (19) 77 (23)
S4 240 (25) 89 (33)
S5 391 (81) 273 (106)
S6 103 (63) 206 (58)
S7 173 (14) 183 (82)
S8 586 (54) 469 (40)
S9 90 (27) 225 (28)
S10 118 (42) 120 (54)
S11 224 (116) 57 (11)
Mean 197 187
Median 118 122
Standard deviation 161 149
Coefficient of variation 0.8 0.8
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were identified in more than 50% of analyzed MPs (Table 2). 
PS, PE and PP were also the dominant polymer types found 
in the shoreline sediments of the River Rhine in Germany 
and the Po River Delta in Italy (Klein et al. 2015; Piehl 
et al. 2019). PP and PE are the most produced polymers 
worldwide, with projections for 2020 of 75.4 and 117.9 mil-
lion metric tons, respectively (Statista 2021). These results 
coincide with those of other reported studies (Klein et al. 
2015; Horton et al. 2017; Lin et al. 2018). The spectra of 
the identified polymers are shown in Fig. 2, and the primary 
signals are described in the Supplementary information.

The plastic particles were classified into four main mor-
phologies: fibers, fragments, films and spheres. Figure 3 
shows some examples of the MPs found in the samples. 
Figure 4 shows the percentages of various MP morpholo-
gies found at different sampling sites. The predominant 
shape was fibers, with a percentage range between 47 and 
81%, the highest percentage being at Site S9 and the low-
est at Site S5. The high percentage of fibers reflects the 
prevalence of wastewater discharge as an MP source at 
these sites, as shown in Sites S4 (located downstream of 
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Fig. 2  ATR-FTIR spectra of MPs found in the sediment and soil
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the WWTP of Tecate), S7 (rural) and S11 (suburban). No 
other MP sources are evident at these sites. Site S2 had 
the lowest percentage of fibers, showing that WWTP dis-
charge did not influence the abundance of MPs since this 
part of the river remains dry through most of the year. The 
percentages of the other MP morphologies (fragments and 
films) found in the sediment and soil samples revealed the 
variety of MP sources in the study area and the impor-
tance of secondary MPs. The sum of the percentages of 
these two morphologies varied between 5.3 and 50% of 
the total MPs found. The primary source of spherical MPs 
could be WWTPs since they are used in cosmetic products 
such as exfoliators. The highest percentage of spheres was 
found at Site S7 (approximately 23%). This percentage, in 

addition to the percentage of fibers, accounts for 94% of 
the total MPs found at this site, implying that discharge 
from WWTPs is the main source of MPs since the site is 
located in a rural area with no other visible sources.

Fibers were the most abundant shape found in the sam-
ples (65%), followed by fragments (19%). These findings 
coincide with those of other studies in which these shapes 
were predominant (Barrows et al. 2018; Horton et al. 2017; 
Tien et al. 2020). This is due to the origin of the river flow 
from WWTP discharges. Sewage is an important source of 
microfibers generated from the washing of garments made of 
synthetic fibers (Browne et al. 2011; De Falco et al. 2018). 
However, the presence of other MP morphologies, such as 
fragments and films, implies that garbage and solid residues 
are important sources of MPs, particularly in urban areas. 
These MPs are the result of the degradation of larger plastic 
items. Microplastic deposition should also not be ruled out 
since other studies have shown that the highest percentage of 
microplastics deposited in the atmosphere are fibers (Wright 
et al. 2020).

Color

Microplastic color was analyzed in this study because it is 
considered an important issue since color influences inges-
tion by marine organisms (Abayomi et al. 2017; Ory et al. 
2017). Other authors have related the color of microplastics 
to anthropogenic sources and the environmental processes to 
which they are exposed once released into the environment. 

Fig. 3  Photographs showing 
different MP shapes and colors 
found in the sediments of the 
Tijuana River Basin: a and 
b Blue and green fragments 
resulting from the breakdown 
of larger plastic pieces. c Trans-
parent film resulting from the 
fragmentation of the packaging 
material. d and e White and red 
fragments from the fragmenta-
tion of larger plastic pieces. f 
and g Pink and blue fibers. h 
and i Transparent microplastic 
filaments and white ropes. The 
horizontal yellow line is 1 mm 
long

Fig. 4  Proportion of MP shapes found in sediments of the sampling 
sites in the Tijuana River Basin



8369International Journal of Environmental Science and Technology (2024) 21:8361–8374 

For example, transparent and blue microplastics have been 
associated with fishing nets and lines (Peng et al. 2018; 
Chinfak et al. 2021). On the other hand, white and trans-
parent microplastics are related to plastics degraded due by 
sunlight and weathering (Hidalgo-Ruz et al. 2012; Neubauer 
et al. 2017; Singh et al. 2021). Microplastics may retain the 
original color of the plastic fragmented from packaging 
material or plastic items. However, approximately 50% of 
the spheres (beads) particles in this study were yellow or 
brown. These colors are common characteristics of plastics 
that have been exposed to environmental factors for some 
time, especially sunlight, which leads to the photooxidation 
of some of the components of the plastics (Andrady et al. 
1992; Pastorelli et al. 2014; Marti et al. 2020).

Eleven primary colors were found in the microplastics 
from the sediment and shoreline soil of the Tijuana River 
Basin: black, transparent, blue, green, red, white, pink, yel-
low, brown, purple and orange. The most abundant colors 
were black (43.7%) and transparent (22.6%), followed by 
blue (9.8%), green (5.8%), red (5.2%), white (4.1%), pink 
(3.9%), yellow (2.5%), brown (1.8%), purple (0.5%) and 
orange (0.1%). Although many studies have shown similar 
color percentages, others have reported white and transpar-
ent as the predominant colors (He et al. 2020a; Gerolin et al. 
2020; Wu et al. 2020a; Singh et al. 2021). Conversely, the 
most dominant colors in the sediment from the Tapi-Phum-
duang River in Thailand were blue (38%), black (32%) and 
white (18%) (Chinfak et al. 2021). Moreover, Deng et al. 
(2020) reported that in river sediments in the textile area of 
Zhejiang Province in China, 60% of the microplastics were 
black, blue or white.

Figure 5 shows the proportions of microplastics of dif-
ferent colors found among the MPs of different shapes. 
More colors were observed in fragments and fibers (10 and 
9 colors, respectively) than in films and spheres (5 and 5, 
respectively). This result can be expected due to the large 
variety of colors of plastic products that can be fragmented 
in the environment and because clothing is made from artifi-
cial fibers. Conversely, the colors found in spheres and films 
may be limited due to the narrower range of colors used in 
the original products. The number of microplastic colors 
detected was high at all sites (9–11 colors), except at Site 7 
(6 colors), which was the only site in this study that was in a 
rural area. This increase in color may imply the influence of 
urban development and WWTP discharge on the abundance 
of MPs in sediments.

Future perspectives

The Tijuana River Basin is a complex system. The abun-
dance of microplastics in water and sediments results from 
several point and diffuse sources. Future actions that are 

recommended involve improving wastewater treatment 
involving measures aimed at reducing the discharge of 
microplastics. Moreover, urban waste management services 
in the area should be improved, and environmental educa-
tion should be increased to enhance people´s awareness of 
microplastic sources; people can then take measures such 
as reducing their use of single-use plastic items or recycling 
plastics (Aljerf and Choukaife 2016). These measure can be 
increased in ecotourism and recreation sites around rivers 
(Aljerf 2015).

Conclusion

This study confirmed the existence of microplastic pollu-
tion in the Tijuana River Basin. The basin has distinctive 
features because the USA and Mexico have different degrees 
of economic development. The consumption habits of the 
population in this border region are consequently different 
from those in the rest of Mexico and are reflected in the wide 
range of microplastic colors and morphologies found. The 
microplastic abundance in the riverbed sediments ranged 
between 197.4 and 118 MP  kg−1 and between 181.5 and 183 
MP  kg−1 in the shoreline sediments, lower than the micro-
plastic abundance in the sediments of highly urbanized and 
populated rivers. As expected, the high proportion of fib-
ers confirms that wastewater discharges from WWTPs and 
slums with no sewerage are the main sources of microplas-
tics in the river sediment. However, secondary microplastics 
(produced by the breakdown of plastic items such as plastic 
bottles or packaging materials) are also an important source 
of microplastics, as evidenced by the high percentage of 
fragments and films found at some sampling sites. This study 
highlights the importance of rivers as microplastic sources 
for marine environments and that riverbeds and shoreline 
sediments are temporary microplastic sinks.

Fig. 5  Percentage of MP shapes in different colors in the sediments 
from the sampling sites in the Tijuana River Basin
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