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Abstract
The presence of nutrients and endocrine-disrupting chemical (EDC) hormones in the aquatic environment can affect wildlife 
and humans. Sewage treatment using biological processes followed by advanced oxidation processes can be a promising sys-
tem for EDC removal, however, these have been little investigated in detail in the literature. This study evaluated the removal 
of nutrients, 17β-estradiol (E2), and 17α-ethynylestradiol (EE2) from sewage using an anaerobic/aerobic/anoxic sequential 
batch reactor (SBR). Furthermore, the treated sewage generated was subjected to post-treatment using a UV/H2O2 system. 
Hormones were added to the synthetic sewage only once, and it was submitted to treatment by SBR. The residues of E2 and 
EE2 were measured in the treated sewage generated by SBR for 13 consecutive cycles. The total removal rate of phosphorus 
and nitrogen by SBR was in average greater than 75% showing the simultaneous occurrence of nitrification, denitrification, 
and phosphorus biological removal. Seventeen percentage of the added E2 was detected in treated sewage, but 85% of EE2 
was discharged into the same treated after 13 cycles of SBR. Although the literature has indicated the removal of EE2 by 
sorption and/or biodegradation in biological sewage treatment systems with nitrification, including full-scale ones, this study 
suggested that this removal has been apparent. The remaining residues of E2 and EE2 were completely degraded by the UV/
H2O2 process. The removal of organic matter and nutrients by SBR facilitated the oxidative action of the UV/H2O2 system 
with lower consumption of peroxide. The integration of these two processes is very promising for EDC removal.
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Introduction

Various endocrine-disrupting chemicals (EDCs) are com-
monly detected in aquatic environment matrices worldwide 
(Racz and Goel 2010; Zhou et al. 2019; Fan et al. 2021; 
Horak et al. 2021). Even at very low concentrations (ng  L−1 

to µg  L−1), these compounds can interfere with the organic 
functions of wildlife and humans (Pereira et al. 2011). EDCs 
can act like hormones binding to specific receptors, poten-
tiating or blocking their effects or even interfering with 
metabolization of these hormones (Sonnenschein and Soto, 
1998). Exposure to these compounds reduces vitellogenin 
production and can cause feminization, intersex induction, 
and survival rate reduction in various fish species (Hamid 
and Eskicioglu 2012; Luo et al. 2014; Li et al. 2015). The 
hormones 17β-estradiol (E2) and 17α-ethynylestradiol (EE2) 
are the EDCs most found in the aquatic environment (Zhou 
et al. 2019; You and Song 2021). Some studies around the 
world have found the concentrations of E2 and EE2 in the 
range < 1 to 4000 ng  L−1 in sanitary sewage (Cunha et al. 
2017). Furthermore, it has been demonstrated that these 
compounds may be responsible for various reproductive 
effects in fish, crustaceans, amphibians, and gastropods 
(Birnbaum 2013; Giusti et al. 2014; Garmshausen et al. 
2015; Luna et al. 2015). These hormones E2 is a natural 
hormone produced by women and is released during their 
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lifetime, while EE2 is used in contraceptive pills and for 
hormone replacement therapy in older women (Cogliano 
et al. 2005).

According to the literature, sanitary sewage systems are 
one of the possible sources of E2 and EE2 hormones in the 
aquatic environment (Gabet-Giraud et al. 2010; Bilal et al. 
2021; Deich et al. 2021). Sewage treatment systems (STSs) 
can represent a barrier against the direct release of these 
hormones into the environment; therefore, techniques to 
remove these substances from sanitary sewage systems need 
to be developed (Hashimoto and Murakami 2009; Verlicchi 
et al. 2012; Tang et al. 2021). Different biological processes 
are routinely employed in STSs, and some studies have dis-
cussed their efficiency for removing E2 and EE2 (Servos 
et al. 2005; Kim et al. 2007; Gabet-Giraud et al. 2010; Pes-
soa et al. 2014; Kent and Tay 2019; Castellanos et al. 2021; 
Komolafe et al. 2021) mainly with coupled processes involv-
ing biological nutrient removal (Roh et al. 2009; Khunjar 
et al. 2011; Hamid and Eskicioglu 2012; Chen et al 2018).

Biological nutrient removal by STSs requires the pro-
motion of different metabolite phases during treatment. 
Changes between the anaerobic and aerobic stages can 
favor the development of phosphorus-accumulating organ-
isms (PAO), which can remove phosphorus (Ahn 2006). 
PAO usually use organic matter during the anaerobic phase, 
producing polyhydroxybutyrate and releasing phosphates, 
whereas in the aerobic stage, these organisms reabsorb phos-
phates to produce energy (Bunce et al. 2018). The accu-
mulated phosphate is discharged with sludge, and a low 
sludge retention time (SRT) can thus promote a high total 
phosphorus (TP) removal rate (Ratanatamskul and Katas-
omboon 2017). The biological removal of total nitrogen 
(TN) requires aerobic and anoxic phases. During the aerobic 
phase, ammonium is transformed into nitrite by the action 
of the enzyme ammonia monooxygenase (AMO), which is 
synthesized by ammonium-oxidizing bacteria (AOB), and 
nitrite is oxidized to nitrate by nitrite-oxidizing bacteria 
(NOB). Finally, denitrifying bacteria reduce nitrate to  N2 
gas under anoxic conditions (Ahn 2006; Wrage et al. 2001). 
Among biological treatment processes, sequencing batch 
reactors (SBRs) allow anaerobic–aerobic–anoxic phases to 
simultaneously exist in the same reactor, favoring organic 
matter and nutrient removal (Mace and Mata-Alvarez 2002; 
Zhang et al. 2005).

Sludge retention time (SRT) is an important control 
parameter in SBR processes, as it controls the development 
of microorganisms responsible for the biodegradation of 
nutrients, E2, and EE2 (Clara et al. 2005; Suárez et al. 2010; 
Verlicchi et al. 2012). Nitrification rates, specifically ammo-
nium oxidation, have been identified as important factors for 
hormone removal (Andersen et al. 2003; Roh et al. 2009; 
Khunjar et al. 2011; Hamid and Eskicioglu 2012). Li et al. 
(2020), for example, detected E2 removal by employing 

AOB, with the co-metabolization of ammonia and E2 by 
AMO. Heterotrophic bacteria also play an important role 
in E2 degradation (Li et al. 2020). In contrast, Kassotaki 
et al. (2019) observed that an SBR cultivated with nitrify-
ing activated sludge (mixed culture of AOB and NOB) was 
not able to remove EE2 (14% removal). Torresi et al. (2019) 
suggested that some EDCs can be removed during biological 
phosphorus removal and this removal occurs first through 
sorption and later by biodegradation (Kassotaki et al. 2019; 
Kent and Tay 2019). Therefore, the simultaneous removal 
of E2 and EE2 may be possible when using biological STSs 
for nutrient removal (Hertzier et al. 2010).

Although some biological processes can degrade hor-
mones, the removal efficiency is usually unsatisfactory. 
Advanced oxidation processes (AOPs) such as  O3,  O3/
UV, UV/TiO2, and UV/H2O2 processes can be interesting 
technological alternatives for the treatment of EDC-con-
taining effluents (Esplugas et al. 2007; Yuan et al. 2009). 
AOPs can generate hydroxyl radicals  (HO·) that react with 
refractory organic compounds (Chaves et al. 2020), such 
as carbon–carbon double bonds, and attack the phenolic 
ring responsible for estrogen activity (Zaviska et al. 2009). 
However, AOP technologies can represent up to 90% of the 
cost of wastewater treatments, so determining the process 
that should be employed is an important decision (Cédat 
et al. 2016). Moreover, heterogeneous processes, such as 
UV/TiO2, can efficiently remove EDCs; however, both the 
catalyst and particles present in sewage may compete for UV 
light (Zhang et al. 2010). As a result, UV/H2O2 is one of the 
most promising treatment technologies for estrogen removal 
and has already been evaluated for the removal of E2 and 
EE2 (Zhang et al. 2010; Frontistis et al. 2015; Ma et al. 
2015; Cédat et al. 2016; Chaves et al. 2020). De la Cruz et al. 
(2013) and Besnault et al. (2014) reported that the UV/H2O2 
process displays the best cost–benefit relationship among 
homogeneous processes. In addition to cost, one of the 
problems associated with the direct use of these processes 
is the presence of compounds that can affect the efficiency 
of hormone removal from sewage (Cédat et al. 2016; Chaves 
et al. 2020). The organic matter, turbidity, bicarbonate, and 
chloride present in sewage can react with hydroxyl radicals, 
producing chemical species with lower oxidation potentials 
(Sirtori et al. 2010). Moreover, inorganic compounds can 
precipitate when exposed to UV radiation, thereby decreas-
ing the effective treatment energy (Glaze et al. 1995). There-
fore, AOPs technologies for the post-treatment of treated 
sewage from biological STSs require further enhancements.

An alternative for the removal of E2 and EE2 is the 
combination of biological STSs and AOPs. Biological pro-
cesses exhibit a favorable relationship between cost and 
efficiency in ecological terms (Henze et al. 2000), whereas 
AOPs can mineralize residual recalcitrant compounds as a 
tertiary treatment (Liu et al. 2013). Furthermore, the use of 
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combined biological STP’s, and AOP’s at full scale requires 
more laboratory-scale studies to understand the safety of 
this practice and estimate costs. Combined SBR-AOPs are 
mostly based on the Fenton and photo-Fenton processes. 
For example, SBR-Fenton processes have been employed 
to treat industrial pharmaceutical effluents (Ganzenko et al. 
2018), in sewage treatment for the bamboo industry (Wu 
et al. 2013) and for treating the insecticide thiamethoxam 
in effluents (Gomez-Herrero et al. 2019). In turn, SBR-
photo-Fenton processes have been applied in the removal 
of herbicides (Farré et al. 2008) and treatment of industrial 
textile sewage (Blanco et al. 2014). However, no studies are 
available on EDC removal using SBR-UV/H2O2 systems.

The present study assessed the removal and/or degrada-
tion of E2 and EE2 by employing an SBR. Moreover, the 
impact of hormones on nutrient removal (TN and TP) was 
evaluated. Lastly, the efficiency of the SBR followed by UV/
H2O2 was evaluated to remove the hormones completely.

Materials and methods

Reagents

E2 and EE2 (98% purity) were purchased from Sigma-
Aldrich (São Paulo, Brazil). Purified water was obtained 
using a Milli-Q system (Millipore Corporation). Hydrogen 
peroxide  (H2O2; 30% v/v) was supplied by Merck (Rio de 
Janeiro, Brazil).

SBR apparatus

A laboratory-scale cylindrical reactor with an effective 
volume of 20 L was used as the SBR. Peristaltic pumps, 
a mixer, and air compressors controlled by an electronic 
system were used during the process, and a multiparamet-
ric probe model HI 9828 (Hanna Instruments Inc., Woon-
socket, Rhode Island, 02895, USA) was used to measure 
the dissolved oxygen (DO), redox potential (ORP), and 
pH, as shown in Fig. 1A. The process was operated in 
batch mode with 8 h cycles, comprising filling (00:10 h), 
anaerobic phase (01:20 h), aerobic phase (02:30 h), anoxic 
phase (02:30 h), sedimentation (01:20 h), and emptying 
(00:10 h). A total of 10 L of the effluent were treated 
during each cycle. Synthetic sewage was prepared using 
casein peptone (320 mg  L−1), meat extract (220 mg  L−1), 
urea (60 mg  L−1), potassium monoacid phosphate (56 mg 
 L−1), sodium chloride (14  mg  L−1), calcium chloride 
dehydrate (8 mg  L−1), and magnesium sulfate heptahy-
drate (4 mg  L−1), according to Holler and Trösch (2001) 
(Table 1). The biological sludge used in the SBR was col-
lected from an activated sludge sewage treatment plant in 
Rio de Janeiro, Brazil (-22.8782486S;-43.2502422W). The 
SBR was acclimatized for three months. A total of 110 mL 
of the mixed liquor (sewage and sludge) were discharged 
at the end of the aerobic phase of each cycle. The sludge 
retention time (SRT) and hydraulic retention time (HRT) 
were fixed at 60 d and 8 h, respectively. The operating 
conditions applied were similar to those recommended by 
von Sperling (2007).

Fig. 1  A Schematic SBR system; B UV/H2O2 reactor system. P1, P2, and P3 are pumps for the synthetic sewage feed, treated sewage emptying, 
and sludge discharged, respectively
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After the acclimation period, the process was monitored 
for four weeks, and raw and treated effluent samples were 
collected. Physicochemical characterization of the influent 
and treated effluent was conducted according to the standard 
methods for examination of water and wastewater (APHA 
2017). The chemical oxygen demand (COD) (method 5220-
D), dissolved organic carbon (DOC), turbidity (method 
2130-B), nitrogen series (total nitrogen (TN), nitrite, nitrate 
and ammonium), and total phosphorus (TP) (method 4500-
P) were analyzed during the process. Mixed liquor samples 
were placed in the SBR to determine the biomass content 
(mixed liquor volatile suspended solids (MLVSS) (methods 
2540–D and –E). The determination of DOC and TN was 
carried out using a TOC and TN analyzer model TOC-L/
TNM-L (Shimadzu Corporation, Kyoto, 604-8511, Japan). 
Nitrite and nitrate were determined by an ion chromatograph 
model 790 Personal (Methrohm AG, Ionenstrasse 9100 
Herisau, Switzerland) and ammonium by an ammonia ion-
selective electrode method coupled to pH-meter model Star 
5 (ThermoFisher Scientific, Massachusetts, USA).

After monitoring, the synthetic influent was spiked only 
once with E2 and EE2 at 5 µg  L−1. This concentration 
was chosen based on the environmental concentrations 
determined for raw sewage (Montagner and Jardim 2011; 
Cunha et al. 2017). E2 and EE2 solutions were prepared 

without solvents to avoid disturbing the SBR. Figure 2 
shows a schematic of the sample withdrawal times for each 
SBR cycle. The treated effluent was collected for 13 cycles 
to determine the E2 and EE2 concentrations. These con-
centrations were converted into masses released in each 
cycle according to Eq. (1). The cumulative mass released 
in the effluent treated by the SBR for 13 cycles was calcu-
lated using Eq. (2).

where M is the mass of E2 or EE2 released during each cycle 
(1–13), C is the concentration of E2 or EE2 measured in the 
treated sewage for each cycle (1–13), and V is the volume of 
treated sewage discharged in each cycle (1–13).

where %AccMass is the cumulative mass percentage of E2 
or EE2 released in the treated effluent by the SBR, ∑M (1 
up to 13) is the total mass of E2 or EE2 released during 
cycles after the addition of E2 and EE2 (1 to 13), and M0 
is the initial mass of E2 or EE2 added to the influent of the 
SBR (Cycle 0).

(1)M(�g) = C
(

�L−1
)

.V(L)

(2)%AccMass(�g) =

∑

M(1upto13)

M0

× 102

Table 1  Sequencing batch 
reactor (SBR) synthetic sewage 
characteristics

COD Chemical oxygen demand, TN total nitrogen, TP total phosphorus, DOC dissolved organic carbon, 
N-NHx N-NH3 + N-NH4

+

Parameter (mg  L−1)

COD TN TP DOC N-NHx

Average (variation of values) 324 (224–419) 46 (41–56) 10 (8–11) 131 (67–205) 45 (32–55)

Fig. 2  Schematic SBR cycles for a 24 h treatment and sampling procedure to determine E2 and EE2 residues
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UV/H2O2 reactor apparatus

The system used for the UV/H2O2 process consisted of a 
cylindrical closed glass reactor with a total volume capacity 
of 500 mL and illuminated area of 179  cm2. A lamp was 
placed on the centerline inside a quartz bulb, and magnetic 
stirrers were placed at the bottom of the reactor. The water 
recirculation system maintained a constant temperature of 
25 °C according to the scheme presented in Fig. 1B. Addi-
tionally, 6 W lamps (21 cm length and 2.6 cm diameter) 
emitting radiation in the UVC spectra (Germicidal lamp—
Osram PURITEC HNS G5, λ = 253.7 nm and 14.79 mW 
 cm−2) were used. Radiant fluxes at 254 nm were measured 
using a radiometer (Cole-Parmer Instrument Co; model 
9811-50). The UV lamps were heated for at least 30 min 
before the beginning of each experiment.

After biological treatment with the SBR, the treated 
effluent samples were placed in the UV/H2O2 reactor. The 
degradation process was evaluated at  H2O2 doses of 3 and 
6 mg  L−1. The photodegradation time ranged from 30 to 
90 min and the pH was maintained at 7.0. At the end of the 
 H2O2 process, catalase was added to the samples to stop the 
reaction by decomposing hydrogen peroxide to water and 
oxygen, and the samples were stored at 4 °C in the dark until 
solid-phase extraction (SPE). The experimental conditions 
for E2 and EE2 degradation in the UV/H2O2 processes used 
in this study have been previously assessed by Chaves et al. 
(2020).

Analytical methods

E2 and EE2 were concentrated by solid-phase extraction 
(SPE) followed by chromatographic analysis. The analyti-
cal method was carried out according to Paula et al. (2023) 
with some modifications. Briefly, 500 ml of treated or raw 
effluent was filtered through glass microfiber (0.7 µm) and 
nylon membranes (0.45 µm). The residues retained in the 
membranes were extracted using methanol (3 × 10 mL) in 
an ultrasound bath. The extracts were dried, resuspended 
in purified water, and combined with filtered samples. 

This procedure allowed the determination of E2 and EE2 
dissolved in water and adhered to particulate matter. The 
filtered samples and extracts were subjected to SPE using 
HLB Oasis (Water) cartridges (1 mL.min−1 flowrate) pre-
conditioned with methanol (5 mL), acetonitrile (7 mL), and 
purified water (7 mL). After percolation, the cartridges were 
washed with a mixture of acetonitrile and purified water 
(30:70, v/v) and dried under vacuum for 20 min. The E2 and 
EE2 residues were eluted through a cartridge containing ace-
tonitrile (20 mL), and the final purified extracts were dried 
under a gentle nitrogen flow and resuspended in a solution 
of acetonitrile and purified water (50:50 v/v).

E2 and EE2 concentrations were quantified using an 
HPLC-FLD model 1200 series (Agilent Technologies, Santa 
Clara, CA95051, USA), equipped with a C18 column model 
Zorbax Eclipse plus (5 μm, 4.6 × 250 mm) at an emission 
wavelength of 310 nm and excitation wavelength of 230 nm. 
The isocratic mobile phase consisted of ultrapure water (pH 
3.0, adjusted with hydrochloric acid) and acetonitrile (50:50, 
v/v) at rate a 1.2 mL·min−1 and an injection volume of 100 
μL. The limits of quantification (LOQ) were 24.89 and 
30.28 ng  L−1 for E2 and EE2, respectively, and the limits 
of detection (LOD) were 8.15 and 9.99 ng  L−1, respectively.

Results and discussion

Nutrient removal performance by SBR

The average efficiency of organic matter removal was 92%, 
that for TP was 82%, and that for TN was 76% (Fig. 3A). 
Results showing the characteristics of treated sewage from 
SBR as well as the operating conditions and its efficiency are 
in Table 2 and S1 (Supplementary Materials). These results 
are similar to those obtained in previous studies (Jia et al. 
2012; Yuan et al. 2016; Liu et al. 2020; Gomes et al. 2021). 
Jia et al. (2012) reported average removal rates of 91, 91, 
and 85% for COD, TP, and TN, respectively, in an SBR with 
simultaneous nitrification and denitrification. Yuan et al. 
(2016) obtained COD,  PO4

3−-P, and TN removal efficiencies 

Fig. 3  Removal rates of A 
COD, TN, TP, and DOC 
in SBR and B N-NHx 
(N-NH3 + N-NH4

+), N-NO3
−, 

and N-NO2
− concentrations in 

the treated effluent
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of 85, 96, and 83%, respectively, in an SBR with an SRT of 
7 d. Liu et al. (2020) detected average removal efficiencies 
of 97, 94, and 96% for COD, TP, and TN, respectively, in 
an anaerobic–oxic–anoxic (AOA) SBR, with a cycle time 
of 6 h and SRT of 12 d. Although a higher SRT (60 d) was 
employed in this study, the strategy of conducting sludge 
(mixed liquor) discharge after the aerobic phase may have 
improved TP removal.

As exhibited in Fig. 3B, the average N-NHx, N-NO2
−, 

and N-NO3
− concentrations in treated effluent were 6.5, 

0.16, and 12.0 mg  L−1, respectively. The presence of a 
high concentration of N-NO3

− indicates that only a part 

of the TN was removed by denitrification in the anoxic 
phase, and that nitrification was necessary. Generally, het-
erotrophic microorganisms are responsible for denitrifica-
tion, and it is common to use an external carbon source 
to improve nitrogen removal (Ahn 2006) as observed by 
Liu et al. (2020). Although no external carbon source was 
added to the SBR, the average TN performance in this 
study was above 75%. Therefore, SBR removed organic 
matter and TN without the addition of external carbon in 
anoxic phase; furthermore, TP was removed due to the 
discharge of mixed liquor applied after the aerobic phase, 
even theory high SRT was adopted.

Table 2  Comparison between some different types of SBR found in the literature and the present study in relation to operational conditions for 
the removal nutrients and their respective efficiencies

MLSS Mixed liquor volatile suspension solids, DO dissolved oxygen, SRT sludge retention time, COD chemical oxygen demand, DOC dissolved 
organic carbon, TN total nitrogen, TP total phosphorus, SBR sequencing batch reactor, SND simultaneous nitrification and denitrification, A/O 
anaerobic/oxic or anaerobic/aerobic, A/A, anaerobic/anoxic
a DO in aerobic phase
b Tests carried out with alternating variation between aerobic and anoxic phases
c SBR fed sewage and different proportions of sludge fermentation products
d SBR fed only domestic sewage
e Maximum values reached
f TP as  PO4

3—P
g TN as  NO3

—N
h DO in anoxic phase
i The SBR cycle time varied throughout the experiment, starting with an HRT (hydraulic retention time) of 12 h (first stage) and reaching 6 h (six 
and last stage)
j Anoxic phase with addition of external carbon
k DO in anaerobic phase was less than 0.5, in aerobic phase was between 2 and 3, and in anoxic phase was between 0.5 and 1
l In longer cycles it was 25 days, in shorter cycles, 12 days
m This assay used even aerobic step at 50 min after anoxic phase
n The DO value in the aerobic phase was 4.4 and in the anoxic phase 1.5

Type of the process Operational conditions used Removal effi-
ciency (%)

References

Time of operational phases 
(minutes)

MLSS (mg  L−1) DO (mg  L−1) SRT (days) COD TN TP

Anaerobic Aerobic Anoxic

SBR with SND 90 180 – 3000 0.35–0.80a 15 91 85 91 Jia et al. (2012)
SBR with multistage 180 b b 2080 Uninformed Uninformed 86c 83c 96c Yuan et al. (2016)

86d 56d –6d

SBR with A/O stages 180 120 – 4000 Uninformed Uninformed 84e – 92e,f Li et al. (2020)
SBR with A/A stages 180 – 240 < 0.5h Uninformed 90e 90e,g 90e,f

SBR with different 
times of operational 
 phasesi

270 210 130 4200 k 12–25l 88 85 99 Liu et al. (2020)
180 150 70 92 81 98
180 150 70j 93 86 84
130 120 40j 94 97 92
80 100 40j 90 70 76
120 120 70j 96 96 94

SBR with SND 90 120 120m 5000 Uninformed 30 89 79 – Gomes et al. (2021)
SBR with SND 80 150 150 3701 n 60 92 76 82 This work
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Residues of E2 and EE2 in treated sewage by SBR

The initial E2 and EE2 concentrations in the raw efflu-
ent were 3.18 and 3.88 µg  L−1, respectively. After the first 
cycle (cycle 1), 0.35 and 0.94 µg  L−1 of E2 and EE2 were 
detected in the treated effluent, respectively. These values 
corresponded to 11% and 24% of the initial concentrations 
of E2 and EE2, respectively, applied in the SBR (cycle 0) 
(Fig. 4A). This result suggests that SBR was capable of 
removing (or degrading) E2 and EE2 in the first cycle. How-
ever, throughout the process cycles, hormones were still dis-
charged from the treated sewage. E2 residues were measured 
until cycle 5 (above the LOD), whereas EE2 was detected in 
the treated effluent until cycle 9 (above the LOQ) (Fig. 4A). 
This demonstrates that these hormones were periodically 
released with the treated effluent because E2 and EE2 were 
not continuously introduced into the system. Figure 4B 
shows the cumulative mass percentages of E2 and EE2 dis-
charged into the treated effluent over 13 cycles. A total of 

17% of E2 initially applied in the SBR were discharged with 
treated sewage until cycle 5, while 83% of the accumulated 
mass of EE2 was released until cycle 9, with. Therefore, 
E2 may have been biodegraded, whereas EE2 was initially 
removed, but later released.

Hashimoto and Murakami (2009) reported higher E2 
removal rates (~ 99%) using batch-scale activated sludge 
under aerobic conditions. When the hydraulic retention time 
(HTR) was increased from 8 to 24 h, EE2 was not detected 
(below the limits of detection) in the treated effluent and 
settled sludge, and the authors suggested the biodegrada-
tion of EE2 as the main mechanism of its removal. Clara 
et al. (2004) observed that the removal efficiencies of E2 and 
EE2 were over 60% when the applied SRT was higher than 
10 d. These authors suggested that SRT values between 5 
and 10 d were critical for the removal of these compounds. 
Amin et al. (2018) observed an increase in the removal rates 
of different hormones (E1, E2, E3, and EE2) in an MBBR 
system with increasing HRT and SRT, reporting 98.6–99.9% 
E2 and 71–95% EE2 removal with an SRT from 11 to 46 
d. Conversely, Servos et al. (2005) did not detect statisti-
cal correlations between HRT or SRT and E2 removal rates 
in different STPs in Canada, but the results suggested that 
the ones operating with nitrification had higher hormone 
removal rates. Kent and Tay (2019) reported EE2 adsorp-
tion as the main removal mechanism in aerobic granular 
sludge during sludge growth. According to the authors, after 
the sludge stabilized, all active spaces were occupied by 
adsorbed EE2, and that degradation became the main route 
of removal. Finally, Layton et al. (2000) studied the biodeg-
radation capacity of sludge from different STSs in the USA 
to radiolabel estrogens under aerobic conditions, indicating 
that 75% of the applied 14C-E2 was mineralized after 24 h. 
Of the applied 14C-EE2, 40% was mineralized (14C–CO2) 
and only 20% was observed to be in the aqueous phase. In 
the present study, E2 and EE2 were added only once to the 
SBR, and HTR and SRT of 8 h and 60 d, respectively, were 
applied. Different behaviors were observed for the hor-
mones as E2 was removed or biodegraded, whereas EE2 
was initially adsorbed onto the settled sludge but released 
later (Fig. 4B). The Table 3 shows the difference between 
some studies found in the literature with the results of this 
work about E2 and EE2 removal. Therefore, the removal of 
these hormones by SBR was apparent, i.e., taking only the 
first cycle a high percentage of removal will be observed, 
however, a gradual disposal of their residues with treated 
sewage in subsequent cycles. From the researched literature, 
this is first report of this phenomenon.

Nitrification, denitrification, and nutrient removal are 
associated with hormone removal rates (Hamid and Eskicio-
glu 2012). Andersen et al. (2003) suggested that systems that 
promote denitrification and nitrification can biodegrade E2 
and EE2, whereas studies carried out in Denmark reported 

Fig. 4  E2 and EE2 residues determined in the treated sewage during 
13 cycles, expressed as A concentration and B cumulative mass per-
centage
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that sludge sorption is not relevant to hormone removal 
(Andersen et al. 2005). Mechanisms that explain this phe-
nomenon likely involve the co-metabolism of these com-
pounds during ammonium oxidation by AMO (De Gusseme 
et al. 2009; Fernandez-Fontaina et al. 2016; Li et al. 2020). 
In contrast, Khunjar et al. (2011) suggested that AOB and 
heterotrophic bacteria may act cooperatively to degrade EE2, 
observing that AOB can degrade EE2 and form metabo-
lites such as 4-hydroxy-EE2 and sulfo-EE2, and that these 
intermediates can be mineralized by heterotrophic bacteria. 
These authors also indicated that heterotrophic bacteria 
alone were capable of mineralizing EE2. Sheng et al. (2021) 
demonstrated that the co-metabolism of EE2 by Nitroso-
monas europaea occurred only when high ammonium con-
centrations (> 38 mg  L−1) were applied, above those found 
in typical sewage. These authors suggested that the use of 
alternative nitrogen sources could improve EE2 removal via 
co-metabolism. Larcher and Yargeau (2013) indicated that 
EE2 could be completely degraded by Rhodococcus spe-
cies after 48 h in pure cultures, and that other heterotrophic 
bacteria, such as Bacillus subtilis, Pseudomonas aeruginosa, 
and Pseudomonas putida, were also able to degrade EE2 
(averaging 25%), with metabolite formation. These bac-
teria are typically found in STSs, which may explain the 
difference in removal efficiencies observed in other stud-
ies, indicating that these microorganisms, as well as nitrify-
ing bacteria, have the ability to degrade EE2 (Larcher and 
Yargeau 2013). Kassotaki et al. (2019) did not detect any 
association between nitrification rates and EE2 removal or 
biotransformation with increased ammonium concentra-
tions in nitrification cultures. E2 was completely removed 
in a conventional activated sludge system (100%) by hetero-
trophic bacteria, probably through partial degradation, form-
ing metabolites such as E1. However, EE2 degradation was 
negligible and its removal was prioritized through sorption, 
suggesting a possible elimination route. Finally, Kent and 
Tay (2019) investigated the initial EE2 adsorption to aerobic 
granular sludge through isotherm data and concluded that 
EE2 may be degraded after sorption to sludge.

In the present study, TP removal was observed in the 
SBR, with 83% of E2 removed or degraded, while EE2 
remained in the system after the release of treated effluent. 
The low removal rate of EE2 could be related to the high 
removal of TP (> 80%). Chen et al. (2018) reported lower 
hormone removal efficiencies in processes that removed 
higher levels of TP. During anaerobiosis, heterotrophic 
bacteria are inhibited owing to the absence of oxygen, 
and PAOs can be developed using available organic mat-
ter (Bunce et al. 2018). In the aerobic step, the competition 
between heterotrophic and autotrophic nitrifying bacteria 
for oxygen is lower because of the lower amount of organic 
matter present in the medium; therefore, PAOs can use the 
previously accumulated polyhydroxybutyrate (stored organic 

matter) (Blackall et al. 2002; Bunce et al. 2018). Conse-
quently, the success of TP removal involves the inhibition of 
heterotrophic bacteria, although this may impair EE2 SBR 
degradation. The EE2 metabolism requires the presence of 
heterotrophic bacteria whose development was inhibited by 
the initial anaerobic phase. This suggests that the co-metab-
olization of EE2 by AOB occurs only with the help of these 
bacteria. Therefore, the TP biological removal may impair 
the hormones removal in the sewage treatment plant.

Post‑removal of E2 and EE2 by UV/H2O2 system

The EDCs were not completely removed by the SBR. Thus, 
the UV/H2O2 process was combined for treating samples 
after biological treatment. E2 and EE2 degradation after 
biological treatment was performed using 3 mg  L−1  H2O2 
for 30, 60, and 90 min. Figure 5 indicates that the removal 
of both hormones was above 97% in the 30 min UV/H2O2 
process. Frontistis et al. (2015) evaluated the degradation 
of EE2 (100 µg  L−1) in STS in Greece and achieved 100% 
removal following UV/H2O2 application (10 mg  L−1) for 
15 min. Cédat et al. (2016) obtained an average removal 
rate higher than 90% for E1, E2, and EE2 in an effluent 
using UV/  H2O2 (40 mg  L−1), whereas Ijpelaar et al. (2010) 
achieved the same results using 10 mg  L−1  H2O2. Chaves 
et al. (2020) tested different concentrations of UV/H2O2 (3 
and 30 mg  L−1) for EE2 and E2 removal, achieving values 
below the limit of detection when employing 3 mg  L−1  H2O2 
for 90 min. In the present study, with a hydrogen perox-
ide concentration of 3 mg  L−1, complete EDC removal was 
achieved in 30 min. The preceding biological SBR process 
facilitated hormone degradation as various components from 
sewage that can inhibit the UV/H2O2 process were removed, 
decreasing the concentrations of investigated hormones 
(Yuan et al. 2013; Venkiteshwaran et al. 2021).

Thus, the application of SBR could reduce the content of 
organic matter and nutrients, as well as other contaminants 
(suspended solids and turbidity), allowing the complete 

E2
EE2 E2

EE2 E2
EE2
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Fig. 5  E2 and EE2 UV/H2O2 degradation following SBR. Conditions: 
T = 25 °C,  [H2O2] = 3 mg  L−1
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removal of hormone residues by the UV/H2O2 system. As 
higher treatment costs are observed when employing the 
UV/H2O2 process, owing to the high consumption of the oxi-
dant (Cédat et al. 2016), this coupling of biological reactors 
and oxidative processes may be a viable alternative, and the 
decreased reaction times and lower input consumption may 
be economical for hormone removal in STSs (Cédat et al. 
2016). Furthermore, the use of low oxidant concentrations 
reduces the loss of process efficiency (Ince 1999; Zhang 
et al. 2010), which occur because of cross reactions between 
hydroxyl radicals, creating a less reactive hydroperoxyl radi-
cal  (HO2

·) (Sharma et al. 2015).
The use of AOPs as post-treatment to remove EDCs 

may increase treatment efficiency, although no assessments 
employing biological systems coupled with UV/H2O2 have 
been reported in the literature. However, Estrada-Arriaga 

et al. (2016) observed reduced COD, TN, and TP concen-
trations and the removal of 11 EDCs using the Fenton pro-
cess (Fe:H2O2 30:25 mg  L−1) as a biological post-treatment 
system. De la Cruz et al. (2012, 2013) employed the neural 
photo-Fenton process to treat an effluent obtained from an 
activated sludge process, achieving the removal of 32 EDCs 
after 90 min of reaction. Nguyen et al. (2013) coupled a 
membrane bioreactor (MBR) with UV radiation to treat 
effluents containing 22 compounds. The MBR was able to 
remove hydrophobic substances and hydrophilic compounds, 
whereas the UV process removed 85% of the persistent com-
pounds. Therefore, the use of UV/H2O2 processes for the 
post-treatment of effluent generated by the SBR was shown 
to be viable for the complete removal of E2 and EE2. The 
Table 4 presents the comparative results of different studies 
with UV and UV/H2O2 about E2 and EE2 removal.

Table 4  Comparison between some different types of advance oxidative processes used for degradation of EE2 in different matrices

a Concentrations of hormones found in this matrix after the treatment by SBR (sequencing batch reactor)

Type of the process Matrix Concentration of hormones Main conclusions References

UV
UV/H2O2

Purified water 610, 1210 and 1950 µg  L−1

400, 790, 1190, 1590 and 1980 µg  L−1
– EE2 was not totally removed by UV;
– UV/H2O2 system was more effective in 

the degradation of EE2 using 5 mg  L−1 
of  H2O2 by 20 min of reaction

Zhang et al. (2010)

UV/H2O2
Solar/Fe2+

Solar/Fe2+/H2O2

Ultrapure water
Drinking water
Treated sewage

100 µg  L−1 – Degradation of EE2 was a little faster 
in ultrapure water than in treated sew-
age;

– EE2 was totally degraded in 15 min. 
with 10 mg  L−1 of  H2O2;

– 86% of EE2 was degraded with 15 mg 
 L−1 of  Fe2+ after 60 min;

– The whole EE2 was degraded using 
Solar/Fe2+ (5 mg  L−1)/H2O2 (10 mg 
 L−1) after 30 min of the reaction

Frontistis et al. (2015)

UV
UV/H2O2

Purified water 50 µg  L−1 – Degradation of E2 and EE2 by UVC 
was less than 90% after 50 min of 
reaction;

– Increases in degradation of these hor-
mones with addition of  H2O2;

– Total degradation of E2 and EE2 with 
addition of 15 mg  L−1 of  H2O2 in UV 
system after 120 min of reaction

Ma et al. (2015)

UV
UV/H2O2

Drinking water
Treated sewage

1300 µg  L−1 (E2)
1500 µg  L−1 (EE2)

– Low degradation of E2 (7%) and EE2 
(13%) by UV (photolysis);

– 99% of hormones were degraded of 
drinking water using 40 mg  L−1 of 
H2O2 and UV;

– Degradation of E2 and EE2 in treated 
sewage was greater than 90% using 
90 mg L-1 of  H2O2;

– The degradation kinetic of hormones 
was lower in water than in treated 
sewage

Cédat et al. (2016)

UV/H2O2 Treated sewage 0.35 µg  L−1 (E2)
0.94 µg  L−1 (EE2)a

– Rapid degradation of hormones 
(30 min) using 3 mg  L−1 of  H2O2;

– Treated effluent from SBR with lower 
concentrations of contaminant that can 
interfere in UV/H2O2

This work
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Therefore, this study came to show that the mechanism 
of EE2 removal by biological processes capable of remov-
ing nitrogen and phosphorus is not yet well known. And 
even probable biodegradation of E2 by this process, there is 
a need to measure its main metabolites such as E1 and E3 
that still have the ability to disturb the wildlife and humans. 
The main highlight was the possibility to degrade E2 and 
EE2 by UV/H2O2 process, which proved to be less costly 
when applied as a post-treatment of the biological process. 
The application of this combined SBR-UV/H2O2 system still 
depends on tests on a pilot and/or real scale using sanitary 
sewage.

Conclusion

This study assessed the removal of nutrients and hormones 
by SBR followed by post-treatment with UV/H2O2. TN was 
removed by the SBR anaerobic–aerobic–anoxic without the 
addition of external carbon during the anoxic phase. The 
strategy of releasing the mixed liquor after the aerobic phase 
helped in greater TP removal even adopting higher SRT. 
E2 was biodegraded into metabolites by SBR and metabo-
lites such as E1 and E3 were probably generated, whereas 
EE2 was not biodegraded by SBR, but removed by sorption. 
However, its residues were disposed of with treated sewage 
throughout the SBR cycle. The results also verify that this 
removal was apparent. E2 and EE2 residues released with 
treated effluent from the SBR could be completely degraded 
by the UV/H2O2 process, employing a low amount of rea-
gents and a short process time. The extensive use of the 
SBR-UV/H2O2 system still requires studies on larger scales 
to assess, for example, its performance on this scale and its 
operating cost.
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