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Abstract
Heavy metal pollution has become a grave environmental problem drawing worldwide attention. Reclamation of polluted land 
using innovative and ecofriendly way is crucial to restore soil fertility. During the past two decades, various approaches of 
bio-/phytoremediation are gaining their acceptance to remediate contaminated soil. Recently, the use of reactive nanomaterials 
for phytoremediation or ‘nano-phytoremediation’ is becoming popular, claiming to improve the phyto-availability of heavy 
metals and reduce their toxicity through transformation or detoxification. Nanomaterials exhibit distinct properties concerning 
size, shape, reactivity, and ratio of surface area to volume rendering their potential for a range of applications including 
remediation of polluted soil environments with heavy metals, chlorinated organic solvents, organochlorine pesticides, 
polycyclic aromatic hydrocarbons, and polychlorinated biphenyls. Further, the combination of plants and associated 
microbes such as rhizospheric bacteria or arbuscular mycorrhizal fungi has the potential to significantly improve the nano-
phytoremediation of heavy metal contaminated soil. This review focuses on recent developments on nano-phytoremediation, 
plant root associated microbes, and their interaction for developing an integrated and efficient nano-phytoremediation strategy 
for improved soil remediation in general and for soil contaminated with heavy metal. The application of nanomaterials 
combined with phytoremediation was discussed.
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Introduction

Soil contamination by heavy metals (HMs) and metalloids 
due to unremitting development of multifarious industrial 
technologies is a current global nuisance compromising 
safe agricultural production and groundwater quality. Major 
source of HMs is from metal mining and milling processes, 
industrial wastes from tanning, textile, electroplating, 
gas exhausts, energy, fuel production, and petrochemical 
(Chaney and Oliver 1996). Industrialization, air deposition, 

manure/sludge, and extensive use of chemical fertilizers 
have resulted in HM deposition in agricultural soils (Mehr 
et al. 2021). Extensive use of pesticides in agriculture and 
horticulture containing heavy metals, for example, Cu Hg, 
Mn, Pb, Zn, etc., is another source of HM contamination 
of soils (Alloway 1995). Application of livestock manures, 
composites, municipal sewage, and sludge amassed in soil 
also contribute HM contamination such as Pb, Cr, As, Cd, 
Cu, Hg, Ni, Mo, Zn, Se, Sb, etc. (Basta et al. 2005; Alvarenga 
et al. 2015). Because HMs cannot decompose in soil, they 
disrupt the soil ecology by inhibiting the development of 
soil microorganisms and plants, accumulating in various 
environmental spheres. This indicates a strong chance that 
HM will bioaccumulate, spread up via the food chain to 
the ecological pyramid, and ultimately reach humans, 
creating a health risk (Reza and Singh 2010; Parvin et al. 
2019). To address the issue of HM pollution, presently 
phytoremediation technology has been adopted as a potential 
tool.
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Phytoremediation strategy is based on the principle 
of exploiting the plants to decontaminate soil, sludge, 
sediment, and wastewater by using various methods. These 
are phytoextraction (i.e., deportation of heavy metal/
toxic pollutant from soil/water), phytotransformation 
(i.e., degradation or chemical modification of organic 
contaminants), phytovolatilization (i.e., contaminants 
directly or after chemical modification are taken up 
by plants and then volatilized into the environment), 
rhizofiltration (i.e., filtering water through mass of roots, 
where contaminants remain adsorbed), phytostimulation 
(i.e., enhanced degradation of toxic substances by 
rhizospheric microbes), and phytostabilization (i.e., reduced 
bioavailability of the pollutants by immobilizing it within 
the soil). For example, many plants of Compositae family 
are highly tolerant to HM and can phytostabilize HM such 
as Cr, Pb, Ni, Fe, Mg, Cd, and Zn by accumulating in their 
roots and stems (Nikolić and Stevović 2015; Siddiqi and 
Husen 2016; Chand et al. 2016; Gautam and Agrawal 2017). 
In order to improve plant phytoremediation of heavy metals 
(HM), a number of researchers are interested in combining 
rhizospheric growth-promoting bacterium (PGPR) with 
symbiotic arbuscular mycorrhizal fungus (AMF).

While phytoremediation holds great potential for 
remediating soil contaminated with heavy metals, its 
implementation is time-consuming. To increase the 
effectiveness of phytoremediation in HM-contaminated 
soils, recent research suggests applying a combination of 
phytoremediation and nanomaterials (Zhu et al. 2019; Yu 
et al. 2021). Using nanomaterials in phytoremediation, also 
known as nanophytoremediation, is an environmentally 
friendly technique that use plants to absorb and accumulate 
toxic pollutants that have been destroyed or adsorbed 
through the use of nanomaterials. This new remediation 
method has been shown to be successful in the elimination 
of HM by absorbing them, changing the toxic valence state 
to a stable metallic state, and by catalyzing the process (Karn 
et al. 2009; Gil-Díaz et al. 2014). Because nanoparticle-
aided phytoremediation techniques successfully and more 
efficiently remove pollutants from polluted soil or water in 
shorter time than traditional phytoremediation methods, 
nano-phytoremediation technology offers enormous promise 
for environmental remediation of HM, organic, and inorganic 
contaminants (Ma and Wang 2010; Pillai and Kottekottil 
2016; Souri et  al. 2017). Adsorption, heterogeneous 
catalysis, electro-nanoremediation, photodegradation, 
and nano-bioremediation involving microbes are some of 
the different technical processes that can be used to apply 
nanoparticles (NPs) to contaminated soils and remove or 
immobilize HMs (Mukhopadhyay et al. 2021; Ahmed et al. 
2021). Enzyme-based bioremediation using NP can also be 
used in phytoremediation (Singh 2009; Yadav et al. 2015). 
However, it is to be noted that in nano-phytoremediation of 

polluted soils, NPs employed should not possess any hazards 
to plants and rhizospheric microbes and should be capable 
of increasing the phyto-availability of pollutants for efficient 
phytoextraction. In this context, biogenic NPs produced by 
soil bacteria and plants are promising candidates as they 
stimulate the synthesis of plant growth hormones, resulting 
in enhanced biomass output and pollutant absorption from 
roots to above-ground tissues. Further, manufactured NPs 
have physicochemical, surface, and optical-electronic 
properties that are shown to address problems that cannot 
be tackled by standard approaches. New processes, tools, 
materials, and chemicals with excellent performance and 
low energy consumption can be created using this technique.

Though the technology has shown to have several 
advantages, there are limited field scale studies, and the 
technology requires a thorough research investigation 
in various aspects such as prices, toxicity, recycling 
issues, etc. (Alazaiza et al. 2021). Even though NPs have 
been widely studied in the field of HM remediation, 
majority of the available review works focused on 
nanotechnology as a solution for HM remediation from 
wastewater. A comprehensive and systematic review work 
on nanotechnology-assisted phytoremediation for HM 
remediation in soil environment is rather limited. From the 
background study, we discovered that a thorough assessment 
of the state-of-the-art body of knowledge spanning various 
facets of the technology, such as microorganisms associated 
to plant roots and their role in developing a cohesive and 
successful nano-phytoremediation technique, is desperately 
needed. In order to remediate soil contaminants and 
improve the phytoremediation performance of plants 
grown on HM-polluted soils, this review will concentrate 
on recent advancements in nano-phytoremediation, plant 
root associated microbes, and their role in developing an 
integrated and effective nano-phytoremediation strategy. 
This review aims to focus on recent developments on nano-
phytoremediation, plant root associated microbes, and 
their role for formulating an integrated and efficient nano-
phytoremediation-based strategy to achieve desirable soil 
decontamination level and to boost up the phytoremediation 
performance of plants grown on HM-polluted soils.

Properties and types of nanomaterial 
applied for environmental remediation 
and advantages of nanoparticle‑assisted 
phytoremediation

Nanoparticles are molecular assemblages ranging between 
1 and 100 nm having distinct physicochemical properties 
compared with bulk material (Tewari 2019). Nanomaterial 
can be broadly classified into two categories depending 
on their chemical nature; organic such as carbon NPs 
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(e.g., fullerenes), and inorganic (gold and silver, and 
semiconductor NPs,  TiO2, ZnO) (Yadav et al. 2017). Based 
on to origin, NPs can be grouped as natural such as volcanic 
dust; incidental generating from anthropogenic sources (coal 
combustion, diesel exhaust, welding fumes) and engineered 
NP such as Ag NP, Zn NP, etc. (Khan 2020). Nanomaterials 
have unique properties such as higher surface area, higher 
reactivity, variable shape, and morphologies, suitability for 
catalytic activity that made them advantageous for treating 
toxic chemicals in contaminated water and land (Khin et al. 
2012).

The major benefits of employing nanoremediation for soil 
and groundwater remediation, particularly for substantial 
site cleaning, include lower costs and faster cleanup, as 
well as complete degradation of certain toxins without the 
need to transferring the soil (Karn et al. 2009). Through 
application of desirable material at nanoscale, a greater 
activity could be ensured due to its higher surface area 
because of which a larger fraction of the material comes 
into contact with the material (Ahmed et al. 2021). Due to 
their novel surface coating and small size, many engineering 
NPs are highly suitable for in situ remediation applications. 
Further, NPs have greater ability to diffuse and penetrate the 
subsurface and thus can infiltrate into a contamination zone 
where microparticles cannot penetrate and they have higher 
reactivity to redox-amiable contaminants (Alazaiza et al. 
2021). Surface plasmon resonance, quantum effect properties 
shown by NPs help to detect the toxic chemicals and requires 
less activation energy to initiate the chemical reaction 
(Rizwan et al. 2014). Nanotechnology-mediated sustainable 
techniques, such as Raman scattering, surface plasmon 
resonance, fluorescence spectroscopy, and optical detection 
systems are applied in recent dates for efficient remediation 
of contaminated land and waterbodies (Ghasemzadeh et al. 
2014). Nanoparticles can also facilitate immobilization of 
microbial cells responsible for degradation or reclamation of 
specific chemicals (Rizwan et al. 2014). Nanomaterials are 
reported to be more competent, economic, and eco-friendly 
alternatives to achieve both sustainable management and 
environmental remediation.

The NPs exploited for environmental cleanup possess 
specific size, solubility, surface area, surface charge, and 
surface chemical composition (Das et al. 2015). The two 
primary categories of NPs are inorganic and carbon-based 
(Yu et al. 2021). The most popular and thoroughly studied 
NPs for use in environmental applications include nano 
zero-valent iron, titanium dioxide  (TiO2 NPs), and carbon 
nanotubes (CNTs). A wide range of hazardous chemicals, 
including HMs, can be bioremediated using nanoscale 
materials such as nanoscale zeolites, metal oxides, Pd/Fe0 
bimetallic NPs, zinc oxide, carbon nanotubes, chitosan and 
graphene oxide, Ag–iron oxide,  TiO2NPs, polysulfone–zero-
valent iron, and poly (acrylic acid)-coated iron oxide 

(Das et al. 2018). Organic nanomaterials used for metal 
removal, radionuclide remediation, and degradation of toxic 
chemicals are dendrimers, modified dendrimers, CNTs, 
calcium alginate, and multiwalled CNT (Das et al. 2018). 
Different types of organic and inorganic NMs/NPs used for 
heavy metal remediation are presented in Table 1.

Biogenic production of nanomaterials 
for remediation of heavy metal

Recent nano research has made tremendous progress in 
developing NPs with unique properties that are distinct from 
original source material. Customarily, NPs are generated 
exclusively by physical as well as chemical methods. 
However, to prevent the production of unwanted or harmful 
by-products, environmentally friendly synthesis is required 
for establishing a reliable, sustainable manufacturing 
processes. It is critical that materials used to clean up 
pollution must not become a new contaminant itself once 
put into application. Green synthesis method offers a safe, 
nontoxic, and ecologically friendly way to make metallic 
NPs because of its economic potential and viability. 
Appropriate natural resources are necessary to achieve this 
goal and biodegradable materials represent huge potential 
in this regard. Further, the need for biosynthesis of NPs 
evolved on account of higher expenses incurred in the 
aforesaid methods. Therefore, in search of cost effective and 
ecofriendly pathways of synthesis of NPs, microorganisms 
and afterward plants are exploited to develop NPs with 
different chemical configuration, sizes, and morphologies 
for diverse application. Metal compounds can be reduced by 
enzymes and phytochemicals secreted from microorganisms 
into their corresponding NPs due to their antioxidant and 
reducing properties. Biosynthesis of NPs has been evidenced 
in bacteria, yeasts, algae, fungi, and actinomycetes besides 
vascular plants (Sastry et al. 2003). Organic and inorganic 
NPs of biological origin is strongly needed considering 
their sustainability and inexpensive in nature (Rizwan et al. 
2014). Below NPs synthesis from various biogenic sources 
is discussed.

Plant‑based synthesis of nanoparticles

Presently, green synthesis of plant-based NPs is gaining 
importance due to single-step biosynthesis measure and 
reduced generation of toxic by-products. The plants are 
more advantageous source of NP for their availability, 
non-toxic nature, and a broad variability of metabolites 
that may serve as reducing agents. Plant leaf extracts 
include essential ingredients for the formation of NPs. The 
majority of the phytochemical components in plants that 
are involved in NP bio-reduction include carboxylic acids, 
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amides, flavones, terpenoids, sugars, ketones, and aldehydes 
are mostly involved in NP bio-reduction (Roy et al. 2021). 
Additionally, plant-derived carbohydrates such as glucose 
and fructose take part in metallic NP formation (Panigrahi 
et al. 2004). Plants are more suitable for NP synthesis than 
microorganisms as incubation time for metal ion reduction is 
shorter when using plants metabolites (Yadav and Rai 2017). 
Plant tissue culture and downstream processing approaches 
are most commonly used to generate metallic and oxide NP 
on a large scale.

A number of plants have been reported for their role in 
the synthesis of NP. Several authors have reported rapid and 
potential synthesis of Ag, Au, and Cu NPs using extracts of 
plants such as Aloe vera (Chandran et al. 2006), Medicago 
sativa (Gardea-Torresdey et al. 2002), Azadirachta indica 
(Shankar et al. 2004), Avena sativa (Armendariz et al. 2004), 

Emblica officinalis (Ankamwar et al. 2005), Humulus lupulus 
(Rai et al. 2006), Spinacia oleracea and Lactuca sativa 
(Kanchana et al. 2011), Gnidia glauca (Ghosh et al. 2012), 
Capsicum annum (Jha and Prasad 2011), Tridax procumbens 
(Gopalkrishnan et  al. 2012), and Sargassum muticum 
(Mahdavi et al. 2013). However, effect of engineered NPs 
differs from plant to plant depending on their mode of 
application, size, and concentrations (Siddiqui et al. 2015). 
Stable silver NPs of different sizes can be prepared from 
berry extract of Solanum xanthocarpum [10 nm] (Amin 
et al. 2012), the roots extract of Coleus forskohlii [82.46 nm] 
(Baskaran and Ratha bai 2013), flower extract of Hibiscus 
rosa-sinensis [5–40 nm] (Surya et al. 2016), Dioscorea alata 
tuber extract [10–25 nm] (Pugazhendhi et al. 2016), the latex 
of Thevetia peruviana [10–30 nm] (Rupiasih et al. 2015), 
and the rind extract of Citrullus lanatus fruit [17.96 nm] 

Table 1  Example of nanomaterials used for heavy metal remediation

Nanoscale materials Effects References

1 Chitosan Adsorption of Pb (II) and removal Qi and Xu (2004)
2 CeO2–CNTs pH-dependent adsorption of As(V) Peng et al. (2005)
3 FeS Effectively immobilize Hg in a clay loam 

sediment
Xiong et al. (2009)

4 Bimetal iron (III)–titanium (IV) oxide 
(NHITO)

Removal of As(III) and As(V) from arsenic-
rich ground water

Gupta and Ghosh (2009)

5 Manganese associated hydrous iron (III) 
oxide (MNHFO)

As(III) sorption occurred with catalytic 
oxidation of As(III) to As(V) on the surface 
of oxide

Gupta et al. (2010)

6 Modified magnetic chitosan chelating resin Temperature dependent adsorption of Cu (II), 
Co(II), Ni(II)

Monier et al. (2010)

7 Chitosan derivatives (chitosan-GLA) Pb (II) biosorption Ngah and Fatinathan (2010)
8 Magnetite reduced graphene oxide (M-RGO) Removal of arsenic (As) from wastewater Chandra et al. (2010)
9 Alumina-coated multi-wall carbon nanotube 

(MWCNT)
Pb (II) adsorption and removal Gupta et al. (2011)

10 Graphene nanosheets (GNSs) Adsorption of Pb(II) from aqueous system Huang et al. (2011)
11 Polypyrrole-reduced graphene oxide (PPy–

RGO)
Selective adsorption of Hg (II) Chandra and Kim (2011)

12 IONPs immobilized in PEG/nylon membrane Pb (II) absorption, treatment of Pb (II) 
contaminated water

Tong et al. (2011)

13 IONPs embedded in orange peel pith Cr (II) removal López-Téllez et al. (2011)
14 Fe–Mn oxide nanoparticles As (III) immobilization An and Zhao (2012)
15 Polysulfone–zero valent iron A(III) remediation Fresnais et al. (2013)
16 Polyacrylic acid modified nZVI

(PAA-nZVI)
Removal of arsenate Laumann et al. (2013)

17 Magnetic chitosan/graphene oxide (MCGO) Pb (II) removal, methylene blue Fan et al. (2013)
18 Zeolites Removal of heavy metals Oliveira et al. (2004), Kocaoba et al. (2007), 

Guan et al. (2010) and Mallard et al. 
(2015)

19 Hydrous cerium oxide (HCO) Removal of Cr (VI) Albadarin et al. (2014)
20 Kaolinite supported Fe/Ni nanoparticles Ag–

iron oxide/fly
Simultaneous catalytic remediation of lead 

and nitrate
Joshi et al. (2015)

21 Fe (II)–montmorillonite Removal of Cr (II) Vinuth et al. (2015)
22 Titanium phosphate Removal of heavy metals Pol et al. (2016)
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(Ndikau et al. 2017). Plant-based NP synthesis shows great 
promise, but qualitative research is needed to understand 
the molecular, physiological, and biochemical mechanisms 
behind nanoparticles.

Nanoparticles produced by bacteria

Bacteria have the potential to deplete metal ions, 
making them excellent candidates for the production of 
NP (Iravani 2014). Bacteria are well known for heavy 
metal remediation through mobilizing, immobilizing, 
reduction, and precipitation. The unique metal binding 
ability of the bacterial cell makes them worthwhile 
for nanobioremediation technologies. Bacteria act as 
promising ‘biofactory’ for the synthesis of NP such as 
silver, titanium, gold, platinum, titanium dioxide, magnetite, 
palladium, cadmium sulfide, etc. (Iravani and Varma 2020). 
Bacterial enzymes can control specific reactions that lead 
to the formation of several inorganic NPs ranging in size 
100–200 nm (Iravani 2014). Although NPs synthesized by 
bacteria are relatively pure, its further purification is needed 
by filtration. Bacterial species reported in NP synthesis are 
shown in Table 2.

Genetic engineering can help to develop bacteria with 
desirable properties suitable for HM detoxification and 
metal remediation. Characteristics such as metal tolerance, 
protein overexpression that can chelate with metals, 
metallic bioaccumulation, and synthesis of NP could 
be incorporated to bacteria (Paliwal et al. 2012; Poirier 
et al. 2013). For example, in recombinant E. coli strain, 
co-expressing metallothionein and phytochelatin synthase 
enzyme can be incorporated for NP biosynthesis. E.coli 

bacteria bearing the reductase genes of both Shewanella sp. 
ANA-3 and Salmonella enterica serovar Typhimurium were 
found responsible for the production of arsenic sulfide NP 
(Chellamuthu et al. 2019). Silver NPs could be generated 
within a short period by using Klebsiella pneumoniae, 
E. coli, and Enterobacter cloacae culture, where bacterial 
nitro reductase enzymes are responsible for reducing 
the silver ions (Shahverdi et  al. 2007). Gold NPs were 
synthesized by applying B. megatherium D01, where NP 
was encased with thiol self-assembled monolayer (Wen 
et al. 2009). Bacterial species like Delftia acidovorans can 
synthesize pure gold NP (Johnston et al. 2013).

Nanoparticles produced by fungi

Fungi are good source for the green synthesis of NP 
because of their simple structure and cost-effectiveness in 
laboratory cultivation and in industrial production of NP. 
Fungal production of metal/metal-oxide NP is relatively 
faster and more eco-friendly since they include a variety of 
enzymes. Compared to bacteria, fungus can produce more 
NPs (Mohanpuria et al. 2008). Fungi-mediated synthesis of 
NP may be in vivo where it occurs intracellularly within 
living mycelia; or in vitro where NP is synthesized by using 
fungal extracts (Ramanathan et al. 2013; Zhao et al. 2018).

Filamentous fungi have the potential to synthesize a 
broad range of metal NPs such as gold (Vágó et al. 2016; 
Kitching et al. 2016), silver (Duran et al. 2005; Shaligram 
et al 2009), iron oxide (Saif et al. 2016), and bimetallic 
NP (Castro-Longoria et al. 2011) (Table 3). Aspergillus 
terreus was found promising for the synthesis of gold (size 
10–50 nm) and silver (8–20 nm) NP from mycelial-free 

Table 2  Application of various bacteria for the synthesis of nanoparticles

Nanoparticles Bacterial species References

1 Silver nanoparticles Pseudomonas stutzeri
Corynebacterium sp
Staphylococcus aureus
E. coli
Leuconostoc lactis
E. Coli
Bacillus cereus

Klaus et al. (1999)
Zhang et al. (2005)
Nanda et al. (2009)
Gurunathan et al. (2009)
Saravanana et al. (2017)
Kushwaha et al (2015)
Sunkar and Nachiyar (2012)

2 Magnetic nanoparticles Magnetosirillium magneticum
Sulphate reducing bacteria

Mohanpuria et al. (2008)
Gericke and Pinches (2006)

3 Palladium nanoparticles Desulfovibrio desulfuricans NCIMB 8307 Nair and Pradeep (2002)
4 Cadmium sulfide nanoparticles Clostridicum thermoaceticum Klebsiella aerogens

Escherichia coli
Mandal et al. (2006)
Sweeney et al. (2004)

5 Gold nanoparticle Alkalothermophilic actinomycete
Thermomonospora sp
Pseudomonas aeruginosa
Deinococcus radiodurans

Sastry et al. (2003)
Sastry et al. (2003)
Husseiny et al. (2007)
Li et al. (2016)

6 SnO2 nanoparticle Erwinia herbicola Srivastava and Mukhopadhyay (2014)
7 Copper nanoparticle Pseudomonas fluorescens Shantkriti and Rani (2014)
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filtrate (Balakumaran et al. 2016). It has been determined 
that NADH and NADH-dependent reductase are responsible 
for Aspergillus terreus’s ability to produce NP through bio-
reduction (Li et al. 2011). Fusarium sp. has good potential 
for different types of NPs synthesis (Zielonka and Klimek-
Ochab 2017; Rai et al. 2021). Molnár et al. (2018) used 
a two-step approach to create gold NP from thermophilic 
filamentous fungal strains: first,  Au3+ was reduced to  Au0, 
and then the core of the NPs was stabilized by capping 
agents, a biopolymer with a molecular weight larger than 
3 kDa. Trichoderma reesei is a well-studied fungus has 
been found to contain a wide variety of enzymes that may 
facilitate NP synthesis compared to others (Vahabi et al. 
2011).

Mechanism of action of nanoparticles

Adsorption, transformation, and photocatalysis, as well 
as catalytic reduction are the primary detoxification or 
degradation processes followed by NP in the treatment of 
environmental contaminants.

Adsorption

Adsorption is an exothermic process mediated by surface 
and ionic interactions to bind the contaminants on the 
surface of an adsorbent. The smaller size and increased 
fraction of atom of NPs lead to magnified surface energy in 
its chemical potential (Gubin et al. 2005). Certain adsorption 
properties of the NPs govern the adsorption process (Borisev 
et al. 2020), such as definite surface area (large surface-to-
volume ratio), available adsorption sites and porosity as well 
as precise interactions with other chemicals, making them 
one of the most suitable adsorbents (Santhosh et al. 2016; 
Sadegh et al. 2017). Several prokaryotes and eukaryotes 
can synthesize nanoscale adsorbents. Different biologically 
produced nonadsorbents are reported to trap heavy metals. 
When nanoadsorbent is applied to environment containing 

HM, depending upon the metal concentration and accessible 
surface area on adsorbent, metals diffuse on the external 
surface of the nanoadsorbents owing to diffusion through 
physisorption or chemisorption (Parvin et al. 2019). The 
affinity of HMs for an adsorbent determines their extent of 
removal from water.

Several surface modifications on NP as a technique to 
improve their adsorption effectiveness have been researched 
to make the greatest use of NPs and maximize their 
application. Enhancement of adsorption capacity, efficiency, 
dispensability, and stability or inertness in challenging 
conditions are the primary goals of this modification. They 
are predominantly iron-, alumina-, and silica-based surface-
modified NP (Manyangadze et al. 2020).

Metal oxides

Metal-oxide nanoparticles (MeONPs) are promising as 
HM adsorbent. Nanoadsorbents based on metals such as 
iron oxide, zinc oxide, cupric oxide, and titanium dioxide 
are well-known MeONPs for HM removal (Recillas et al. 
2011). Iron-oxide NPs have the best adsorption capability 
among the cheapest adsorbents. Lunge et al. 2014 reported 
maximum capacity of  Fe3O4 NPs for trivalent (188.69  mg−1) 
and pentavalent (153.8  mg−1) arsenic adsorption from tea 
waste. Pb (II) and organic dye adsorption from aqueous 
solution by applying CuO NP (CuONP) was also reported 
(Farghali et al. 2013; Mustafa et al. 2013). Green synthesis 
of CuONPs from mint leaves and orange peel extract was 
found to successfully remove Pb(II), Ni(II), and Cd(II) ions 
from the contaminated water through adsorption process 
(Mahmoud et al. 2021). A zero-valent silver nanoadsorbent 
synthesized from Phyllanthus emblica leaf extract was 
shown to adsorb Hg(II) ions with a maximum adsorption 
capacity of 312  mgg−1 (Siva et al., 2013). Proanthocyanidins-
functionalized gold NPs have the potential as good adsorbent 
for HM ions such as  Ni2+,  Cu2+,  Cd2+ and  Pb2+ and organic 
dyes in an aqueous solution (Biao et al. 2018).

Table 3  Mycosynthesis of 
different nanoparticle

Types of nanoparticles synthesized (shape and size) Fungal species References

Fe (spherical, 10–24.6 mm) Aspergillus oryzae Tarafdar and Raliya (2013)
Ag (spherical, 5–50 mm) Calocybe indica Sujatha et al. (2013)
Au (Decahedral and Icosahedral, 20–40 mm) Colletotrichum sp. Shankar et al. (2003)
Si (Quasispherical, 5–15 mm) Fusarium oxysporum Bansal et al. (2005)
Ti (Spherical, 6–13 mm) Fusarium oxysporum Bansal et al. (2005)
Ag (Spherical, 5–50 mm) Pleurots florida Sujatha et al. (2013)
Ag (Spherical, 5–50 mm) Rhizopus stolonifer Afreen et al. (2011)
Ag (Spherical or rodlike 5–40 mm) Trichoderma viride Fayaz et al. (2010)
Ag (Spherical 8–60 mm) Tricoderma sp. Devi et al. (2013)
Ag (13–18 mm) Trichoderma asperellum Mukherjee et al. (2008)
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Because of their relatively low cost, high adsorption 
capacity, and ease of regeneration, MeONPs are a preferred 
nanoadsorbent material for removing HM (Parvin et al. 
2019).

Another advantage of MeONPs is their possibility 
of impregnation on activated carbon or other porous 
materials aiding in concurrent removal of HM and organic 
contaminants (Hristovski et al. 2009). MeONPs are easy 
to regenerate and retain their efficacy even after several 
regenerations (Qu et al. 2013).

Bimetallic nanoparticles (BNPs)

Synthesis of BNP is a biocompatible approach that exploits 
bacteria, yeast, fungi, and plants for synthesis of NP, either 
intra- or extracellularly at room temperature. The nanoscale 
particles are then coated with discontinuous layer of noble 
metals to enhance the reactivity as compared to uncoated 
iron (Chang et  al. 2011). Bimetallic Au/Ag NPs were 
produced by applying single-cell proteins of Spirulina 
platensis (Govindaraju et al. 2008). Plant biomass is used 
as non-toxic natural reductants to reduce metal ions for the 
synthesis of BNP (Sarkar et al. 2021). The flavonoids and 
phenolics secreted by plants are accountable for both the 
reduction and stabilization of BNPs. Phenolic hydroxyl and 
protein content in pomegranate fruit extricate/extract are 
assumed to play a significant part in reducing and settling 
the bimetallic Au–AgNPs (Kumari et  al. 2015; Sarkar 
et al. 2021). Other BNP synthesized successfully through 
bio-reduction method are Ag/Se, Ti/Ni, Au/Pd, etc. (Das 
et al. 2018). Higher catalytic potential of BNPs make them 
superior for environmental contaminant remediation (Litter 
et al. 2014).

It has been reported that BNP has a larger adsorption 
capability for HM than single metal-oxide NPs (Zhang et al. 
2010; Babaee et al. 2018). Parsons et al., (2009) observed 
that bimetal oxide has 20–50 times the arsenic adsorption 
capacity of  Fe3O4 and  Mn3O4. Because these magnetic 
nanomaterials are paramagnetic, they can easily separate 
HM from solution (Zhang et al. 2010).

Modified nanoparticle

The outer layer of the MeONPs may be chemically 
modified either by organic and inorganic molecules such 
as surfactants, polymers, biomolecules or silica and metals, 
metal oxide, and metal sulfide to increase the stability as 
well as efficiency in application. Modified NPs show higher 
reactivity, surface energy, and magnetic properties, and 
therefore can be very easily oxidized in aqueous medium 
(Das et al. 2018). The mechanisms of adsorption by surface-
modified NP comprise of surface site binding, magnetic 
selective adsorption, electrostatic interaction, and modified 

ligand combination (Jeevanandam et al. 2016). Study by 
Singh et al., (2014) showed that citric acid-coated magnetite 
NP effectively removed Cd(II) ions from contaminated 
water. Green synthesized magnetic NPs using Cinnamomum 
tamala (CT) leaves and Jatropha curcas (JC) latex extract 
were found to adsorb Co(ii) and Cu(II) ion from wastewater 
effectively (Das et al. 2020).

Multifunctional nanocomposite

To reduce the time required for the removal of individual 
pollutants from industrial effluents, concurrent adsorption 
of multiple HM is required, and multifunctional NPs are 
now manufactured using low-cost technique to handle the 
issue. Alsabagh et al., (2015) reported the preparation of a 
multifunctional nanocomposite of chitosan, silver NP, copper 
NP, and carbon nanotubes that can remove Cu(II), Cd(II), 
and Pb(II) with a higher adsorption efficiency compared with 
chitosan and the bi-nanocomposites alone within a short 
time. Fato et al., (2019) showed that ultrafine mesoporous 
magnetite  (Fe3O4) NPs can satisfactorily remove  Pb2+,  Cd2+, 
 Cu2+, and  Ni2+ concurrently from contaminated river water. 
Similarly, Matos et al., (2017) evaluated the effects of CNTs 
in soil remediation, particularly to immobilize the HMs ions 
 (Ni2+,  Zn2+,  Pb2+, and  Cu2+).

Catalysis

Nanocatalysts may be used in many fields and are more 
effective than traditional catalysts. The adaptability and 
efficacy of nanocatalysts are due to their smaller size (usually 
10–80 nm) yielding a tremendous surface area-to-volume 
ratio and unique features, which are not present in their 
macroscopic counterparts (Das et al. 2018). Photocatalysis 
is acceleration of photoreaction by nanocatalyst to 
photodegrade organic and inorganic contaminants. When 
exposed to light, nanocatalysts can produce powerful 
oxidative free radicals that can breakdown a variety of 
organic contaminants and reduce HM levels (Subramaniam 
et al. 2019). These semiconductors absorb photons and 
excite electrons in the presence of light, resulting in the 
transportation of electron pair holes across the surface, 
leading to the formation of reactive oxygen species (ROS) 
such as  OH− and  O2

−. In the presence of light, these holes 
and electrons undergo oxidation and reduction processes, 
destroying organic contaminants (Subramaniam et al. 2019). 
Recently, semiconductor materials such as silver, titanium, 
and zinc oxide NPs have drawn considerable attention for 
photocatalysis-based environmental contaminant removal. 
Photocatalytic degradation is gaining priority due to its low 
cost, high stability, and rapid oxidation process. Silver NPs 
synthesized from the stem, bark, and root of Helicteres isora 
extracts was investigated as reducing and capping agent in 
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the degradation of various organic dyes, including eosin 
methylene blue, methyl violet, and safranin (Bhakya et al. 
2015).

Though not many works have explored photocatalyst in 
HM remediation, these appear to be promising tool for HM 
removal as it can transform metal ions into less harmful 
by-products. The reduction efficiency of titania nanoparticle 
 (TiO2) to hexavalent chromium has been reported by 
Loryuenyong et al., (2014).

Chemical modification

Another effective method for removal of organic and 
inorganic pollutants by NPs is chemical modification. It 
includes successive oxidation and reduction of the metal 
compounds, and thus altering metal speciation resulting 
in alleviation of metal toxicity. Zero-valent nanoparticles 
(ZVNPs) can effectively transform HM such as Cd, Cr, 
Ni, Zn, and Pb (Das et al. 2018). Reduction of Cr (VI) by 
ZVNPs where it serves as electron donor has been explored 
in various bench and field-scale studies (Singh et al. 2012). 
Singh et al., (2012) reported that ZVNPs help with the 
reduction of and removal of Cr(VI) from the water by 
acting as an electron donor, releasing ferrous iron during 
the reduction process and by releasing molecular and atomic 
active  H2 and solid minerals having Fe(II) from NZVI 
corrosion as byproducts that help with the reduction process. 
Metal ions and NPs in their oxidation states undergo redox 
cycling. Studies support that application of ZVNPs can 
successfully transform HM such as Cd, Cr, Ni, Zn, and Pb 
in the contaminated sites.

Nanoparticle alleviates heavy metal stress 
in plants

Nanoparticles are found to be highly effective in minimizing 
HM stress in plants and are indispensable tool for present 
day application in phytoremediation of heavy metals (Gunjan 
et al. 2014; Tripathi et al. 2015). Under abiotic and biotic 
stress, several physiological and biochemical processes in 
the plants such as such as  CO2 fixation, nitrogen metabolism, 
water acquisition, and antioxidant systems are found to be 
regulated by NPs (Wei and Wang 2013), thereby, mitigating 
the adverse effects of the stress (Lei et al. 2008; Wei and 
Wang 2013; Tripathi et al. 2015).

Because of their quantum dot properties, NPs have a 
strong affinity for metals like Cu and Pb, thus reducing 
phyto-availability by serving as a barrier (Worms et al. 
2012). The commonly used  TiO2 NP has been discovered 
to reduce HM phytotoxicity and increase photosynthetic 
rate, relative water, and chlorophyll content, and mitigate 
the harmful effects of metals and metalloids in many 

plants (Singh and Lee 2016; Faraji and Sepehri 2018). 
Following HM exposure,  TiO2 NP-treated spinach was 
shown to have lower free radical concentration (such as 
 H2O2, malonyldialdehyde, and superoxide) and improved 
antioxidant enzyme activity (Lei et al. 2008; Zheng et al. 
2008).  TiO2 NP application has been shown to be a potential 
method for reducing Cd stress in several plants (Faraji and 
Sepehri 2018). Furthermore, nanoscale hydroxyapatite 
treatment was observed to alleviate Cd toxicity in mustard 
(Li and Huang 2014). In Cr-treated plants, another potential 
NP of Si has been shown to promote plant growth, nutrient 
absorption, photosynthesis, leaf nitrogen content, and 
antioxidant enzyme activities (Tripathi et al. 2015). When 
exogenously sprayed with Si NPs to a cucumber plant under 
oxidative stress, it was discovered to maintain an optimal 
 K+/Na+ ratio and promoted the activation of numerous 
important enzymes involved in ROS detoxification (Kader 
and Lindberg 2010; Alsaeedi et al. 2017; Siddiqui et al. 
2017). ROS scavenging efficiency of  CeO2NPs in plants 
under oxidative stress has been reported by a number of 
authors (Rico et al. 2013a,b; Gomez-Garay et al. 2014).

Nano‑phytoremediation of heavy metals 
in contaminated soil

The use of nanomaterials for environmental cleaning is 
fast rising, as NPs can effectively eliminate or lessen the 
toxicity of contaminants such HM, organic, and inorganic 
pollutants. In nano-phytoremediation, factors regulating 
the efficient uptake of NPs by plants include size, type, 
chemical composition, and the route for NP penetration 
within plants (Schwab et  al. 2016). Following uptake 
through the plant root, NPs are transported within the plants 
tissue either through apoplastic (transport outside the plasma 
membrane, through xylem vessel) or symplastic (along with 
the movement of water between cytoplasm and sieve plates) 
pathway (Sattelmacher 2001; Roberts and Oparka 2003).

Several authors have demonstrated that zero-valent iron 
NP (ZV FeNP) can be applied for remediation of metal/
metalloid-contaminated soil systems (Alidokht et al. 2011; 
Gil-Díaz et al. 2014; Fajardo et al. 2015;). The possible 
mechanisms for removal of HM by ZV FeNP is through 
immobilization of HM by adsorption and/or surface 
precipitation and redox reduction (Martínez-Fernández et al. 
2017). The particles of ZV FeNP have a core–shell structure 
made up to 98% Fe and wrapped by a shell composed of 
iron oxides and hydroxides such as FeO/  Fe2O3/ FeOOH), 
rendering the characteristics of both iron oxides (sorption) 
and elemental  Fe0 (reduction) (O’Carroll et al. 2013). Recent 
research shows that applying 10% ZV FeNP reduces As 
bioavailability by immobilizing it and enhance growth of 
Hordeum vulgare L. plant while limiting plant absorption of 
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As (Gil-Diaz et al. 2016; Zhang et al. 2018a, b). According 
to Huang et al., (2016), ZVNP may efficiently enhance Cd 
residual deposits, hence limiting Cd availability, which 
has several negative consequences on plants. Low levels 
of ZVNP inhibited the buildup of Cd in plant roots, stems, 
and leaves, promoting plant development (Su et al. 2016). 
Plants, when used in conjunction with ZVNP may decrease 
the acid soluble percentage of Pb, lowering Pb toxicity in 
sediments (Huang et al. 2018). Vitkova et al. (2018) found 
that applying ZVNP in As contaminated soil encourages 
sunflower roots to effectively phytostabilize the soil. 
Because high concentrations of ZVNP (1000 and 2000 mg/
kg) induced significant oxidative stress in the plant, low 
quantities of ZVNP combined with plant remediation proved 
to be beneficial (Jiang et al. 2018).

TiO2NP is another highly researched NP with 
photocatalytic activity, greater reactivity, chemical stability, 
and the potential to change the mobility of HM in sediments, 
soil, or water. These properties of  TiO2 made it a potential 
tool for removal of various toxic metal ions specially, Cr 
(VI) and As (III) (Yang et al. 1999; Kim et al. 2013). Higher 
concentration of  TiO2NP in soil has been reported to induce 
the accumulation of Cd in roots and buds of Glycine max 
(L.) Merr. (Singh and Lee 2016). Andersen et al., (2016) 
reported that average root length of the cucumber and 
onion plants was increased in the presence of  TiO2NP in Cd 
contaminated soil.

Nano-hydroxyapatite (NHAP) is efficient in HM 
immobilization due to its good HM sorption capacity, 
low water solubility, higher stability under reducing and 
oxidizing environment, easy availability, and affordability 
(Zhang et al. 2009). Several studies have demonstrated the 
potential of NHAP in chelating Pb and Cd in contaminated 
soil (Zhang et al. 2009; He et al. 2013). Spraying of 5 g/kg 
NHAP in Pb-contaminated soil increased the removal rate of 
Pb (Jin et al. 2016) and thus reduced its the phytotoxic effect 
in Lolium perenne L. (Ding et al. 2017). Similar result was 
also reported by Wei et al., (2016), where NHAP decreased 
HM availability to ryegrass in contaminated soil and 
improved plant biomass as it possesses substantial Pb fixing 
property in contaminated soil (Ding et al. 2017). Helianthus 
annuus L. and rapeseed are strong phytoextractors of Cd 
from soil (Sun et al. 2018). Supplementation with bentonite 
NP curtails the exchangeable fraction of Cd further and 
converts the majority of it to non-reactive form. The 
higher the amount of bentonite in the soil, the lower the 
Cd concentration in plants and the greater the remediation 
effect (Sun et al. 2015). Liang et al., (2017) discovered that 
0.2% (w/w) NHAP substantially enhanced Pb accumulation 
in above ground parts of ryegrass as compared to control 
plants.

Manganese oxides (including hydroxides and 
oxyhydroxides) can also efficiently immobilize the metals 

due to their large surface area, negative surface charge in 
soil (Dong et al. 2000; O’Relly et al. 2003). MnO NP can 
be safely applied for soil remediation as nanoscale biogenic 
MnO is a natural and ubiquitous soil component. MnO can 
also be prepared biogenically by using bacteria and fungi 
besides the classical synthesis methods (Essington 2004; 
Singh et al. 2010; Zhou et al. 2015). Application of MnO 
NP in contaminated soil resulted in significant reduction 
in metals/metalloid concentration and evidenced higher 
adsorption capacity for Pb, Cu, Zn, Cd, and As (Della Puppa 
et al. 2013; Michálková et al. 2014). MnO has high oxidative 
characteristics and can undergo oxidation–reduction and 
cation exchange processes, making them ideal for As 
remediation since they increase immobility by converting 
As(III) to As(V) (Watanabe et al. 2013; Villalobos et al. 
2014). But Mn oxides do not give satisfactory result for Cr 
amendment in soil as it is readily oxidized Cr(III) to more 
toxic and mobile Cr(VI) (Fandeur et al. 2009).

Fe oxide NP (goethite, hematite, maghemite, and 
magnetite) also play crucial role in remediation of metals 
and metalloids from the soil system due to their adsorbing 
properties (Shipley et al. 2011). Nanomaghemite  (nFe2O3), 
formed from oxidation of magnetite, was reported as a 
powerful scavenger of Cr (VI), Pb(II), Cd(II), and arsenite 
(III) (Lin et al. 2012; Tuutijarvi et al. 2012; Jiang et al. 2013; 
Komárek et al. 2015). Factors controlling the sorption by 
 nFe2O3 include presence of citrate complexes, organic 
acids, or other nutrients (Vitkova et al. 2015; Martínez-
Fernández et al. 2014). Zhang et al., (2010) reported higher 
as immobilizing efficacy of  nFe2O3 compared to that of 
iron sulfide or ZV FeNP. Another study documented faster 
adsorption rate and highest adsorption capacity of  nFe3O4 
for Pb from wastewater relative to other NP (Nassar 2010). 
Zhang and Zhang (2020) reported that the presence of 
 Fe2O3 NPs may influence the synthesis of starch granules 
in response to HM stress (Pb and Zn for 48 days) in castor 
(Ricinus communis).

Factors affecting the performance of np 
with particular focus on role of rhizospheric 
microbes

Efficiency of nano-phytoremediation depends on different 
conditions which could be broadly categorized as soil 
properties, contaminants properties, NP properties, and 
plant properties, that ultimately affect the uptake and 
accumulation of HM within plant tissue. Figure 1 depicts 
the various factors related to NP, soil, plant, and contaminant 
that influence the efficacy of the nano-phytoremediation 
process.

Properties of soil environment such as pH and 
temperature are the primary factors influencing the 
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nano-phytoremediation process. Surface charge of NP is 
affected by the pH of the solution, which in turn influences 
its ability to adsorb HM and pH also has an effect on the 
bioavailability of HM ions and their speciation. A neutral 
pH generally favors higher removal of HM (Yu et  al. 
2021). Temperature is another key factor that may impact 
the equilibrium adsorption capability of NP and thus the 
removal efficiency. Metal immobilization is reported to 
increase as the temperature rises (Yu et  al. 2021). The 
dosage of NP also affects the removal capacities of HM ions. 
It is crucial to identify the optimum application dosage for 
cost-effective and optimum removal efficiency. Significantly 
enhanced Cd uptake by Trifolium repens was reported by 
Zand et  al., (2020) when  TiO2 NPs application dosage 
was increased from 0 to 500 mg  kg−1; however, a higher 
adsorbent dose, on the other hand, does not always imply a 
considerable increase in removal rate (Arshadi et al. 2014). 
The contact period between NP and HM also directly affects 
the removal efficiency during adsorption and redox process. 
The adsorption rate of HM ions onto NPs often peaks during 
initial phase and then slows until sorption equilibrium is 
attained (Gong et al. 2014). Cao et al. 2018 investigated 
Cd(II), Pb(II), and Zn(II) removal efficiencies from mine 
and agriculture contaminated soils using NZVI coupled 
with low-molecular weight organic acids. It was observed 
that the HM removal increased rapidly in the first 2 h and 

gradually slowed until equilibrium was reached. The factors 
affecting the phytoremediation process were described in 
detail in previous publications (Srivastav et al. 2018; Yu 
et al. 2021). Hence, the current work focusses mainly on 
the role of rhizosphere microbes in the context of soil nano 
phytoremediation.

A highly complex chemical, physical, and biological 
interactions exist between roots of plant and the ambient 
soil environment (Bais et  al. 2006). Rhizosphere soil 
encompasses millions of endemic microbial species 
(Curl and Truelove 2012) that secrete various bioactive 
secondary metabolites such as siderophores, lipopeptides, 
and extracellular polysaccharides (Tyc et al. 2017). Plants 
are dependent on rhizospheric microbes in soil to collect 
nutrients that help mobilize the availability of essential 
nutrients (Burke et al. 2015).

Rhizosphere microorganisms inf luence the bio-
accessibility of NP especially through the secretion 
of secondary metabolites, mediate NP lysis, and anti-
aggregation, and may affect plant productivity (Dimkpa 
et  al. 2012). Enhanced microbial siderophore synthesis 
was found to improve hematite  (Fe2O3) NP dissolution, and 
liberated Fe were absorbed by plants (Barton et al. 2012). 
Siderophores may help dissolve metal NP and promote anti-
hetero-aggregation of soil minerals and NP through metal 
chelation (Neubauer et al. 2000) (Table 4).

Fig. 1  Various factors related to nanoparticle, soil, plant, and contaminant that influence the efficacy of the nano-phytoremediation process
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The greatest hurdle in the effective application of 
nanotechnology is homo-aggregation, which reduces 
surface area and bioavailability of NP (Ocsoy et al. 2013). 
Rhizospheric microbes such as Bacillus, Pseudomonas, 
and Streptomyces produce lipopeptides, an amphiprotic 
molecule with surfactant properties, that may disperse 
NP and reduce aggregation formation through steric and 
depletion stabilization (Raaijmakers and Mazzola 2012; 
Kiran et al. 2011; Rangarajan et al. 2018). Use of Bacillus 
lipopeptides as capping and stabilizers can make Ag-NPs 
more stable (Rangarajan et al. 2018). It has also been shown 
that a lipopeptide produced from Bacillus subtilis that 
contains surfactin and fengycin is an excellent dispersant to 
form highly stable carbon NP (Khan et al. 2011). Another 
efficient NP stabilizer secreted by rhizospheric microbes is 
variety of multifunctional exopolysaccharides (EPS) (Khan 
et al. 2011; Lin et al. 2016). Rhizosphere of periwinkle 
(Catharanthus roseus) could generate stable Ag-NP that 
was found to aggregate only after 4 months (Sirajunnisa and 
Surendhiran 2014). Similarly, study of Xiao et al., (2017) 
showed that EPS of Cordyceps sinensis fungi restrained 
Se-NPs to form aggregate and upgraded their stability due 
to the intense interactions between Se-NPs and the –OH 
groups of the EPS to form new C-O···Se bonds. Other 
microbial exudates, for example, organic acids, thiosulfate, 
and cyanide may also steer metal solubilization (Wang et al. 
2020).

The potential of rhizospheric microbes to enhance the 
biological activity of NPs through dissolution, dispersion, 
and anti-aggregation has been proved; however, it needs 
further research investigation. Considering the fact that 
various environmental factors such as pH, ionic strength, and 
organic matter have an impact on solubilization and homo-
aggregation of NPs, practical outcome of the interaction of 
rhizospheric bacteria, and NPs in the agricultural field is 
quite unpredictable (Amde et al. 2017). However, positive 

correlation between NPs and the colonization of the plant 
growth promoting bacteria on the root surface and enhanced 
production of secondary metabolites reported in number 
of works are very much promising (Palmqvist et al. 2015; 
Timmusk et al. 2018; Khan et al. 2018; Panichikkal et al. 
2019).

Role of Arbuscular mycorrhizal fungi 
in phytoremediation of heavy metal

Arbuscular mycorrhizal fungi (AMF) such as Glomus 
intraradices and Glomus mosseae are a widely recognized 
symbiotic group of organisms that play a significant role in 
enhancing ecosystem efficiency (Mitra et al. 2021). AMF 
can help in promoting plant growth and overall soil health 
ability as it enhances plant water and nutrient uptake, form 
a complex web of interactions with soil microorganisms, 
regulate pathogenic proliferation, influence soil structure 
and water retention through mycelial network, and alleviate 
abiotic stressors such as HM (Smith and Read 2008; 
Miransari 2011; Khan 2020).

Arbuscular mycorrhizal fungi mediated heavy metal 
uptake by plants

AMF plays an important ecological function in the 
phytostabilization of soils by sequestering toxic trace 
elements and thus aid the survival of mycorrhizal plants 
in polluted soils (Fig. 2). AMF cell wall proteins can sorb 
and sequester potentially toxic elements. The glycoprotein 
Glomalin secreted by the AMF hyphae (Wright and 
Upadhyaya 1998; Gonzalez-Chavez et  al. 2004; Driver 
et al. 2005) can decrease bioavailability of toxic metals 
through sequestration (Fig.  2). Glomalin can also bind 
to soil and assists in stabilizing aggregates (Khan 2005). 

Table 4  Use of nanotechnology along with plant species for heavy metal remediation

Nanomaterial used Target heavy metal Species Remarks References

FeNPs Cd Wheat Reduced Cd concentration 
and its phytotoxic effects; 
increased plant growth, rate of 
photosynthesis and activity of 
antioxidant enzymes

Hussain et al. (2019)

CMC stabilized
nanoscale zero valent ion (nZVI)

Cr (VI) Rape, Chinese cabbage Reduced Cr run-off (82%) and bio-
accessibility (58%)

Wang et al (2014)

Citrate-coated magnetite NPs Cr (VI) Wheat, oat, sorghum Alleviation of metal toxicity Lopez-Luna et al. (2016)
TiO2 NPs Pb Rice Minimizes Pb accumulation in 

rice tissue and accumulate NPs 
in roots

Cai et al. (2017)

Salicylic acid nanoparticle 
(SANPs)

Arsenic Woad (Isatis
cappadocica)

705 ppm and 1188 ppm As 
accumulate in roots and shoots, 
respectively

Souri et al. (2017)
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Fig. 2  Schematic representation 
of contribution of AMF to plant 
heavy metal acquisition and dis-
tribution and tolerance. In direct 
pathway (upper left corner) 
metals are transported through 
high-affinity metal transport-
ers located in root hairs. In 
AMF-mediated pathway (upper 
right corner), metal transloca-
tion occurs along the hyphae 
to fungal cell and then to the 
root at the symbiotic interface 
(lower panel). Thus, under toxic 
heavy metal condition mycor-
rhizal plants leads to increased 
removal of heavy metal from 
the soil (phytoextraction). 
Heavy metal tolerance in 
mycorrhizal plants is achieved 
by heavy metal binding to the 
fungal cell wall, chelation by 
glomalin, decreased uptake, 
and heavy metal compartmen-
talization in the vacuoles and 
chelation with phytochelatin 
(PC) and metallothioneins (MT) 
(lower panel of the diagram)
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Mycorrhizae may be crucial for the survival of plants at 
HM-contaminated sites. Increased mycorrhizal colonization 
in the soil can be linked to a parallel rise in plant biomass 
and decrease in plant HM concentrations. Accordingly, 
depending on mycorrhizal inoculum, the root density of 
AMF affects heavy metal tolerance (Weissenhorn et al. 
1995). The mycorrhizal association of Trigonella foenum 
graceum-Funneliformis mosseae (Glomus mosseae) grown 
in as-contaminated soil showed an increased HM tolerance 
in the Trigonella compared to its non-mycorrhizal form 
(Trotta et al. 2006). The symbiotic association between 
mycorrhizal fungi and plants facilitates HM accumulation 
and uptake through the AMF. The symbiotic association of 
mycorrhizal fungi Glomus mosseae, Glomus geosporum, 
and Glomus etunicatum with Plantago lanceolata L. was 
reported to augment As accumulation (Wu et  al. 2009; 
Orłowska et al. 2012). AMF can negate the negative effect 
of Cd on plant by restricting its translocation to the root 
of the plant (Janouskova et al. 2006). HM in soils added 
through chemical fertilizers can be significantly reduced 
by utilizing mycorrhiza (Atakan et al. 2018). Yang et al., 
(2016) reported significant enrichment of Pb in the roots 
of mycorrhizal plants to protect aerial portions of the plant. 
Similarly, Diaz et al. (1996) found that under varied levels 
of HM stress, mycorrhizal Lygeum spartum and Anthyllis 
cytisoides plants accumulated more Pb and Zn in their roots 
than non-mycorrhizal plants. The study found a greater root 
to shoot Pb ratio, showing that mycorrhizae inoculation 
boosted Pb uptake and accumulation in the root system 
compared to non-mycorrhizal plants.

Arbuscular mycorrhizal fungi induced heavy metal 
sequestration and tolerance in plants

Several studies documented the impact of AMF colonization 
on the expression of plant genes linked to HM tolerance and 
detoxification (Rivera-Becerril et al. 2005; Hildebrandt et al. 
2007; Cicatelli et al. 2014; Shabani et al. 2016). Promising 
species for phytoremediation include Gigaspora margarita, 
G. decipens, Scutellospora gilmori, Acaulospora sp., Glomus 
sp., Acaulospora, Claroideoglomus, Diversispora, and 
Sclerocystis. (Cabral et al. 2015). Synthesis of phytochelatins 
that plays an important role in intracellular detoxification of 
HM is enhanced by AMF (Garg and Aggarwal 2011; Garg 
and Chandel 2012). Synthesis of metallothioneins (MTs), 
another crucial protein family involved in the sequestration 
of toxic metals is triggered in presence of HM in number 
of species (Kumar et al. 2005; Folli-Pereira et al. 2012). 
MTs play a multifaceted role in regulating HM levels in 
plants and protecting cells from the metal-induced oxidative 
damage. Cicatelli et al. (2010) demonstrated activation of 
metallothionin MET genes in Cu and Zn contaminated soil 
following introduction of F. mosseae or G. intraradices 

to Populus alba. Conversely, the mycorrhizal symbiosis 
could mitigate Cd stress in Pisum sativum by enhancing the 
expression of the PsMTA MET gene (Rivera-Becerril et al. 
2002). Similarly, Shabani et al. (2016) observed a significant 
decrease in Ni transfer from the roots to the aboveground 
portions of Festuca arundinacea plants after F. mosseae 
inoculation as opposed to non-mycorrhizal plants. When 
compared to non-mycorrhizal plants, tall fescue plants 
colonized by F. mosseae exhibited higher amounts of ABC 
transporter and MT transcripts (Shabani et al. 2016). Studies 
reporting the contribution of AMF to phytoremediation and 
metal are listed in Table 5.

Application of Arbuscular mycorrhizal fungi 
in phytoremediation

One of the best ways to improve the effectiveness of 
phytoremediation is to manipulate microbial consortia, 
which entails changing how microorganisms interact with 
metals and optimizing the symbiotic relationship between 
them and plants. Furthermore, selection of specific microbes 
and their genetic modification for enhanced metal tolerance 
can improve phytoremediation efficiency. Some fungal 
species can reduce metals concentration and resist them, 
leading to the formation of gold, platinum, and silver NPs 
within their intracellular compartments, which is facilitated 
by hydrogenases present in the periplasmic and cytoplasmic 
regions.

Nonetheless, it is evident that AMF can regulate HM 
distribution by impeding its transportation from the root 
to the shoot (Christie et al. 2004; Wang et al. 2007; Wu 
et al. 2016). Previous study revealed ability of Diversispora 
spurcum and Funneliformis mosseae to retain HM in the 
belowground maize parts, thus decreasing Zn, Pb, and Cd 
in the shoot (Zhan et al. 2018). Thus, AMF can reduce HM 
stress of plants (Fig. 2). For example, Calendula officinalis 
developed slowly under HM stress (Hristozkova et  al. 
2016), which could be mitigated by AMF incorporation that 
reduced metal uptake and increased beneficial secondary 
metabolites. Mycorrhizal tomato plants exhibited decreased 
Zn absorption and concentration (Watts-Williams et  al. 
2013). Mycorrhizae can induce several biogeochemical 
changes in the rhizosphere including HM immobilization 
(Kangwankraiphaisan et al. 2013). AMF has been shown 
to mitigate metal stress of Phragmites australis and Iris 
pseudacorus through their conversion into metallic NPs 
(Manceau et al. 2008). Only limited studies report impacts of 
NP on AMF. Some NPs including Ag, FeO, and zero-valent 
iron have been reported to exhibit toxicity toward AMF by 
through oxidative damage (Pawlett et al. 2013; Cao et al. 
2016; Feng et al. 2013). Wu et al. (2018) observed that the 
application of zero-valent iron (nZVI) NP at 0.5% (w/w) 
concentration along with AMF influenced the uptake and 
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translocation of metal(loid) elements in maize. Cheng et al., 
(2021) reported synergistic effects between nZVI and AMF 
inoculation in terms of Pb and Cd immobilization, in spite of 
the limited colonization of AMF by nZVI. AMF potentially 
may facilitate Fe compounds formation on root surface by 
utilizing nZVI or its derived oxide (Wu et al. 2018), resulting 
in the precipitation of metals (Hansel et al. 2002). Further, 
AMF can accelerate the degradation and deterioration of 
nZVI, resulting in a more porous and less compact surface 
structure, which can in turn increase the ability of nZVI 
to adsorb pollutants and a larger surface area available for 
interaction with the contaminants (Wu et al. 2018).

Nanophytoremediation-based technologies are being 
increasingly recognized as an effective measure to deal 
with various environmental contaminants. However, the 
scope of these studies is confined mostly to the controlled 
laboratory settings, necessitating additional research to 
establish their efficacy in practical context such as for soil 
and wastewater treatment plants. Further, it is to be noted 
that some literatures have also highlighted the potential 
ecological impact on the biological functions of AMF-plant 
symbiotic systems (Moll et al. 2016; Tian et al. 2019). It 
has been indicated that laboratory engineered NP may have 

a direct impact on AMF infection, colonization intensity, 
and bush richness, directly impacting its structural stability 
and compactness within mycorrhizal systems (Xu et al. 
2019). In a study of Ag and titanium dioxide NP treatment 
on sunflower roots (Helianthus annuus), the rate of AMF 
infection, intensity of colonization, and abundance of 
Glomus intracellularis correlated negatively with the 
concentration of NP applied. Cao et al. (2017) reported 
remarkable decrease in the variety AMF under AgNPs stress, 
while Yang et al. (2021) showed disruptive effect of ZnONPs 
on the composition and diversity of AMF. On the contrary, a 
number of studies reported positive impact of NPs on AMF 
colonization, diversity in soil and promotion of physiological 
function (Feng et al. 2013; Moll et al. 2016; Watts-Williams 
et al. 2013). According to Gatahi et al. (2016), incorporation 
of  SiO2NPs in a biological control agent could enhance the 
colonization of AMF in the rhizosphere of tomato. Joseph 
et al. (2015) suggested improved P solubility and nutritional 
conditions and decomposition of organic matter in the 
rhizosphere of wheat plants in the presence of magnetic 
FeNPs. Another important concern is the development of 
potential toxicity in aqueous systems due to the formation 
of intermediate complexes from NP application. Hence, it is 

Table 5  Contribution of arbuscular mycorrhizal fungi (AMF) to phytoremediation of heavy metals and increased HM resistance in plants grown 
in contaminated soil (pot experiment)

AMF species Host plant Heavy metal Effects References

Glomus intraradices Linum usitatissimum Ni Enhanced tolerance to Ni 
toxicity, higher uptake of Ni

Amna et al. (2015)

Glomus mosseae, Glomus
fasciculatum, Gigaspora
margarita

Panicum virgatum Pb, Cd Accumulation of high 
concentrations of Pb and Cd 
in root; approximately twofold 
phytoextraction of metals 
from the Pb/Cd contaminated 
soil; increased tolerance to Pb 
and Cd

Arora et al. (2016)

Funneliformis
caledonium,
Funneliformis mosseae

Helianthus annuus Cu, Pb, Cd, Zn, Ni, Cr Enhanced P absorption and 
plant growth, decreased heavy 
metals in the shoots

Zhang et al. (2018a, b)

Glomus sp. Zea mays Hg Higher Hg concentration in 
central cylinder of the AMF-
colonized plants, increased 
overall biomass

Debeljak et al. (2018)

Glomus intraradices, Glomus
mosseae, Glomus fasciculatum

Acroptilon repens Cd Higher biomass under stress
Conditions, higher Cd 

accumulation in roots

Rasouli-Sadaghiani et al. 
(2019)

Glomus etunicatum, Gigaspora 
margarita, Acaulospora 
tuberculata, Glomus

Manihotis

Anthocephalus
cadamba

Pb Reduced Pb concentration in
roots, stems, and leaves; 

reduced phytotoxicity; 
increased seedling tolerance

Setyaningsih et al. (2017)

Funneliformis mosseae Lycopersicon
esculentum

Cd Improved plant growth, The 
distribution of Cd from 
the root to the shoot was 
impeded.; increased Cd 
tolerance

Li et al. (2020)
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imperative to monitor the origin and fate of these compounds 
at various stages of the treatment process, and to implement 
appropriate removal measures if required.

Challenges and future prospect

Nanomaterials and nanotechnology have recently achieved 
significant advances in remediation of HM pollution, 
though they pose considerable environmental and health 
concerns. Most recent in vitro and in vivo investigations 
showed that NP treatment decreased HM absorption by 
plants and bioavailable HM levels in polluted soil (Ahmed 
et al. 2021). Despite their numerous potential applications, 
NPs still face significant issues in environmental cleanup 
that need specific research focus. Figure  3 shows the 
environmental, technological, research and economic 
challenges and concerns that need further investigation in 
nano phytoremediation.

There is a paucity of data regarding nano-
phytoremediation studies as predominantly microcosm 
experiments have been executed so far, therefore, more 
effective prolonged investigations are required to infer the 
actual effects or efficacies of NPs. Further studies on large-
scale manufacture and industrial use of NPs are required 
to assess their cost-effectiveness, including NP supply, NP 
incorporation techniques, and long-term stability in real-
world applications. The intricate chemical and biological 
environment surrounding the plant rhizosphere in nano-
phytoremediation should be further investigated, as it 
influences the plant’s uptake of heavy metals in the presence 
of nanomaterials and the potential synergistic or antagonistic 

effects between microbial activity and nanoparticles. 
Moreover, the function of NPs produced and released by 
rhizospheric bacteria in nano-phytoremediation is still 
unknown, which must be taken into account when applying 
nano-phytoremediation.

Extensive testing is required to determine the actual 
impacts of NPs on various spheres of environment 
including biological and environmental safety. NPs may 
also accumulate in plant and microbial systems, infiltrating 
the food chain and endangering human health. Different 
NPs will have varying impacts on soil biodiversity and soil 
characteristics. Monitoring and evaluation of the impact and 
safety of applying NP in contaminated sites are required. 
Currently not much information is available on what 
happens to the materials once they have been incorporated 
into the environment to degrade or remediate contaminants 
to prevent them from becoming a cause of environmental 
contamination itself. The environmental toxicity of 
leached NPs, NP leakage, and environmental effects must 
also be taken into account for a sustainable nano-based 
phytoremediation application. Developing biodegradable 
and biocompatible NPs should be the focus of future studies.

Choosing the optimal NPs to remove a pollutant 
from an environment needs consideration of the type of 
pollutant, accessibility to the location, quantity of material 
required, feasibility of recovering/recycling the remediation 
nanomaterial. Future research should address NP dosage 
optimization and safe targeted administration to realize 
their environmental benefits. Although certain materials 
are recyclable, it seems that their efficiency diminishes 
with time, limiting their usefulness within a short span. 
Therefore, regeneration and reusability of NP are of great 

Fig. 3  The environmental, technological, research, and economic challenges and concerns that need further investigation in nano phytoremedia-
tion
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importance to prevent these from becoming environmental 
contaminant itself.

Combining nanoremediation with other soil remediation 
technologies has been demonstrated to be a helpful soil 
remediation approach, as the synergetic effects may boost 
the sustainability of the applied process toward green soil 
remediation technology. Processing of the NPs could also 
be an attractive option before application to enhance the 
bioavailability or mobility of NP to plants. In this context, 
composite nano-based adsorbents are promising; however, 
physicochemical properties of the composite adsorbents 
such as hydrophilicity, porosity, thermal and mechanical 
stability, long-term performance, regeneration, and reuse are 
some of the key challenges that must be considered when 
developing new NPs for environmental remediation.

Conclusion

This study presents a comprehensive review on the 
prospects of use of NPs in HM remediation in soil. We 
have presented an overview of different NPs used in the 
context of environmental remediation, their functions, 
environmental issues, toxicity, and further, views on 
concerns and future prospects of NP-based HM cleanup 
were presented. We analyzed the benefits and challenges 
associated with the application each type of NP and 
particularly emphasized how arbuscular mycorrhizal fungi 
cam influence the NP mediated soil heavy metal uptake. The 
review offers a theoretical foundation for the development 
of effective, efficient, and safe remediation technology 
for HM-contaminated soil, which is critical for furthering 
the theoretical and practical development of soil pollution 
control. To attain the optimum utilization potential of NPs 
for environmental applications, several obstacles must be 
addressed. Nonetheless, nanomaterial-based bioremediation 
technologies offer a plethora of opportunities for dealing 
with environmental degradation.
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