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Abstract
Heavy metals like lead are highly toxic to human health and the environment. In this work we report a simple, reproducible 
and low-cost method to obtain a colorimetric nanosensor that selectively detects lead II in aqueous medium. The sensor is 
based on silver nanoparticles functionalized with 2-mercaptoethanol. Metallic nanostructures were obtained by the chemi-
cal reduction method. The X-ray diffraction spectra showed the face-centered cubic structure of the silver nanoparticles. 
The size of the crystallite was found to be 10 nm using Scherrer's equation. The colorimetric method takes advantage of the 
localized surface plasmon resonance properties of the metallic nanoparticles. Under alkaline conditions, mercaptoethanol 
helped to selectively detect  Pb2+ over other metals, including  As3+,  Cd2+,  Mg2+,  Fe3+  Ca2+, and  Na+ y  K+. A color change 
from yellow to bluish was recorded in the sensor when were mixed with lead ions. The experimental conditions allow car-
ried out precipitation process in 8 min. On the other hand, the absorption spectra of lead samples were obtained by UV–Vis 
spectrometry to determine the detectable range of lead concentration, which was 0.04 μg/ml.
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Abbreviations
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AFS  Atomic fluorescence spectrometry
ICP-MS  Inductively coupled plasma mass spectrometry
NPs  Nanoparticles
OH  Hydroxyl group
SH  Sulfhydryl group
COOH  Carboxyl group
NH2  Amine group

LOD  Limit of detection
LOQ  Limit of quantification

Introduction

Environmental contamination by heavy metals is a topic of 
interest and great concern worldwide (López et al. 2020; 
Feitosa et al. 2021). Lead is among the most dangerous 
metals, since due to its chemical nature it represents a risk 
to human health and the environment (López et al. 2020). 
Although the origin of heavy metals may be natural, the high 
concentration in ecosystems is due to anthropic emissions 
(mining, agriculture and industry), which represents a risk 
of contamination. Lead (II) has been used in paints, gaso-
line, solder, plumbing, enamel, and many other applications. 
(Bratovcic 2020). Therefore, its distribution in the environ-
ment is wide. Studies published decades ago and recently 
demonstrated the wide distribution of lead. The heavy met-
als have been found in agricultural soils (Tian et al. 2022), 
in shooting ranges (Christou et al. 2022), sediments (Wakida 
et al. 2008), foods (Ortiz et al. 2017), springs or well water 
(Nieto et al. 2014) and rivers (López et al. 2020). In aqueous 
systems, lead exists predominantly in its divalent oxidation 
state  (Pb2+) (Feitosa et al. 2021). A small amount of  Pb2+ 
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can cause damage to microorganisms (Wan et al. 2022) as 
well as to human health (Ortiz et al. 2017). It is highly toxic 
to the human body, having a negative impact on the kidneys 
(Chen et al. 2019), also associated with cardiovascular dis-
eases. It even alters the expression of microRNA specifically 
miR-155 (Martinez et al. 2021).

According to World Health Organization (WHO) and 
Environmental Protection Agency (EPA, USA), the maxi-
mum permissible concentration of lead for, agricultural 
irrigation water is 2–5 μg/ml, for livestock consumption it 
is 0.1 μg/ml, water quality guidelines for recreational pur-
poses is around 0.05 μg/ml and drinking water 0.015 μg/ml. 
Therefore, its detection with the naked eye is of vital impor-
tance. Several methods for the analysis of heavy metal ions 
have been developed in recent decades, including techniques 
based on atomic absorption spectroscopy (AAS), atomic flu-
orescence spectrometry (AFS), inductively coupled plasma 
mass spectrometry (ICP-MS) in various aqueous samples 
including drinking water, saltwater, lakes, etc. (Güzel et al. 
2021). Although the aforementioned methods offer excellent 
sensitivity and multi-element analysis, they are expensive, 
time-consuming, skill-intensive, and laboratory-intensive, 
making it necessary to suggest alternative detection meth-
ods. Colorimetric methods based on Cu, Au and Ag nano-
particles (CuNPs, AuNPs and AgNPs) for the detection and 
quantification of heavy metals have gained importance in 
recent years (Sengan and Veerappan 2019; Sonia and Seth 
2020; Boruah et al. 2019) due to the detection sensitivity, 
low cost without the need for a sophisticated laboratory. 
The principle of this colorimetric technique is the aggrega-
tion of NPs in the presence of heavy metals, changing the 
color of the original nanoparticles. Metallic nanostructures 
possess the optical property of localized surface plasmon 
resonance (LSPR), which allows obtaining precise quanti-
tative information on the target molecules (Prosposito et al. 
2019). In addition, with the NP-based method, results are 
obtained quickly, efficiently, economically and with high 
reproducibility.

Copper nanostructures functionalized with N-myristoyl-
taurine were used to detect mercury ions  Hg2+, the detec-
tion limit was 15 μM with the naked eye and by means of 
UV–Vis spectroscopy a limit of 0.1125 15 μM was recorded 
(Sengan and Veerappan 2019). Spherical Au nanoparti-
cles ~ 30 nm conjugated with L-cysteine were prepared to 
detect concentrations of 10–40 ppm of cadmium in aqueous 
solutions (Sonia and Seth 2020). Nanometer-scale structures 
of silver functionalized with polyethylene glycol were used 
to specifically detect the arsenic ion III (Boruah et al. 2019). 
The nanosystem achieved a found detection limit of 1 ppb. 
It is important to mention that the colorimetric method uses 
functionalizing agents that help increase selectivity for 
heavy metals (Hyder et al. 2022). In this work, 2-mercap-
toethanol (ME) was used to selectively detect lead ions at 

low concentrations. The ME linker is a short-chain mol-
ecule that has an –OH terminal at one end and a –SH at the 
other (Hong and Li 2013). It is well known that sulfhydryl 
functional groups bind to the surface of silver nanoparticles 
(Ramasamy et al. 2012). On the other hand, hydroxyls pro-
vide intermolecular binding forces to target molecules. The 
short length of ME ensures chemical and electromagnetic 
enhancements that amplify the optical transduction proper-
ties. The short length of ME ensures chemical and electro-
magnetic enhancements that amplify optical transduction, 
recorded either by UV–Vis or Raman spectroscopy (Hong 
and Li 2013; Filgueiras et al. 2016).

In this work, we present a new naked-eye colorimet-
ric detection assay for the detection of  Pb2+ in solution at 
low concentrations. AgNPs functionalized with 2-mercap-
toethanol were used, which allowed observing the color 
change with the naked eye without the need for complex 
instrumentation.

Materials and methods

Materials

Silver nitrate  AgNO3, sodium citrate dihydrate 
 (Na3C6H5O7·2H2O) purchased from J. T. Baker. Sodium 
borohydride  (NaBH4 ≥ 98.5%), 2-mercaptoethanol 
 (C2H6OS ≥ 98%) and hydrochloric acid (NCl) acquired from 
Sigma-Aldrich. The test metal salts are listed below; lead 
nitrate  (PbNO3), calcium chloride dihydrate  (CaCl2·2H2O), 
sodium chloride (NaCl) and potassium chloride (KCl) were 
purchased from J. T. Baker. Cadmium chloride pentahydrate 
 (CdCl2·5H2O) obtained of Sigma. A standard arsenic solu-
tion was used (1 mg/ml) from Baker. Finally, magnesium 
chloride hexahydrate  (MgCl2·6H2O) and iron chloride hexa-
hydrate  (FeCl3·6H2O) purchased from Merck. The reagents 
used did not need further purification. Deionized water from 
a Milli-Q (18.2 MΩcm) purification system was used in all 
aqueous solution preparations. Previously, the glassware 
vessels were cleaned with aqua regia solution, followed by 
a wash with deionized water.

Synthesis and functionalization of silver 
nanoparticles

The chemical reduction method was used to obtain sil-
ver nanoparticles according to Li et al. (2014) with slight 
modifications. Briefly, 250 μl of a solution silver nitrate 
(0.1 mol/L) was added to an Erlenmeyer flask containing 
100 ml of deionized water at a temperature of ~ 5 ºC, the 
solution was mixed vigorously. Then, 1 ml of sodium cit-
rate (0.1 mol/L) was added, 30 ml of fresh sodium borohy-
dride solution (0.005 mol/L) was quickly poured into the 
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solution. The  NaBH4 reduces silver ions  (Ag+) to atomic 
silver (Agº). In addition, sodium citrate stabilizes AgNPs. 
The color of the reaction solution changes from colorless to 
yellow, indicative of the formation of silver nanoparticles. 
The reaction mixture was allowed to stir for 30 min, and 
then the functionalization process was continued. Surface 
modification of AgNPs was performed in a one step. 1 ml 
of 2-ME linker solution (0.15 mmol/L) was added to 100 ml 
of colloidal solution. The resulting solution was mixed for 
a few seconds and used for heavy metal detection tests. The 
incubation of silver nanoparticles with metals was carried 
out at room temperature without the need for darkness.

Instrumentation

The colloidal solutions were characterized in a UV–Vis 
(spectrophotometer Jenway 6715, Fisher Scientific). A 
quartz cell with a path length of 10 mm was used. For X-ray 
diffraction (XRD) measurements, the Rigaku Smartlab dif-
fractometer was used in Bragg–Brentano configuration, the 
samples were analyzed using CuKα radiation (λ = 1.5418 Å), 
the diffractometer was operated at a scanning speed of 0.02°/ 
s in a 2θ range of 10–90°. The pH of the solutions was meas-
ured using a pH meter (model 2211 de Hanna, Instruments). 
The photograph was taken using high precision camera.

Results and discussion

Synthesis of silver nanoparticles

It is well known that silver nanoparticles have an absorption 
band in the visible region. In this case, the colloidal solution 
with mercaptoethanol presents a peak at 391 nm (shown in 
Fig. 1), which confirms the formation of nanoscale struc-
tures (Desai et al. 2012). Inset of Fig. 1 shows the yellow 
colloidal solution obtained.

On the other hand, the synthesized Ag nanoparticles were 
characterized by X-ray diffraction; the sample presented a 
typical XRD pattern as shown in Fig. 2. The crystal structure 
of the sample is well defined by the four sharp peaks at 2θ 
values of 38.5° (111), 44.7° (200), 65° (220) and 78.2° (311) 
related to the face cubic centered structure, according to 
Joint Committee on Powder Diffraction Standards (JCPDS 
card 04–0783) (Lange et al. 2010). The crystallite size D was 
estimated from the Debye–Scherer’s equation, D =

0.9�

�∗cos�
 

where λ = 0.15414 nm is the wavelength of the incident 
radiation, β is the full width at half maximum (FWHM) of 
the XRD peak (Lopantzi et al. 2022), in this case at 44.7°, 
finally θ is the Bragg angle. The D value was calculated 
around 10 nm.

Selective colorimetric detection of lead (II)

Several heavy metal ions as well as other complementary 
metals  (Pb2+,  As3+,  Cd2+,  Mg2+,  Fe3+  Ca2+, and  Na+ y  K+) 
were taken for the selectivity test. In centrifuge tubes, con-
centrations of up to 5 μg/mL of heavy metals were mixed 
with newly synthesized functionalized AgNPs. The color 
change is evident in Fig. 3. It was observed that only the 
 Pb2+ containing centrifuge tube shows a prominent color 
change to bluish while others are pale yellow. From this 
observation with the naked eye, the strong selectivity of 
functionalized silver nanoparticles toward lead (II) was 
evidenced.

The aforementioned samples were characterized by 
UV–Vis spectroscopy at room temperature. Figure 4a 
shows the spectra obtained. All the samples containing 
AgNPs-metals (less lead) presented slight modifications 
in the characteristic band of the silver nanoparticles. The 
colloidal sample containing lead II recorded a significant 
decrease in the peak at 391 nm. This effect is associated 
with the aggregation of silver nanoparticles in the presence 
of the heavy metal (Su et al. 2021). The influence of the 
degree of acidity-basicity on selectivity for heavy metals 
was investigated. Therefore, the pH of the colloidal solu-
tion was adjusted to 7.4 (native pH of the AgNPs solution 
is 9.5) using HCl at 1N. No significant changes could be 
recorded by UV–Vis spectroscopy, the band associated 
with SRPL was the same with or without heavy metal 
(shown in Fig. 4b). For our system, an alkaline pH (9.5) 
allowed to selectively recognize lead ions, similar results 
have been published previously (Xing et al. 2018). It is 
worth mentioning that non-functionalized silver nanoparti-
cles (at pH 7.4 and 9.5) were mixed with heavy metals, but 
no affinity for lead was demonstrated (data not presented).
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Fig. 1  UV–Vis spectrum of silver nanoparticles functionalized with 
2-mercaptoethanol. Inset: colloidal solution obtained after the synthe-
sis process
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Mechanism of color change

A simple technique for the detection of lead (II) in aque-
ous medium using silver nanoparticles functionalized with 
2-mercaptoethanol is reported here. Two crucial properties 
were used. First, the localized surface plasmon resonance 
of silver nanoparticles that depends on the dielectric con-
stant of their surrounding environment. When the dielec-
tric constant changes, the absorption peak shifts to longer 
wavelengths. Second, the short length of ME ~ 4 nm that 
ensures electromagnetic enhancement by amplifying the 

optical properties of transduction (Hong and Li  2013). The 
ME contains a sulfhydryl functional group –SH that binds 
to the surface of the silver and at the other end contains 
an –OH group (Ramasamy et al. 2012). The hydroxyl pro-
vides solubility and negative charges to the particle surface 
that prevents its aggregation due to electrostatic or steric 
repulsion (Xavier et al. 2014). When lead was introduced 
to these functionalized silver nanoparticles, it interacts with 
the hydroxyl groups. Due to this interaction, the aggregation 
of silver nanoparticles occurs. This means that the environ-
ment of the silver nanoparticles changes. Therefore, there is 

Fig. 2  XRD pattern of Ag parti-
cles synthesized from this work
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Fig. 3  Photograph of centrifuge 
tubes containing heavy metal 
ions, where it is clarified that 
only the lead solution produces 
a color change in the original 
colloidal solution of AgNPs
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Fig. 4  UV–Vis spectra of the different test heavy metals mixed with solutions of silver nanoparticles at pH a alkaline 9.5 and b neutral 7.4
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a decrease in the peak at 391 nm and other bands appear at 
longer wavelengths. This effect produces a color change in 
the colloidal samples from yellow to bluish. Figure 5 shows 
the mechanism. Furthermore, we evaluated the selectivity of 
the colorimetric sensor at two different pH values. Accord-
ing to the results, we observe that at pH = 7.4 the AgNPs-
ME do not precipitate in the presence of lead. From these 
observations, we suggest that, under neutral conditions, the 
hydroxyl does not completely deprotonate and avoid recog-
nizing  Pb2+ ions. The selectivity of –OH for heavy metal 
ions found here has also been reported with other functional 
groups with a negative nature such as carboxylic groups 
(–COOH) and amines (–NH2) (Anambiga et al. 2013).

Reaction time on AgNPs‑ME aggregation induced 
by  Pb2+

Absorption spectra were taken periodically (every 2 min) 
to estimate the reaction rate. Figure 6 shows the UV–Vis 
spectra taken from minute 0 to 14 and at concentration of 
2 μg/ml of lead. A decrease in the intensity of the absorp-
tion peak of λ391 could be observed from the first seconds of 
incubation with the AgNPs-Pb2+. The decrease in a LSPR 
band and formation of a shoulder at longer wavelengths was 
more evident with time. The spectra corresponding to min-
ute 8, 10, 12, and 14 (pink, green, orange and gray spec-
trum of Fig. 6) have the same behavior. Which means that 
ME-functionalized AgNPs have a high affinity for lead ions. 
The reaction speed obtained in this work even exceeds other 
previously published works (Choudhury and Misra 2018).

Limit of detection and limit quantification

Limit of detection (LOD), linear range and limit of quan-
tification (LOQ) were calculated because they are very 
important parameters in colorimetric sensors (Boruah et al. 
2019). Various samples were evaluated at low  Pb2+ con-
centrations to obtain the detectable range of lead II. For 
this, 1 ml of functionalized nanoparticles was mixed with 

1 ml of deionized water containing 1–2 μg of  Pb2+. After 
8 min of storage at room temperature, the different sam-
ples were characterized by UV–Vis in a range of 200 to 
800 nm (shown in Fig. 7a). A decrease in the absorption 
peak of λ391 and the formation of a second band at higher 
wavelengths were recorded as the concentration of heavy 
metals increased. On the other hand, a deconvolution was 
also performed in the 300–750 nm region. Figure 7b shows 
the results obtained by mixing 2 μg/ml of lead with AgNPs. 
It was possible to observe the formation of three subbands 
located at 380, 415 and 520 nm (green line), the sum (red 
line) and the experimental spectra (black line). These three 
subbands were recorded in all samples containing  Pb2+ ions, 
data not shown. The band located at 520 nm was associ-
ated with the aggregation of nanostructures (Choudhury 
and Misra 2018) and consequently was used in subsequent 
measurements.

Absorbance ratio values of  A520/391 were used to assess 
detection sensitivity in aqueous medium. The  A520/391 value 
of the lead-free AgNPs was found to be 0.0387. When 
AgNPs are in the presence of lead at 1 and 1.8 μg/ml, the 

Fig. 5  Schematic representation 
of the proposed AgNPs-ME 
aggregation process in the pres-
ence of lead
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ratio value increased to 0.0689 and 0.2796, respectively 
(shown in Fig. 7c). The aforementioned results helped to 
calculate the linear range. Figure 7c shows a linearity of 
relationship 520/391 depending on the concentration of 
lead. An R2 = 0.99 was estimated between the values 1 and 
1.8 μg/ml of lead, a slope of m = 0.26, with these data and 

the standard deviation σ it is possible to calculate the limit 
of detection (LOD) and the limit of quantification (LOQ) 
(Qi et al. 2012). The LOD y LOQ are obtained from the fol-
lowing relationship 3σ/m y 10σ/m being 0.04 and 0.12 μg/
ml, respectively.

Jot‑plot

To determine the union stoichiometry between  Pb2+ and 
AgNP the Job graph was made (Fig. 8). Changes in absorb-
ance at 391 nm were used for this estimation. In separate 
vials, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6 and 1.8 ml of heavy 
metal solutions at 1 mM were taken. To these lead solutions 
1.8, 1.6, 1.4, 1.2, 1, 0.8, 0.6, 0.4 and 0.2 ml of AgNPs solu-
tion were added, respectively, as that the total volume of the 
solution was 2 ml. A binding stoichiometry of 2:3 was found 
between AgNPs y  Pb2+, respectively. The results obtained 
here indicate that fewer moles of lead (II) are needed to pre-
cipitate silver particles compared to previous reports (Huang 
1982; Wang and Zheng 2017).
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Here we report a simple, inexpensive, reproducible 
method without the need for expensive equipment to obtain a 
colorimetric sensor based on AgNPs-ME. The synthesis can 
be carried out under atmospheric conditions. Unlike to Noh 
et al. (2015), the authors synthesized an AgNPs nanosensor 
in the presence of nitrogen at 6 h of reaction. The selectivity 
of our system is high without the need for masking agents. 
Such as Hung et al. (2010) who detect  Pb2+ ions with gold 
nanostructures functionalized with mercaptoethanol in the 
presence of sodium sulfide. The pH, reaction rate, bind-
ing stoichiometry, detection limits and quantification limit 
found in this work are comparable with others previously 
published. In this work, the high concentration tested was 
5 µg/ml, so the nanosensor solution changed from yellow to 
bluish. It is worth mentioning that the colorimetric sensor 
developed here offers high sensitivity with a detected con-
centration of lead II at 0.04 µg/ml or 193 nM, lower values 
than other techniques such as voltammetric method reported 
by Huseinov et al. (2021). The authors used a platinum 
electrode to quantify  Pb2+, the reported detection limit was 
34.5 µM heavy metal. Table 1 summarizes the LOD values 
reported by other authors using colorimetric sensors.

Conclusion

A simple and easy method was developed to obtain a colori-
metric sensor based on silver nanoparticles (with a crystal-
lite size of ~ 10 nm) functionalized with 2-mercaptoethanol. 
Under alkaline conditions, ME helped to selectively detect 
 Pb2+ among other heavy metals, with a detection speed of 
8 min. To the naked eye, the nanosensor changed color from 
yellow to bluish in the presence of high concentrations of 
lead, such as 5 μg/ml. On the other hand, the sensitivity 
of the nanosystem made it possible to detect lead at low 
concentrations of 0.04 μg/ml, without the need for a sophis-
ticated laboratory, and by means of UV–Vis spectroscopy. 
The values found here were below the maximum allowed 
for aquatic systems. The binding stoichiometry was 2:3 
AgNPs:Pb2+, respectively. Therefore, compared to other 
spectroscopy methods, the colorimetric sensor developed 

here is competitive in terms of detection limit, simplicity, 
and convenience.
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