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Abstract
Risk assessment analysis related to groundwater contamination by heavy metals was performed in the Shiraz city (Iran). We 
compared the traditional deterministic methodologies with a probabilistic approach based on the concentration of different 
heavy metals determined from many sampling points. The relationships between the variables by the multivariate statistical 
analysis were assessed, and the target hazard quotient (THQ) was calculated in children, women, and men groups. Results 
showed that analyzed water samples were suitable for drinking, although alkaline. Concentrations of the heavy metals were: 
Zn > Ni > Cu > Se > Co > Sb. The THQ values for non-carcinogenic elements showed no significant risk for population of 
studied age groups, although a higher THQ value was observed for the water from the northwest and some central areas of 
city. Mean values of cancer risk for Ni were 1.77 × 10–5, 4.36 × 10–5, and 3.32 × 10–5 in children, women, and men, respec-
tively. The multivariate approach indicated that the carcinogenic risk certainty level was 97.6, 91.2, and 94.3% for children, 
women, and men, respectively, and the model sensitivity analysis showed that the most effective parameter for carcinogenicity 
was Ni concentration. The probabilistic analysis also showed the relative influence of geogenic and anthropogenic processes 
on the quality of the water of Shiraz city. We concluded that risk assessment using a probabilistic approach could be bet-
ter predictive of chronic exposure to hazardous elements in drinking water, which possibility the implementation of better 
protective measures than the current deterministic approaches.
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Introduction

Freshwater represents less than 3% of all water on our planet, 
and groundwater availability and quality are vital natural 
resources for human beings. Actuality, more than 30% of 
the world's population relies on groundwater for drinking 
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water, especially in arid and semi-arid regions (Jamshidi 
et al. 2021). Continuous urbanization, industrialization, poor 
management of waste and industrial effluents, and agricul-
tural activities represent major threats to groundwater qual-
ity due to the release of persistent pollutants such as poten-
tially toxic elements (PTEs) (Soleimani et al. 2020b).

Some PTEs, such as Zn, Ni, Cu, Se, Co, are essential 
in low concentrations for healthy development of human 
well-being, and living organisms' function (Organization 
1996). Some others, e.g., As, Cd, Pb, Sb, are not required 
for biological functions and are toxic even at low concentra-
tions (Sharafi et al. 2019; Soleimani et al. 2020a). Kidney 
damage, degenerative neurological conditions, respiratory 
and cardiovascular disease, and cancer have been reported 
through groundwater contamination to PTEs (Badeenezhad 
et al. 2021). Due to their immutable nature, PTEs are per-
sistent, and their accumulation in groundwater represents a 
primary route of exposure for humans (Kiani et al. 2022). 
For these reasons, the concentration of several PTEs is regu-
larly monitored by public Authorities to prevent potential 
hazards to public health.

Risk assessment is a systematic process aiming at deter-
mining human exposure to significant risks and implement-
ing control actions to decrease exposure to acceptable levels 
(Raza et al. 2017). Risk assessment related to groundwater 
contamination by PTEs is generally conducted by determin-
istic approaches considering point estimators (Moghtaderi 
et al. 2020; Abolfazli et al. 2021). While consensual, this 
approach to risk assessment, does not take into account natu-
ral variability, data uncertainty, measurement uncertainty, 
and eventual lack of environmental data. The point estima-
tion approach also does not account for the dispersion of the 
analytical data around mean values, being based on fixed 
equal weights to all of the available data. whereas Differ-
ently, the probabilistic risk assessment approach is a more 
comprehensive methodology for evaluating risks related to 
environmental pollution (Gebeyehu and Bayissa 2020; Sil-
vestri et al. 2021), because its statistic representation can 
encompass all or selected subsets of the physical and chemi-
cal environmental features. For example, it considers the 
actual concentration range of each PTEs in groundwater of 
a given area in time and space, not only mean values. Hence, 
the multivariate approach to risk assessment can lead to 
more proper risk assessment and sustainable risk prevention 
measures. This approach is based on using all data in a dis-
tribution function, which can significantly improve the risk 
assessment by accounting for the spatial variability and other 
main factors of the studied environment (Rivera-Velasquez 

et al. 2013; Shahsavani et al. 2023), especially if coupled 
with sensitivity analysis.

Iran, like other arid and semi-arid areas, relies 60% on 
groundwater for freshwater supply, with an increasing trend 
of use (Karamia et al. 2019), but risk assessment using prob-
abilistic approaches to the water quality in Iran is still scarce. 
Shiraz, the most important city in Southern Iran, is faced 
with urban sprawl and vegetation decline, increasing drilling 
of deeper wells to reach lower groundwater levels, and a sig-
nificant increase in the pressure on natural resources. Among 
the probabilistic approaches for risk assessment, the Monte 
Carlo method is one of the most widely used, especially for 
large monitoring surveys (Kavcar et al. 2006). In this study, 
the concentration of some toxic elements in the drinking 
water of Shiraz city was determined and their spatial distri-
bution was drawn using ArcGIS software. To identify the 
sources of pollution and the relationships between different 
parameters, multivariate statistical analysis techniques were 
used. Finally, the health risk assessment and distribution 
patterns of different PTEs in groundwater were conducted 
on the drinking water of the city of Shiraz, South Iran, using 
both a deterministic and a probabilistic approach based a 
Monte Carlo simulation. This study illustrates how a proba-
bilistic approach can provide more robust results for land 
planning and implementing appropriate groundwater pres-
ervation measures and actions for better protecting human 
health in complex urban areas where groundwater presents 
broad ranges of concentration of different PTEs.

Materials and methods

Study area

The present study was conducted in the city of Shiraz in SW 
Iran (52°29′E, 52°36 29° 33 ′, 29°36′ N), the Fars province 
(Fig. 1). Shiraz city has a population of more than 1.5 mil-
lion people and covers an area of 240 km2, and drinking 
water wells are scattered in the urban area boundary line 
(Fig. 1). The geology of the Shiraz area includes Asmari, 
Razak, and Razzaq formations in the mountainous region 
of Zagros, forming closed basins of central Iran, charac-
terized by alkaline and sodic soils developed from chalky 
marl parent rocks. The climate is temperate, with an aver-
age annual temperature of 18.6° C, precipitation amounting 
to 325.6 mm that represents the primary source of water 
supply in the area, and wind speed of 2.35 m/s (Keshavarzi 
et al. 2015).
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Water sampling and chemical analysis

Fifty-nine samples were taken from Shiraz urban drinking 
water plumbing and transmission system based on the popu-
lation distribution in the summer 2021 selected with a spatial 
distribution developed using Arc GIS 10.3 software (ESRI, 
Redlands, CA, USA), (Aleem et al. 2018). A global position-
ing system (GPS) was applied to locate the sampling points, 
the World Geodetic System (WGS-1984) was used to fix 
the selected points, and the inverse distance weight (IDW) 
method was applied to draw the spatial distribution of heavy 
metal concentration in the study area (Mosaferi et al. 2014).

Polyethylene bottles previously washed with distilled 
water, and 20% HNO3 were used to collect water samples. 
Water samples were filtered using Whatman filters with 
pores of 0.45 μm to prevent adsorption and crystallization of 
trace elements. Then, 3 ml of 69% HNO3 was added to each 
sample to prevent turbidity due growth of microbial colo-
nies prior to elemental analysis and shipped to the analytical 
laboratory in refrigerated at 4 °C boxes. Concentrations of 
cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), selenium 
(Se), and antimony (Sb) were measured by Inductively 

Coupled Plasma followed by Mass Spectrometry (ICP-MS 
Agilent 7800, USA). Total dissolved solids (TDS), electri-
cal conductivity (EC), and pH values of all samples were 
measured by a conductivity meter (WTW Cond 720) and 
pH meter (Metrom, Model 827), respectively. All determina-
tions were performed in triplicates.

Health risk assessment

Deterministic approach

Because in most studies, the amount of carcinogenic risk 
in the adult group and the non-carcinogenic risk in the 
children group is higher than the other age groups, for 
this reason the city population was divided into three age 
groups: children (< 6 years), adult women (20–70 y), and 
adult men (20–70 y), age groups generally accepted in 
environmental risk assessment (Mohammadi et al. 2017). 
The Chronic Daily Intake, i.e., the average daily dose 
(CDI) for the analyzed elements, was calculated accord-
ing to (Joodavi et al. 2021; Shafiuddin Ahmed et al. 2021) 
using the following equation:

Fig. 1   The geographic position of sampling sites in the distribution network of Shiraz city
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where Ci is the average contamination concentration in 
water (mg l−1), IR is the ingestion rate of water (l d−1, EF is 
the exposure frequency (d year−1), ED is the exposure dura-
tion for cancer risk assessment (years), BW is the average 
body weight (kg), AT is the averaging time (day). Accord-
ing to the USEPA, the threshold values for the carcinogenic 
risks posed by the analyzed elements were in the range 
of 10–6–10–4, unacceptable for CDI > 10–4 (Ogamba et al. 
2021). The following equation calculated the carcinogenic 
risk for Ni:

where CDI is the Chronic Daily Intake and S.F. is the cancer 
slope factor, which differs for each element (Farokhneshat 
et al. 2016).The following equation calculated the target haz-
ard quotient (THQ):

(1)CDI =
C × IR × EF × ED

BW × AT

(2)CR = ΣCDI × SF

(3)THQ =
∑ CDI

i

RfD
i

where the RfD is the Reference Dose value of each element 
based on the (US EPA 1989) screening level values (EPA 
1989).

Probabilistic approach

The PTEs analytical data were modeled with a probabilistic 
approach to improve the risk assessment by the Monte Carlo 
method coupled with a sensitivity analysis (Soleimani et al. 
2020a). Input values for Monte Carlo simulation and sensi-
tivity analysis are reported in Table 1.

The Crystal Ball®software, an 'add-in for Microsoft 
Excel, was used to perform analysis, produce the input 
distribution values, collect the output graphically, and cal-
culate summary statistics, and the distribution factor of 
heavy metals concentration can be obtained in the 'Defini-
tion assumption' tool of the Crystal Ball® software (Shal-
yari et al. 2019). Because no distribution parameters were 
available from previous studies conducted in the area, 
the other probability distribution functions employed in 
the sensitivity analysis (SA) and Monte Carlo simulation 
were those suggested by the U.S. Environmental Protec-
tion Agency (Fitzpatrick et al. 2017).

Table 1   Parameters used in Monte Carlo Simulation and uncertainty analysis

Symbol Parameter Unit Distribution Factor Value References

C Contaminant concentration mg l−1 – –
IR Ingestion rate l day−1 Log-normal Children = [1.25, 0.57] Fallahzadeh et al. (2018), Wang 

et al. (2020), Bazeli et al. (2020)Women = [2.22, 0.57]
Men = [2.37, 0.85]

EF Exposure frequency days year−1 Triangular Children = [180, 345,365]
Women = [[180, 345,365]
men = [180, 345,365]

ED Exposure duration Year Fixed Children = 6
Women = 50
Men = 50

BW Body weight Kg Log-normal Children = [10.64, 3.79]
Women = [57.03, 1.10]
Men = [78, 3.9]

AT Averaging lifetime Days Fixed Non-carcinogenic = ED × 365
carcinogenic = 70 × 365

SF Slope factor mg−1 kg day Fixed Ni = 1.7 Fallahzadeh et al. (2017)
RfD Reference dose mg kg−1 day−1 Fixed Co = 0.02 Bortey-Sam et al. (2015), Wu et al. 

(2009)Ni = 0.02
Cu = 0.04
Zn = 0.3
Se = 0.005
Sb = 0.0004
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Principle component analysis and cluster analysis 
method

The use of principal component analysis (PCA) is one 
of the most common environmetric techniques for deter-
mining the contributions of human and natural resources 
(Nasir et al. 2011). The application of PCA is for compar-
ing the compositional and spatial patterns of water sam-
ples and finding possible sources of trace metals in them 
(Barakat et al. 2016).

Because heavy metals enrichment in groundwater is 
influenced by site-specific factors such as rock–mineral 
weathering, drainage density, geological and hydro-geo-
logical settings, and anthropogenic activities, we used the 
Hierarchical Cluster Analysis (HCA) method to classify 
water samples in quality classes and assess the dissimi-
larities between different classes. Ward's linkage method, 
including squared Euclidean and z-score standardization, 
was used for analysis.

Data analysis

Statistical analysis was performed using IBM SPSS soft-
ware (version 16; SPSS Inc., Chicago, IL, USA). Nonpara-
metric tests were used to analyze the results since the data 
were not normally distributed, which was determined by the 
Kolmogorov–Smirnov test (P < 0.05). Then, the uncertainty 
analysis was calculated using Oracle Crystal Ball software 
(version 11.1.2.3). Spatial analysis of geochemical data was 
performed by inverse distance weighting (IDW) using Arc-
GIS software (10.8). PCA and the cluster analysis method 
used software by IBM SPSS software.

Results and discussion

PTEs Concentration in drinking water and spatial 
variation

Mean values and ranges of PTEs concentrations in drinking 
water samples from Shiraz city are reported in Table 2.

All groundwater samples had a sub-alkaline alkaline 
pH value (Table 2), with an average pH value of 7.91 due 
to the presence of soluble carbonates, mainly bicarbo-
nate (HCO3

−) ions (Adams et al. 2001).; This result was 
expected due to the geological features of the Shiraz area. 
The average value of water EC was 643 μS cm−1, with 
all values below the recommended maximum threshold 
value for drinking water (Table 2). The range of TDS 
concentrations had an average value of 257 mg  l−1, all 
samples had values below the maximum threshold recom-
mended by the US EPA (Table 2), although some sam-
ples presented values (e.g., 481 mg l−1) to the maximum 
admissible value. The TDS value of water is an important 
parameter in determining the water quality for human 
consumption because high levels of TDS in waters are 
generally due to Na, K, and chlorides which may affect 
human health upon prolonged exposure. Waters with high 
TDS values are also considered unsuitable for irrigation. 
According to (Rusydi 2018), based on the TDS values 
the water can be classified into four categories: freshwa-
ter (TDS < 1 g l−1), brackish waters (1 < TDS < 10 g l−1), 
saline waters (10 < TDS < 100 g  l−1), and brine waters 
(TDS > 100 g l−1). According to this classification, all the 
analyzed water samples could be considered freshwater.

Mean concentrations and concentration ranges of 
the measured PTEs are reported in Table 2, and ranked 

Table 2   Descriptive statistics of physicochemical properties and elemental concentrations in the water samples of Shiraz city

Contaminant Concentrations (μg. 
L−1)

Threshold 
levels (μg 
l−1)

Reference legislation Threshold 
levels(μg.
L1)

References

Min Mean Max ISIRI 1053 WHO

Co 0.12 0.21 0.46 1 NC DEQ 15A NCAC 02L Groundwater 
Quality Standard

Tomlinson et al. (2019)
Ni 0.18 1.36 21.32 100 70
Zn 0.06 9.62 122.29 1300 – 3
Cu 0.00 0.56 4.47 2000 U.S. EPA Treatment Technique Action 

Level
–

Se 0.06 0.23 0.44 50 U.S. EPA Maximum Contaminant Level 10
Sb 0.02 0.09 1.02 6 20
pH 7.68 7.91 8.16 6.5–8.5 WHO 6.5–8.5
TDS (mg l−1) 128 257 481 500 1500 Karunanidhi et al. (2021)
EC (μS cm−1) 321 643 1203 1500 –
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as it follows:6 Zn (9.62) > Ni (1.36) > Cu (0.56) > Se 
(0.23) > Co (0.21) > Sb (0.09). Means concentrations and 
concentration ranges for the studied PTEs in the ground-
water of Shiraz city were comparable to those reported 
by Tavanpour et al. (2016), who attributed the relatively 
high Zn concentrations in water samples to their natural 
occurrence or the corrosion of galvanized pipes; however, 
though all mean values of PTEs concentrations were below 
the recommended threshold limits, the broad concentration 
ranges observed for several PTEs clarify the need for a 
probabilistic approach for a more reliable risk assessment.

Spatial distribution maps of the studied trace elements 
observed using the IDW method in GIS software showed 
that high Sb, Ni, and Co concentrations were mainly 
located in the northwest of the city area, whereas waters 
of the central part of the city were characterized by higher 
concentrations of Cu, Zn, and Co (Fig. 2). Enrichment 
with Ni in the waters of the northwest of the city could 
be attributed to the advanced corrosion of metal pipes 
and pipe fittings in contact with drinking water (Adhikari 
et al. 2021). In contrast, galvanic reactions at the boundary 
between copper pipes and brass fittings in the household 
plumbing system could be responsible for higher Cu con-
centrations of water in the city central area (Harvey et al. 
2016). Concerning Ni contamination in suburban areas, 
groundwater contamination in agricultural soils, could be 
attributed to the use of wastewater for irrigation.

Multivariate analysis of elements in drinking water

Cluster analysis of water quality parameters showed four 
distinct clusters, one formed by TDS and EC values and Cu 
and Zn concentrations, and a second cluster formed by Ni, 
Sb, and Co concentrations, whereas Se concentration and pH 
value clustered separately (Fig. 3). While sub-clustering of 
TDS and EC values could be expected because suspended 
soils generally exhibit sorption sites for alkaline metals on 
their surface, clustering of EC and TDS with Cu and Zn 
concentrations could indicate a potential association of these 
PTEs with dissolved solids, which in turn could have adverse 
effects on human health. Possible sources of Pb and Zn can 
be leachates and/or leakage from hazardous waste dumpsites 
or uncontrolled release into industrial effluents. Cluster of 
Ni, Sb, and Co elements may have originated from geogenic 
sources or anthropogenic activities such as improper waste 
management, use of phosphate fertilizers and fossil fuels in 
agriculture, release of wastewater from chemical industry 
(Moghtaderi et al. 2020).

The PCA Factor loading for the first three principal com-
ponents with maximum variance, accounting for 71.7% of 
the total variance, is shown in (Table 3). The PC1 accounted 
for 28.2% of the total variance and included the TDS and 

EC (positive loading) and pH (negative loading), the PC2 
accounted for 23.6% of the total variance and included Sb, 
Ni and Co concentrations, whereas the third PC3 accounted 
for 19.9% of the total variance and included Cu and Zn con-
centrations (Table 3). The PC1 showed that the interaction 
between rock substrate and water increases the concentration 
of dissolved ions in groundwater, and the negative relation-
ship with pH is related to the carbonate origin. Human activ-
ities, especially industry, agriculture, untreated sewage, and 
landfill leachate, could be possible sources of PTEs loaded 
in PC2, whereas Copper and Zn loaded in PC3 could be 
attributed to the use of fertilizers, and accumulation of pes-
ticides or fungicides in agricultural soils, acting as second-
ary source toward groundwater (Qishlaqi and Moore 2007).

The positive coefficients for all of the measured param-
eters loaded on PC1 and PC2, except for the pH value, indi-
cated that the measured parameters were related among 
them, and that all of them are influenced by the pH value of 
the studied waters (Fig. 4).

Health risk assessment

The minimum, mean and maximum values of the CDI and 
THQ for different population age groups in the study area 
are reported in Tables 4 and 5.

The THQ index value obtained for each age group was 
generally < 1; however, higher THQ values were observed 
for the population living in the northwest of the urban areas 
and small city center areas (Table 5).

Mean CR values calculated on the base of the Ni concen-
tration were 2.19 × 10–5 for children, 6.06 × 10–5 for women, 
and 4.73 × 10–5 for men, indicating moderate carcinogenic 
risk for all three population age groups, whereas the CR 
values ranged between 10–6 and 10–4 for all of the population 
groups (Table 6).

The spatial variation map of THQ and CR in children 
and women showed that carcinogenic risks due to Ni intake 
through the consumption of drinking water in higher in the 
northwest of the city area (Fig. 5a, b). Appropriate monitor-
ing and protective measures should be taken to reduce the 
risk in that area of Shiraz city.

In a survey on the quality of the drinking water of Shiraz 
city, Abolfazli et al. (2021) reported Hazard Quotient (HQ) 
values < 1 for different PTEs, but a carcinogenic risk for 
Cr 30 times higher than the permissible limit, with higher 
cancer and non-cancer risks for children than adults. Sener 
et al. (2016) reported that HQ values for Cu, Ni, and Zn 
children were equal to (1.21–2–9.09–3), (1.07–2–3.35–4), and 
(1.68−2–9.96–4) and in the adult, the group was equal to 
(1.29–2–9.97–3), (1.02–3–1.45–4) and (1.14–3–9.15–5), indicat-
ing low HQ values for the studies area. Values of CDI of Cu 
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Fig. 2   Spatial distribution maps of Co a, Ni,  b Cu, c Zn, d Se, e and Sb,  f concentrations in waters samples of Shiraz city
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in the tap water of the Kerman region for children and adults 
of 3.9 × 10–5 and 1.74 × 10–5 mg kg−1 d−1, respectively, were 
by (Abedi Sarvestani and Aghasi 2019).

Estimation of the probability of developing adverse 
effects on the health of children, women, and men related to 
exposure time and concentration of the studied PTEs by the 
calculation of THQ95% values by the Monte Carlo simulation 
of non-carcinogenic risk resulted in values of 0.09 for the 
children and 0.02 for the men and women groups therefore 
below the threshold of 1 (Fig. 6).

Estimation of carcinogenic risk for Ni indicated 
higher CR values in the following ranking order: 
women > men > children (Fig.  7). Simulation results 
showed that the CR95% values in the population groups were 
1.47 × 10–4 for women, 1.10 × 10–4 for men, and 6.24 × 10–5 
for children, indicating carcinogenic risk in all population 
groups (Fig. 7). Higher carcinogenic risk in men and women 
could be related to their longer exposure duration (ED) than 
children, but also the higher water intake-to-body weight 

Fig. 3   Cluster analysis of elements and physicochemical properties of 
the water samples

Table 3   Principal component analysis of elements in drinking water

Rotation Method: Varimax with Kaiser Normalization

Component matrixa

Component

Factor1 Factor2 Factor3

TDS 0.844 0.027 0.383
EC 0.845 0.025 0.382
pH −0.736 −0.047 0.056
Co 0.500 0.545 0.021
Ni −0.004 0.906 0.334
Cu 0.261 0.017 0.663
Zn 0.183 0.318 0.819
Se 0.463 0.132 −0.515
Sb 0.007 0.941 −0.078
Eigenvalue 2.536 2.125 1.790
Total variance (%) 28.174 23.611 19.891
Cumulative variance (%) 28.174 51.785 71.676

Fig. 4   PCA biplot indicates the rotational space changes and the 
direction and length of the vectors of each variable in the first two 
principal components

Table 5   Total Hazard Quotient 
values for the measured trace 
elements for the different 
population groups

THQ values

Children Women Men

Min Mean Max Min Mean max min Mean Max

Co 0.0007 0.0012 0.0026 0.0002 0.0004 0.0008 0.0002 0.0003 0.0007
Ni 0.0010 0.0075 0.1184 0.0003 0.0025 0.0392 0.0003 0.0019 0.0306
Cu 0.0000 0.0016 0.0124 0.0000 0.0005 0.0041 0.0000 0.0004 0.0032
Zn 0.0000 0.0036 0.0453 0.0000 0.0012 0.0150 0.0000 0.0009 0.0117
Se 0.0012 0.0050 0.0099 0.0004 0.0017 0.0033 0.0003 0.0013 0.0026
Sb 0.0046 0.0243 0.2823 0.0015 0.0080 0.0935 0.0012 0.0063 0.0730
THQ 0.0177 0.0431 0.4176 0.0059 0.0143 0.1384 0.0046 0.0111 0.1080
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ratio ( IR

BW
(men) <

IR

BW
(women) which is higher in women 

compared to men.
The sensitivity analysis to assess the main factors influ-

encing carcinogenic and non-carcinogenic risks in the three 
population groups showed that the ingestion rate (IR) and Sb 

concentration for women were the main variables affecting 
the non-carcinogenic risk (Figs. 6, 7). In contrast, Ni con-
centration was the most critical factor for the carcinogenic 
risk for all three population groups.

Table 4   Chronic daily intake (CDI) for the measured trace elements for the different population groups

NC  Not calculated

CDI

Children Women Men

Min Mean Max min Mean Max min Mean Max

Co 1.32 × 10–5 2.34 × 10–5 5.13 × 10–5 4.38 × 10–6 7.75 × 10–6 1.70 × 10–5 3.42 × 10–6 6.05 × 10–6 1.33 × 10–5

Ni 2.00 × 10–5 1.51 × 10–4 2.37 × 10–3 6.62 × 10–6 4.99 × 10–5 7.84 × 10–4 5.17 × 10–6 3.89 × 10–5 6.12 × 10–4

Cu NC 6.26 × 10–5 4.96 × 10–4 NC 2.07 × 10–5 1.64 × 10–4 NC 1.62 × 10–5 1.28 × 10–4

Zn 6.48 × 10–6 1.07 × 10–3 1.36 × 10–2 2.15 × 10–6 3.54 × 10–4 4.50 × 10–3 1.68 × 10–6 2.76 × 10–4 3.51 × 10–3

Se 6.17 × 10–6 2.50 × 10–5 4.94 × 10–5 2.04 × 10–6 8.28 × 10–6 1.64 × 10–5 1.60 × 10–6 6.46 × 10–6 1.28 × 10–5

Sb 1.85 × 10–6 9.71 × 10–6 1.13 × 10–4 6.13 × 10–7 3.22 × 10–6 3.74 × 10–5 4.79 × 10–7 2.51 × 10–6 2.92 × 10–5

Table 6   Cancer risk (CR) 
level for Ni calculated for the 
different population groups. 
Values in bold indicate 
unacceptable risk

CR

Children Women Men

Min Mean Max Min Mean Max Min Mean Max

CR 2.91.10–6 2.19.10–5 3.45.10–4 8.04.10–6 6.06.10–5 9.52.10–4 6.28.10–6 4.73.10–5 7.43.10–4

Fig. 5   Spatial distribution map of CR and THQ in a women b children groups from drinking water
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Fig. 6   Trends of the non-carcinogenic risk and sensitivity analysis for the groups of children a women, b and men c obtained by Monte Carlo simulation
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Fig. 7   Carcinogenic risk and sensitivity analysis of Ni for a Children, b Women, c Men group
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The presented results can complement other population 
exposure data, such as that of airborne PM10 associated with 
traffic emissions, which have been recently found to exceed 
the US EPA levels in the Shiraz urban area, and it cannot 
be excluded that deposition and leaching of airborne par-
ticulate matter could contribute to groundwater enrichment 
with Zn and other trace elements in the critical city center 
area. Such anthropogenic factors have been proven to be 
additional sources of PTEs of groundwater to the natural 
sources (Soleimani et al. 2022; Sharafi et al. 2022).

Conclusion

The present study showed that different concentrations 
of various trace elements in drinking water cause differ-
ent exposure levels to non-carcinogenic and carcinogenic 
risks for different age and gender groups living in the Shi-
raz urban area. Risk assessment evidenced risks due to Zn, 
Ni, Cu, Se, Co, and Sb in groundwater, which was below 
the acceptability threshold of 1. The model simulation con-
firmed that the carcinogenic risk assessment results were 
below the 1 × 10–4, highlighting Sb concentration as the 
most impacting element in carcinogenic risk for children, 
men, and women. Our work showed that risk assessment of 
the probabilistic approach better predicted human exposure 
to different PTEs and in different city areas compared to the 
deterministic one and highlighted the factors that influence 
the obtained results by the sensitivity analysis. Though Ni 
concentration in water resulted lower than the legislation 
limits, monitoring the transmission lines, especially in the 
northwest of the city, should not be relaxed. This approach 
could be taken into account by the land-use and land plan-
ning Authorities, for example in the sight of the city devel-
opment towards the northwest are, where groundwater 
quality may be lower than in other city areas, or where new 
industrial and commercial sites may further impact the water 
resources.
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