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Abstract
Tailings from the Zeïda mining region, located in the Middle Atlas Mountains of Morocco, contain high levels of lead and 
zinc which have many adverse effects, regarding both the environment and the health of the local human population. Finding 
practical methods to limit heavy metal dispersion and subsequent pollution of ecosystems in this area is therefore critical. 
This study aims to evaluate lead-tolerant rhizobacteria with an aim of exhibiting multiple plant growth-promoting traits. 
Thus, the growth of Medicago sativa may be improved and its resistance under lead stress conditions and may be subse-
quently used for the phytostabilization of lead-contaminated soils. Forty bacteria were isolated from the rhizospheric soil of 
Astragalus armatus plants growing wildly in the Zeïda mine tailings. After preventing the duplicates of obtained isolates, the 
resistance to various heavy metals at high levels allowed the selection of two strains (i.e. AaR114 and AaR72). These strains 
were evaluated in vitro for characteristics that promote plant development, such as the synthesis of 1-aminocyclopropane-
1-carboxylic acid deaminase, indoleacetic acid, hydrogen cyanide, siderophore, phosphate solubilization, and antifungal 
activity. Inoculation of M. sativa plants with rhizobacteria AaR114 and AaR72, in the presence of 100 μg mL−1 of lead-
acetate, was shown to significantly improve plant tolerance, increase aerial and root biomass, and diminished the negative 
impacts of heavy metals on plants. The 16S rRNA sequences analyses of the bacteria revealed that the strains AaR114 and 
AaR72 were linked to Bacillus subtilis DSM 10 T and Neobacillus niacini NBRC 15566 T, respectively.
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Introduction

Human activities, such as manufacturing, industrial proce-
dures and mining, have enormously increased the amount of 
heavy metals in the environment, which has caused wide-
spread worry, with regards to the health of the environment 
(Suman et al. 2018; Manoj et al. 2020).

Mining activities remain the most harmful activity and 
have received increasing amounts of attention in recent years 
(Dias et al. 2022). Mining only affects a relatively small 
area at a time but could have a significant impact on the 
environment, especially after the mine’s closure, after which 

tailings from the mining are discharged into surrounding 
soils, destroying them (El Khalil et al. 2008).

Heavy metals from mining tailings are mostly perma-
nent and non-biodegradable, so cannot be easily eliminated. 
Thus, the existence of heavy metals, from many sources, 
in soils will consequently transfer down into food chains, 
terminating in humans and animal bodies via consumption. 
(Rebello et al. 2021).

Morocco has many metal mines and the Zeïda mine was 
one of the largest Moroccan Pb–Zn mining districts in the 
last century. These deposits, currently abandoned, have 
largely contributed to Moroccan lead production (Hachimi 
et al. 2014). Between 1972 and 1985, around 630 172 t of 
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lead were produced at Zeïda. Moreover, in fully exposed 
mining piles, 12 Mt and 70 Mt of tailings and waste were 
left unattended to (El Hachimi et al. 2007).

Lead (Pb) is perhaps the most perplexing element, as it 
is widely used, but it has no use in biological systems. It 
is dangerous to the health of plants, animals and humans 
(especially children) (Dapul and Laraque 2014; Wani et al. 
2015; Schindler et al. 2021; Wani et al. 2015; Zhang et al. 
2022). Furthermore, lead poisoning harms plants in vari-
ous ways, from germination to yield development (Zulfiqar 
et al. 2019).

In order to eliminate or control heavy metals’ waste 
removal, the use of metal-resistant plants and their associ-
ated rhizobacteria has been proposed as a potential green 
alternative to standard chemical and physical methods (Chen 
et al. 2022; Suman et al. 2018). Legumes are one of the 
plants commonly used to remediate metal-contaminated 
soils, such as Medicago sativa (alfalfa), which shows strong 
adaptability to adverse environments, with abundant bio-
mass and extensive root systems. In recent years, many stud-
ies have revealed that alfalfa has the ability to adsorb and 
accumulate various heavy metals (e.g. V, Pb, Cd, Cu, Ni, and 
Zn) (Helaoui et al. 2020; Raklami et al. 2021a; Xiong 2018; 
Chen et al. 2022). For these reasons, the alfalfa plant is con-
sidered one of the most studied species for phytoremediation 
of heavy metal-contaminated sites and is also commonly 
used in practice (Noori 2018; Yahaghi et al. 2019; Gan et al. 
2020; Chen et al. 2022).

Considering its significance in phytoremediation, rhizo-
bacteria can reduce plant toxicity from metals in the soil 
(Ma et al. 2016). Moreover, numerous studies have high-
lighted that plant growth-promoting rhizobacteria (PGPR) 
can stimulate plant development in metal-contaminated soils 
in many ways. Through either the accumulation or biosorp-
tion processes, or other plant growth-promoting properties, 
such as the synthesis of phytohormones, ACC deaminase 
activity, solubilization of phosphate and siderophores pro-
duction (Glick 2010; Rajkumar et al. 2010; Babu et al. 2015; 
Ma et al. 2016; Kong and Glick 2017; Manoj et al. 2020; 
Suman et al. 2018; Tirry et al. 2018).

Thus, the objectives of this study were as follows: (i) the 
isolation and characterization of heavy metal-tolerant bac-
teria from Astragalus armatus rhizosphere, assembled from 
lead mine tailing, (ii) the selection of the heavy metal toler-
ance and PGP trait of the bacteria, regarding both boosting 
plant nutrition and stress resistance, and (iii) the evaluation 
of selected bacteria capacity to enhance M. sativa growth 
under Pb-acetate stress and to enhance the efficiency of phy-
toremediation in metal-contaminated soils.

This study was carried out since 2019 in Morocco at Bio-
technology and Biomolecular Engineering Research Team, 
FST Tangier, Abdelmalek Essaadi University, Morocco.

Materials and methods

Soil sampling and isolation of lead‑resistant 
bacteria

The samples were taken from A. armatus rhizospheric soil: 
plants that have grown wildly in the abandoned lead mine 
tailing of Zeïda, in the High Moulouya, west of Midelt city 
in the Northeastern region of Morocco (Fig. 1). Accord-
ing to Hachimi 2016, this area is characterized by a cold 
and dry climate and a mountainous inclination. It is also a 
highly lead-contaminated area (5547 ppm), making it the 
largest lead deposit in Morocco (El Hachimi et al. 2013).

Suspensions of soil samples were prepared by immers-
ing 1 g of rhizospheric soil in 9 mL of physiological water 
at a 0.9% concentration of NaCl. After 1 h of agitation, a 
0,1 mL suspension of each dilution (10–1–10–7) was plated 
on tryptone-soybean agar (TSA) medium, amended with 
500 mg L−1 of lead-acetate. The incubation of the plates 
was at 30 °C for 72 h. Colonies with different morpholo-
gies were selected.

Determination of metal‑resistant bacteria

The resistance to lead and heavy metals of the bacteria 
was tested using tryptic soy agar (TSA) mediums supple-
mented with increasing metal concentrations, lead-acetate 
(1000–2000-2250 mg L−1), CuCl2 (600–800–1000 mg 
L−1), ZnCl2 (500–600–700  mg L−1) and Cd-nitrate 
(25–50 mg L−1). The incubation of the plates was at 28 °C 
for 7 days. Any development of the bacterial strains was 
considered as a favorable response.

Screening for PGP traits

The quantitative estimation of Tri-Calcium Phosphate sol-
ubilization was conducted in Pikovskaya’s liquid medium 
(Pikovskaya 1948). The bacterial suspension (0.5 mL) was 
inoculated in 100 mL flasks containing 50 mL of PVK 
broth. The control consisted of uninoculated medium. 
After 7 days of incubation under 180 rpm at 28 °C, bacte-
rial cultures were centrifuged at 13 000 rpm for 20 min. 
The supernatant was used to determine soluble phosphorus 
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content using the Ames colorimetric method by comparing 
with the standard curve of KH2PO4 (Ames 1966).

To evaluate siderophores production by bacterial iso-
lates, the Chrome-azurol S (CAS) was used (Schwyn and 
Neilands 1987). The supernatant of each isolate grown in 
tryptone-soybean broth (TSB) was mixed with CAS solu-
tion (1:1; v:v) and then incubated for 20 min in darkness. 
The optical density of the test solutions was measured at 
630 nm (OD630). The production of siderophores was cal-
culated using the following formula:

where Ar = reference solution absorbance and As = sample 
absorbance (Gokarn 2010).

Indol-3-acetic acid production (IAA, Auxin) was tested 
according to the Gordon and Weber (1951) method. The 
bacterial strains were grown for 48 h at 28 °C in sucrose-
minimal salt (SMS) medium supplemented with 0,05% of 
L-Tryptophane. Centrifugation of the cultures was at 13 
000 rpm for 10 min; then, the Salkowski reagent [ 10 mM of 
FeCl3; 35% of perchloric acid] was blended with the super-
natant (1:2 v:v) and incubated for 20 min at ambient tem-
perature. The optical density determined at 535 nm (OD535) 
and IAA concentration was then estimated with the help of 

(1)
[(

A
r
−A

s

)

∕A
r

]

× 100

a standard curve created from numerous solution dilutions 
of 50 μg mL−1 in SMS medium.

Quantitative estimation of ACC-deaminase was done 
following the method prescribed by Jacobson et al. 2011. 
In a plate of 96 wells, 120 μL of the minimum DF salt 
medium (Dworkin and Foster 1958) was added to each 
well. For each of the four columns, 15 μL of MgSO4 
(0.1 M), (NH4)2SO4 (0.1 M) and ACC-solution (3 mM), 
previously sterilized, was introduced, respectively. For 
the inoculation of each well, 15 μL of bacterial culture 
was used. In the untreated control wells, 15 μL of MgSO4 
(0.1 M) was used instead of inoculation. The optical den-
sity was measured after 48 h at 600 nm. DO values of ACC 
and (NH4)2SO4 were compared with those of MgSO4 to 
determine the bacteria ability to use ACC for their growth.

The Hydrogen cyanide (HCN) production of the bac-
teria was qualitatively evaluated by adapting the Bak-
ker method (Bakker 1987). The bacterial cultures were 
streaked on a TSA medium supplemented with glycine 
(4,4 g L−1). In the lid of each plate, a Whatman paper 
impregnated with a yellow reagent [2% of sodium car-
bonate, 0,5% of picric acid] was placed. The plates were 
closed perfectly with parafilm and held for 96 h at 28 °C. 
Discoloration of Whatman paper to an orange/brown col-
oration indicated the production of HCN.

Fig. 1   Location of sampling in Zeïda district
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The isolates were examined for their capacity to pro-
duce ammonia (NH3) using the method described by (Cap-
puccino and Welsh 2017). 10 mL of Peptone water broth 
was inoculated by each bacterial culture and incubated 
at 28 °C. After 72 h of incubation, Nessler’s reagent was 
added. The appearance of a brown coloration indicated a 
positive test for ammonia production.

Screening of antagonism

The ability of isolated bacteria to inhibit the phytopatho-
gen fungus Fusarium oxysporum’s growth was tested on a 
Potato dextrose agar (PDA) medium. A small fungal agar 
disk from fresh cultures was centrally placed on the plates 
filled with the PDA medium, which had been previously 
inoculated with each strain at approx. 3 cm away from the 
mycelium disk. Plates without bacteria were reserved for 
control. The plates were then incubated for 7 days at 28 °C 
(Rabindran and Vidhyasekaran 1996). The percentage of 
inhibition of fungal growth was determined following the 
formula:

where R is the fungal mycelium’s greatest growth on control 
plates, and r the radius of fungal that grew in the presence 
of bacteria (Kumar et al. 2002).

Antagonism among strains

Two estimating approaches were employed to prevent det-
rimental impacts between strains. First, streak as a strip at 
one end of the plate and incubate at 30 °C for four days to 
see whether there is any diffusible material in the media 
(Anandaraj and Delapierre 2010). Secondly, to determine 
volatiles, 0.1 mL of bacterial suspension was placed on 
separated plates using TSA medium. The plates were 
stacked on top of each other and closed perfectly with 
parafilm then incubated at 28 °C for 72 h (Bennis et al. 
2022).

DNA preparation, 16S rDNA gene amplification 
and sequencing

Extraction of DNA and PCR reactions was effectuated as 
reported by Lamin et al. 2019. The BOX A1R primer was 
used for BOX-PCR (Versalovic et al. 1994). For amplifica-
tion of the 16S rDNA gene, the bacterial universal prim-
ers fD1 (5’AGA​GTT​TGA​TCC​TGG​CTC​AG-3’) and rD1 

(2)
[

(R − r) × R
−1 × 100

]

(5’AAG​GAG​GTG​ATC​CAGCC GCA-3’) were used. For 
PCR reactions, the MyTaq Mix was utilized, as indicated by 
the producer. The PCR products were verified by electropho-
resis in 1% agarose gel amended with ethidium bromide in 
TAE buffer at 70 V. The Qiagen (PCR products purification 
Kit) was utilized to purify the amplifier. For sequencing, the 
primers used were the same as for the amplification by PCR, 
using the chemistry of ABI prism dyes, and analyzed with a 
3130xl automatic sequencer at the National Centre for Scien-
tific and Technical Research (CNRST) in Rabat (Morocco).

Phylogenetic characterization

The 16S rRNA sequences that were obtained were com-
pared to those from GenBank by searching in the BLASTn 
software (Altschul et al. 1990). The MEGA 7 program was 
used to align various sequences (Kumar et al. 2016) and 
the distances were estimated using Kimura’s 2-parameter 
model to create a phylogenetic tree using neighbor-joining 
methodology (Saitou and Nei 1987).

Plant inoculation, growth, and lead accumulation

A preliminary rhizoremediation pot experiment was con-
ducted in the growth room to evaluate the performance 
of the selected strains in enhancing M. sativa (Alfalfa) 
growth in the presence of lead-acetate, knowing that 
Alfalfa was chosen as a plant model.

Alfalfa (M. sativa L.) seed sterilization was conducted 
by soaking them in 70% Ethanol for 10 min and then in 
0.1% of mercury chloride (HgCl2) for 2 min, with sterile 
distilled water. The seeds were rinsed and placed on plates 
containing agar/water 0.7% (w/v) to germinate at 26 °C 
for 3 days.

Each pot was filled up with vermiculite/perlite (2:1) and 
100 mL of nutrient solution (Broughton and Dilworth 1971) 
amended with Pb-acetate at 100 μg mL−1. Every pot was 
sowed with five seeds. 1 mL of bacterial suspension was 
introduced into each seedling separately. Uninoculated pots 
served as negative controls and four repetitions were made 
for each treatment. Pots were deposited in the growth room 
under pre-determined conditions (16/8 h light/dark photo-
period). Throughout the experiment, plants were irrigated 
four times a week with 50 mL of nutrient solution.

The plants were later collected using tap water after 
two months of growth and dried for 48 h at 70 °C. The dry 
weight and length of shoot and root parts of plants were 
measured.

To assess the effect of inoculated rhizobacteria on accu-
mulation of lead by alfalfa, the concentration of lead in 
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shoots of plants was measured using Inductively Coupled 
Plasma Optical Emission Spectrometry (Agilent 5110 ICP-
OES, USA) in Water, Soil and Agriculture Analysis Labo-
ratory within the Mohammed VI Polytechnic University 
(UM6P) of Ben Guerir.

Statistical analysis

For three replicates, the data are presented as means + SD 
(standard deviation). Using Statgraphics Plus version 4.0, 
the findings were compared using analysis of variance 
(ANOVA) and Fisher protected LSD test (p < 0.05).

Results and discussion

Sample site

Forty bacteria were successfully isolated from A. armatus 
rhizospheric soil based on the difference in their morpho-
logical appearance on the TSA medium, amended with lead-
acetate (500 μg mL−1). To determine diversity and to prevent 
the duplication of obtained isolates, BOX-PCR was initially 
used. Isolates' effectiveness was reduced to ten distinct fin-
gerprints. (Fig. 1S).

Resistance to heavy metals

All retained strains were found resistant to the selected heavy 
metals with varying capabilities. The ten isolates were toler-
ant to lead-acetate until 1000 μg mL−1, CuCl2 (400 μg mL−1) 
and ZnCl2 (200 μg mL−1). 60% of isolates resisted to Cd-
nitrate at 25 μg mL−1 while only two strains (AaR114 and 
AaR115) could grow at 50 μg mL−1, 80% were able to grow 
on the TSA medium amended with 1700–400 μg mL−1 of 
Pb-acetate and ZnCl2, respectively, and 70% grew in pres-
ence of 600 μg mL−1 of CuCl2, whereas only two strains 
grew in 2250 μg mL−1 of Pb-acetate (AaR1 and AaR72) 
(Fig. 2).

Plant growth‑promoter potential

The obtained results of PGP proprieties of the selected 
strains are presented in Table 1. Inorganic tri-calcium 
phosphate solubilization was detected in both bacteria 
with amounts that were significantly different (P < 0.05). 
The highest concentration of P soluble was observed in 
AaR114 strain (186.4 mg L−1), while AaR72 solubilized 
140.8 mg L−1. A significant drop of pH was observed dur-
ing the solubilization of P in PVK liquid medium, prin-
cipally in the presence of AaR114 strain as compared to 
control (pH 7.00). Potential of isolates to produce sidero-
phores was found to be positive. The percentage of sidero-
phores production was 62,7% and 66,4% by AaR114 and 

Fig. 2   Tolerance to various 
heavy metals by the strains. The 
results are given as percentages 
of the strains that can grow on 
the utilized heavy metal concen-
trations
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Table 1   Plant growth-promoting activities and antagonism of the chosen bacteria were all evaluated. The standard error is calculated and repre-
sented after the mean (3 repetitions)

a,b Means in the same column followed by the same letter are not significantly different p < 0.05

Strains P-solubilization pH Siderophores production IAA production ACC-
deami-
nase

HCN 
produc-
tion

Ammonia 
production

Antagonism
(mg L−1) (%) (μg mL−1) (%)

AaR72 140.8 (± 5.8)b 4.0 (± 0.05)a 66.4 (± 0.01)a –  +  –  +  45.0 (± 0.02)a

AaR114 186.4 (± 3.7)a 3.6 (± 0.36)b 62.7 (± 2.75)a 2.7 (± 0.002)  +   +   +  28.7 (± 1.77)b
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AaR72, respectively. In the presence of L-Tryptophane, 
quantitative measurement of IAA indicated that only 
the AaR114 strain was able to synthesis a low amount 
of IAA (2,7 μg mL−1). Additionally, all bacterial strains 
were capable of producing ACC-deaminase and ammo-
nia, while the AaR72 strain did not show any HCN pro-
duction. The antifungal activity of the strains was tested 
toward F.oxysporum and they were shown to inhibit the 
fungal growth to differing extents. Moreover, there was 
no antagonism between the two strains. They were able 
to grow simultaneously without any inhibition in growth.

Analysis of 16S rRNA gene

The 16S rRNA sequences of AaR114 and AaR72 strains 
showed a link to the genera of Bacillus and Neobacillus. 
Phylogenetic analysis indicated that the two strains assem-
bled in separated clusters and presented a 98,05% and 
98,91% of similarity with Bacillus subtilis and Neobacillus 
niacini, respectively. The nucleotide sequences assigned to 
this study were sent to the GenBank and registered with the 
accession numbers OM049547 and OM084759 for strains 
AaR114 and AaR72, respectively (Fig. 3).

Plant inoculation, growth, and lead accumulation

After 2 months of growth, the results of inoculation dem-
onstrated a significant effect of the strains on alfalfa growth 

Fig. 3   Neighbor-joining phy-
logeny of the strains’ 16S rRNA 
gene sequences. A bootstrap 
value calculated for 1000 sub-
sets signifies the significance of 
each branch
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combination of the AaR114 and AaR72 strains. The nutrient solution 
was amended with 100 µg Ml–1 of lead-acetate. Plants are grown in 
growth chamber for 60d. The data presented are the average of 4 rep-
licates. Column with the same letter at the top are not significantly 
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(P < 0,05). Inoculation with strains AaR114 and AaR72 
increased shoots and roots lengths compared to uninoculated 
plants. However, the most significant length stimulation was 
attributed to the double combination of AaR114 + AaR72, 
achieving a 39% increase for shoots and 36% increase for 
roots (Fig. 4). Plants inoculated with strains AaR114, AaR72 
and AaR114 + AaR72 had dry root weights that were 26%, 
43% and 58% greater than the control, respectively. Also, 
inoculation of plants with AaR114 and double-inoculated 
increased shoots dry weight by 17% and 12%, respectively, 
while the AaR72 strain showed a insignificant reduction of 
shoots dry weight (Fig. 4).

Lead accumulation in shoot parts of M. sativa plants was 
determined and is shown in Fig. 5. The finding showed that 
lead accumulation in shoots was significantly influenced by 
bacterial inoculation. In fact, the inoculation with the strain 
AaR72 was found to significantly (P < 0,05) enhance the 
concentration of lead from 115.6 mg Kg−1 of dry weight to 
145.7 mg Kg−1 compared to the uninoculated control. More-
over, a significant increase in lead concentration of 10% was 
observed as a result of dual inoculation with AaR114 and 
AaR72. Upon inoculation of M. sativa with AaR114 strain, 
metal accumulation in shoots was non-significantly lower 
than that of uninoculated plants (Fig. 5).

Discussion

Mining, metal smelting and associated activities have been 
known to be the main sources of ecosystems pollution with 
heavy metals (Liu et al. 2013; Rodríguez et al. 2009). Usu-
ally, the tailings are stored in soils without any environmen-
tal management, which leads to heavy metal dispersion into 
neighboring surfaces, ground water and agricultural soils, 

negatively impacting human and animal health (El Khalil 
et al. 2008; Liu et al. 2013; Nagajyoti et al. 2010).

To remediate mining sites, various strategies have been 
developed. However, phytoremediation is a new ecologically 
beneficial method and cost-effective technology to reme-
diate soils contaminated with heavy metals (Raklami et al. 
2021b; Tirry et al. 2018). It implies the use of plants to limit 
bio-mobility and bio-availability of metals in soils (Koptsik 
2014; Ma et al. 2011).

The use of plant-associated rhizobacteria may directly 
improve plant performance for phytoremediation (Yan 
et al. 2020). Plant growth-promoting rhizobacteria played 
a crucial role in enhancing plant growth and tolerance to 
heavy metals, as well as in biomass production (Etesami and 
Maheshwari 2018; Tirry et al. 2018).

Forty bacteria were isolated from the rhizospheric soil 
of wild-growing A. armatus in metal-contaminated soil of 
the Zeïda mining area in northeastern Morocco. Based on 
their PGP properties, genotypic and phenotypic character-
istics, strains AaR114 and AaR72 were selected for further 
M. sativa inoculation. Both strains were grown on medium 
containing Pb and Zn, which are present in high concentra-
tions in plant-growing soil.

The two selected rhizobacteria, AaR114 and AaR72, were 
identified as B. subtilis and N. niacini (basionym: B. nia-
cini), respectively (Fig. 3). Generally, the bacillus genus rep-
resents an important proportion of soil microbial communi-
ties. Their ability to form spores to promote plant growth and 
survival under various stress conditions gives them a real 
advantage in the rhizosphere (Agarwal et al. 2017; Chrouqi 
et al. 2017; Rosier et al. 2018).

ACC deaminase-containing bacteria can convert the 
immediate ethylene precursor ACC into α-ketobutyrate and 
ammonia, which can be considered as an indirect bacterial 
source of N and carbon. Moreover, by decreasing the lev-
els of plant ethylene, ACC deaminase may facilitate plants 
growth by protecting them from the inhibitory effects of 
certain environmental stresses (Kong and Glick 2017; Tak 
et al. 2013; Yan et al. 2020). In this study, two strains were 
screened for ACC utilization ability (Table 1). Deaminase 
activity was revealed in other strains of B. subtilis and B. 
niacini (Cedeño-García et al. 2018; Mohamed and Gomaa 
2012).

Some bacterial activities can enhance plant’s mineral 
nutrient uptake and facilitate their growth under different 
conditions. These activities include phosphate solubilization 
and siderophores production (Kong and Glick 2017).

Phosphorus (P) is an important macro-element for plant 
growth and development although it is frequently immo-
bilized and has limited bio-availability in soils (Beneduzi 
et al. 2012). Furthermore, the use of phosphate-solubilizing 
bacteria (PSB) may be an important alternative method to 
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overcome this deficiency (Shin et al. 2015). The strains 
AaR114 and AaR72 demonstrated the ability to solubilize 
inorganic phosphate in different concentrations. In this 
regard, several studies have shown that Bacillus strains are 
able to solubilize phosphorus through the production of vari-
ous organic acids (Borriss 2015; Saeid et al. 2018), which 
could explain the acidification of the mediums observed dur-
ing the P-solubilization of the two strains.

Furthermore, metal ions, such as iron, are often a limiting 
factor for plant development. In response to low Fe levels in 
the rhizosphere, most PGPRs produce a low molecular mass 
iron chelator called siderophores. Bacterial siderophores can 
enhance plant growth by improving plant Fe nutrition, and/
or by preventing the proliferation of pathogens by decreasing 
the amount of available iron (Ma et al. 2011). The bacteria 
selected in this study were able to synthetize siderophores 
(Table 1). This is unsurprising because the strain AaR114 
was identified as B. subtilis, a species well known to have 
this capacity in previous studies (Mohamed and Gomaa 
2012; Zhang et al. 2009).

The plant hormones produced by bacteria, indole-3-acetic 
acid (IAA), are of great importance. IAA is a key regulator 
of plant growth, as it is involved in numerous developmen-
tal processes, such as stimulation of cell division and root 
elongation (Beneduzi et al. 2012; Spaepen et al. 2007). In 
this study, the strain AaR114 was positive for IAA produc-
tion (Table 1), which is phylogenetically linked to B. subtilis 
(Fig. 3), a well-known species for IAA production (Blake 
et al. 2021; Walia et al. 2014).

The strains AaR114 and AaR72 produced Hydrogen cya-
nide (HCN), a volatile secondary metabolite, and because 
of its toxicity toward plant diseases, it is considered a bio-
control agent. (Sehrawat et al. 2022). Ammonia emission is 
another significant PGPR process that promotes plant devel-
opment indirectly (Joseph et al. 2007); all the isolates were 
able to synthetize ammonia. These activities were detected 
in other strains of B. subtilis (Ahmad et al. 2008; Etesami 
and Maheshwari 2018) and numerous strains of B. niacini 
(Kisiel and Kępczyńska 2016).

Fusarium oxysporum is a serious pest, affecting many 
crops through fusarium wilt, the most destructive disease 
affecting a wide variety of plants leading to huge loses 
around the world (Joshi, 2018). Therefore, it was selected 
to evaluate the antagonistic activity of the selected bacterial 
strains. The results of the antagonism test showed that both 
strains inhibited the growth of F. oxysporum. Among the 
plant growth-promoting rhizobacteria, Bacillus spp. strains 
have been commonly used as biocontrol agents against sev-
eral plant diseases (Vassilev et al. 2006; Kumar et al. 2018).

Alfalfa (M. sativa L.) is a perennial plant of Papilio-
noidea. It is an important forage crop with extensive tap-
root system as well as being the most widely cultivated herb 
in the world. Alfalfa plants can easily tolerate and absorb 

various heavy metals through various defense mechanisms 
(Chen et al. 2022) and are considered as a lead hyperaccu-
mulator species (López et al. 2005). Inoculation of rhizos-
phere microorganisms may be a feasible method to increase 
resistance and accumulation in M. sativa plants (Gan et al. 
2020).

The positive effects of PGPR on plant growth grown 
under metal stress have been well documented (El Faiz et al. 
2015; Navarro-Torre et al. 2017; Raklami et al. 2019). In this 
current study, inoculation with B. subtilis strain AaR114 and 
N. niacini strain AaR72 alone, or in double combination, 
improved several growth parameters, including root length 
and dry biomass of M. sativa cultivated under Pb-contami-
nated conditions (Fig. 4).

In addition, the present study showed that the two 
strains could affect metal accumulation in plants shoot 
(Fig. 5).

The inoculation of M. sativa with B. subtilis strain 
AaR114 decreased the amount of lead in shoots by 17%, 
which could indicate less metal translocation to shoots. This 
is an important fact for legume plants to be utilized in metal 
phytostabilization, thus restricting the amount of metal that 
may enter the food chain and spread across the ecosystem. 
Different plant parts have been observed to accumulate lead 
in a similar trend (Ahsan et al. 2017; He et al. 2013; Wu 
et al. 2010).

The finding suggests also that alfalfa combined with N. 
niacini strain AaR72 has potential for lead-uptake. The pro-
duction of siderophores by soil microorganisms, one of the 
processes through which metal uptake is improved, which 
might be a reason for the high metal absorption by the inocu-
lated plants with the AaR72 strain.

Metal complexation by organic acids produced by bac-
teria, which improve metals absorption and their transfer 
from root to shoot, has also been suggested as a method for 
enhancing metal intake of plant inoculated with PGPR (He 
et al. 2010).

The obtained results are in accord with those suggest-
ing that the inoculation of alfalfa with different species of 
Bacillus has positively affected plant growth parameters 
and increased lead accumulation in plant roots and shoots 
(Yahaghi et al. (2019).

Felici et al. (2008) found that the inoculation with B. sub-
tilis strains improved the dry weight of tomato plants shoots 
and roots, and also improved the growth and cd-accumula-
tion in alfalfa plants (Li et al. 2021).

Additionally, Shah et al. (2021) reported that B. subtilis 
promotes the growth of Solanum melongena under lead-
contaminated conditions. Other scientists have found that 
a Bacillus niacini strain isolated from the M. sativa rhizo-
sphere promoted Medicago truncatula growth under con-
trolled conditions (Kisiel and Kępczyńska 2016).
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Conclusion

In conclusion, two rhizobacteria were chosen based on their 
performance, regarding their high tolerance to various heavy 
metals, phosphate solubilization and siderophores produc-
tion. Both the B. subtilis strain AaR114 and N. niacini strain 
AaR72 were metal-tolerant and exhibited different plant 
growth-promoting activities. Single and/or combined inocu-
lation of M. sativa with AaR114 and AaR72 likely promoted 
growth and decreased lead toxicity. The findings point to the 
possibility to use M. sativa, in association with PGPR, for 
the remediation of lead abandoned mine sites in Morocco.
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