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Abstract
Integrated large-scale solid waste management (SWM) policies are the need of the hour to design, develop and sustain SWM 
models. An accurate prediction and forecasting of municipal solid waste generation (MSWG) rate are essential for such 
advanced strategies. The primary objective of this study is to examine the criticality of demographic and socio-economic 
parameters for the fair prediction and forecasting of the MSWG rate. Machine learning (ML) models were formulated by 
mapping solid waste quantities at the municipal level with socio-economic and demographic variables of Guwahati city. 
Tree-based ML algorithms, namely decision tree (DT), random forest (RF) and gradient boosting (GB), were applied to build 
the models with 1936 data size. The moving average (MA) approaches were adapted for the forecasting of the MSWG rate. 
Model validation resulted in a root mean square error, RMSE (3.01), mean absolute error, MAE (2.86) and coefficient of 
determination, R2 (0.99) for the GB model and correlation coefficient (r) of 0.82 between observed and predicted values and 
thereby resulted in best performance in conjunction with DT and RF. With the exponential MA, the forecasted RMSE and 
R2 for GB, RF and DT were 2.12, 3.63 and 4.22; and 0.981, 0.972 and 0.967, respectively. However, with a model accuracy 
of 97%, the computation time for GB model (19.18 min) exhibited maximum due to its high complexity. The overall meth-
odology involved developing effective tools to aid in regional SWM and planning through the integration of data sources in 
the public domain, pre-processing and modelling from diverse sources.
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Abbreviations
R2

DT	� Coefficient of determination for decision tree
RMSEDT	� Root mean square error for decision tree model
R2

RF	� Coefficient of determination for random forest
RMSERF	� Root mean square error for random forest 

model
R2

GB	� Coefficient of determination for gradient 
boosting

RMSEGB	� Root mean square error for gradient boosting 
model

EMADT	� Exponential moving average for decision tree
SMADT	� Simple moving average for decision tree

WMADT	� Weighted moving average for decision tree
EMARF	� Exponential moving average for random forest
SMARF	� Simple moving average for random forest
WMARF	� Weighted moving average for random forest
EMAGB	� Exponential moving average for gradient 

boosting
SMAGB	� Simple moving average for gradient boosting
WMAGB	� Weighted moving average for gradient 

boosting

Introduction

Global solid waste management (SWM) programme neces-
sitates upon the important criterion of the quantification of 
generated and collected solid waste. Municipal solid waste 
generation (MSWG) and its impacts on humankind and the 
environment are global issues. Presently, 1.3 billion tons/
year of MSW is generated daily on a global scale and is 
expected to peak about 2.2 billion tons/year by 2025 (Pala-
cio et al. 2019, World Bank, 2018). Rapid urbanization and 
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enhanced consumption patterns profusely contribute towards 
such complex challenges associated with waste generation 
(Guerrero et al. 2013). In the SWM programme, the quan-
tity of generated and collected solid wastes is a significant 
criterion (Kamaraj et al. 2020; Fu et al. 2015; Tchobano-
glous & Kreith 1994). However, due to unplanned waste 
collection and inadequacy of strategic planning policies, 
the modelling-based SWM did not yet mature from a real-
world application perspective. Therefore, to develop and 
implement an effective SWM system, it is crucial to assure 
upon a meticulous and definite prediction methodology of 
the MSWG rate (Azadi & Karimi-Jashni 2016; Yu et al. 
2015; Ghinea et al. 2016).

Several factors and their highly complex combinations 
contribute towards the MSWG rate of a city or a village. 
These primarily refer to geographical location, population, 
literacy rate, food habits, culture and beliefs, number of 
households (HH) in a specific geographical area and vari-
ous economic constraints, viz. gross district domestic prod-
uct (GDDP) and employment status (Tauqeer et al. 2022a, 
2022b). Furthermore, HH solid waste is highly heterogene-
ous and is widely dependent on the socio-economic status 
of the HH (Khalil et al. 2022; Miezah et al. 2015; Sankoh 
et al., 2012). Socio-economic and demographic variables 
that measure economic affluence and life style parameters 
have been found to enhance the MSWG rate. Notably, these 
refer to population income (Sankoh et al., 2012), gross 
domestic product (GDP), consumption expenditure level 
(Daskalopoulos et al. 1998) and purchasing power parity 
(Abbas et al. 2022; Zhu & Atikur Rahman 2020). All these 
relatively influenced the MSWG rate. Also, little prior art 
infers that socio-economic factors such as education influ-
ence, age (Debrah et al. 2021) and GDDP (Grazhdani 2016) 
potentially influence the MSWG rate. Additionally, occupa-
tion type (Abbas et al. 2022; Zhu & Atikur Rahman 2020) 
and employment status (Sankoh et al., 2012) have been indi-
cated to be important markers.

A precise estimate of the MSWG rate is necessary for the 
design, development and commissioning of an integrated 
SWM system. To do so, in a concise study area, primary 
data are collected in terms of alternate MSWG rates and 
associated temporal trends. However, inadequate resources, 
inefficient and ineffective management, and a lack of meas-
urement infrastructure in many developing nations eventu-
ally result in an incomplete historical data of the MSWG 
rate (Dyson & Chang 2005). Such data usually comprise 
of several outliers, missing information, noises, etc. Hence, 
the MSWG rate prediction through standard approaches 
that consider timely variations of the MSWG is highly chal-
lenging. Therefore, to address this problem effectively, new 
techniques are to be customized for the efficient prediction of 
SWM rate and thereby enable future generation capacities.

Sustainable waste management necessitates upon the 
accurate estimation of MSWG. Such quantification meth-
odologies can be used as a foundation to improvise waste 
management laws, environmental impact assessments, social 
and economic cost evaluations, waste management system 
designs and planning of related infrastructure such as col-
lection points, recycling facilities, landfills and incinera-
tors (Hoque and Rahman 2020; Ma et al. 2020). Due to the 
inherent complexity of several variables, it is challenging to 
estimate MSWG with an acceptable precision (Abbasi and 
El Hanandeh 2016; Beigl et al. 2008).

Conventionally, either practical models or complex tech-
nologies have been used to project the MSWG (Beigl et al. 
2008). The majority of MSW prediction models have been 
overly straightforward and application-focused. For instance, 
Sun et al. (2018) used a category estimation approach to 
forecast the creation of MSW for the vast Tokyo Metropolis. 
In order to optimize Shanghai's MSW recycling network, 
Lv et al. (2020) evaluated the quantity of future MSWG 
using binary linear regression. A number of studies have 
also been conducted that are solely concerned with the reli-
ability and accuracy of the adopted methodologies for MSW 
rate estimation.

The available literature for the prediction of the SWG rate 
refers to a wide range of empirical and abstract modelling 
techniques (Molina-Gómez et al. 2021). These can be as 
simple as application-based pedagogies or as complex as 
sophisticated technologies with thorough academic insights 
(Chung 2010). In the prior art, more than 63 studies have 
been addressed for the MSWG rate prediction from 1980 
to 2020. These can be classified into seven major catego-
ries from a methodological perspective. Briefly, these can 
be analysed as: – (i) detailed statistical approach based on 
surveys (Even et al. 1981; Lohani & Hartono 1985); (ii) 
regression analysis (Abu Qdais et al. 1997; Araiza-Aguilar 
et al. 2020; Denafas et al. 2014; Shamshiry et al. 2014); 
(iii) material flow model (Hu et al. 2010; Huang et al. 2013; 
Noufal et al. 2020; Schiller et al. 2010); (iv) trend analysis 
using time series (Ali Abdoli et al. 2012; Katsamaki et al. 
1998; Navarro-Esbrí et al. 2002; Rimaityte et al. 2012); (v) 
artificial intelligence (AI) modelling approaches (Abbasi & 
El Hanandeh 2016; Hannan et al. 2015; Kolekar et al. 2016; 
Noori et al. 2009a, b); (vi) artificial neural network (ANN) 
(Adamović et al. 2018; Jalili Ghazi Zade & Noori, 2008; 
Noori et al. 2009a, b; Shahabi et al. 2014); and (vii) machine 
learning (ML) approaches (Abbasi et al. 2013; Abdoli et al. 
2011; Johnson et al. 2017; Abbasi et al., 2016). However, 
each method has its own strengths and limitations.

While statistical models are common and useful, they 
are severely constrained with presumptions such as inde-
pendence and normality of the input variables. Therefore, 
they could not resolve complex issues (Kumar et al. 2018). 
Despite indicating ambiguity and subjectivity, the system 
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dynamic modelling approach proved to be effective to 
describe the causation and relationships between variables 
in a system (Xiao et al. 2020). In few cases, more appropri-
ate techniques such as input–output analysis and material 
flow analysis have been applied.

In the past two decades, a gradual increase in the applica-
tion of AI was witnessed for the successful prediction and 
optimization of MSW using complex nonlinear processes 
with multidimensional and noisy data (Abdallah et al. 2020). 
For instance, Abbasi and El Hanandeh (2016) developed 
a prediction model and estimated monthly MSWG quan-
tities for the following six years using novel AI technolo-
gies such as support vector regression and support vector 
machine (SVR/SVM), adaptive neuro-fuzzy inference sys-
tem (ANFIS), ANN and k-nearest neighbours (kNN). Using 
ANN and decision trees (DT), Kannangara et al. (2018) sug-
gested a study framework to forecast the amount of MSWG. 
Later, the authors examined the results of various models 
for the determination of subjectivity in the findings and 
their dependence upon a few crucial criteria. As a result, AI 
methodologies have been considered to be effective for the 
prediction of MSWG rate.

In addition, relevant ML techniques have been analysed 
for their efficacy towards the challenging problem of MSWG 
rate prediction and forecasting. While several algorithms 
may appear promising, the linear models have efficacy in 
terms of robustness. Based on a flow chart-like tree structure, 
the DT can predict the dependent variables using relevant 
degrees of freedom. The algorithm falls under the category 
of supervised ML. DT regression is often used for continu-
ous dependent problems. Using the DT model, Rathod et al. 
(2020) predicted the MSWG rate by integrating domestic 
MSW quantities with demographic and socio-economic 
variables of 200 regions around Akola city (Maharashtra). 
The model performed with a root mean square error, RMSE 
of 0.1747 and an adjusted coefficient of determination, R2 
of 0.5044, respectively. However, the model suffered overfit-
ting issues.

Having been developed for about 20 years, the random 
forest (RF) can be used to handle both classification and 
regression issues. The RF follows the bootstrap aggregating 
(bagging) process (Breiman, 1996). High precision, good 
handling of missing values and a large number of attrib-
ute dimensions have been the potential benefits of the RF. 
For instance, the RF forecasting of Vietnam's MSWG yield 
provided the best results (Nguyen et al. 2021). The model 
performed with an R2 value greater than 0.96 and a mean 
absolute error (MAE) of 121.5–125.0. However, the com-
putation time has been poor, and hence, the model would be 
ineffective for the real-time predictions.

The gradient boosting (GB) technique has been an 
efficient ensemble learner and is based on DT (Chen and 
Guestrin 2016). The GB algorithm has been renowned for 

handling huge numbers of tuneable hyper-parameters, its 
ability to handle missing values and its many unique fea-
tures including parallelization, remote computing and cache 
optimization (De Clercq et al. 2020). The algorithm has been 
proved to be highly effective in forecasting particulate matter 
(PM2.5), fire danger and heavy metals in comparison with 
other methods (Tauqeer et al. 2022a, b; Bhagat et al. 2021; 
Michael et al. 2021; Xiao et al. 2021). However, it has been 
rarely used to predict MSW. One article addressed the GB 
model based on organic fraction of the MSW projection 
(Adeogba et al. 2019). The authors improved the prediction 
accuracy by combining the outputs of weak models to form 
a single consensus model and obtained an R2 score of 0.766 
and 0.899 for garden and food waste models, respectively. 
However, the model lacked good error accuracy (about 11%) 
as it underwent overfitting. Such poor performance can be 
resolved by applying L1 and L2 regularization penalties or 
hyper-parameter optimization (HPO).

Based on weekly waste generation data in Mashhad city 
(Iran), few authors reported the effectiveness of the feed-
forward ANN model to estimate MSWG volume (Jalili 
Ghazi Zade & Noori, 2008). The authors obtained 0.746 
correlation coefficient (r) and 3.18% error for an ANN with 
16 neurons in the hidden layer for the effective prediction of 
weekly waste volume. Another article reported that popula-
tion and standard of living index parameters are important 
factors to influence MSWG rate (Daskalopoulos et al. 1998). 
With such a basis, the authors used a regression model to 
correlate GDP and mean standard of living in the UK and 
USA as strong correlating factors for the MSWG rate predic-
tion. Despite reporting MSWG rate prediction, the above-
mentioned prior art did not address forecasting, an important 
tool for the sustainable development of the smart city eco-
system. Few authors applied a seasonal autoregressive and 
integrated moving average (sARIMA) method for MSWG 
rate prediction (Navarro-Esbrí et al. 2002). Their results 
affirmed a medium- to long-term prediction that performed 
well for a minimum of 2–3 years of predictions with a mean 
relative error lower than 5% of the accuracy level. Gradient 
boosting regression trees (GBRT), an ML technique, were 
applied to predict the MSWG rate associated with more than 
750,000 HH in New York city (Kontokosta et al. 2018). With 
an R2 of 0.87, the model was able to predict the total weekly 
MSWG rate. However, data limitations constrained the pre-
dictive efficacy of the model.

A primary issue with MSWG prediction model applica-
tion is in terms of the complexity of the real-time system. 
This translates into a dependable dataset of waste categoriza-
tion and intensive information as input factors and variables 
to the modelling system. On the contrary, modelling using 
multivariate analysis (more than one independent variable), 
including ANN, fuzzy logic systems, genetic algorithm, sys-
tem dynamics and multiple regression analysis, may at times 
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foster complexities associated with the diverse interactions 
with the variables. Thereby, the validation of the prediction 
model becomes difficult (Kolekar et al. 2016). Moreover, 
decision-making and planning SWM is inevitable due to 
appropriate planning and operational strategies (Ali et al. 
2022). Hence, the challenge for the accurate prediction of 
MSWG needs to be addressed along with an efficient fore-
casting strategy.

Despite affirming numerous statistical and computational 
approaches for MSWG rate prediction, very little prior art 
convey the targeted application of ML approaches such 
as DT, RF (Ghanbari et al. 2021) and GB (Adeogba et al. 
2019). These methods were mostly studied individually but 
not collectively. In this regard, the ML algorithms have been 
promising to facilitate better accuracy for even smaller data-
sets. These algorithms have been proved to be efficient for 
MSWG prediction and as a future prospect for advanced 
research (Ghanbari et al. 2021). ML models can effectively 
tackle overfitness issues that translate into high training but 
lower test scores. This is due to the model learning trained 
data in an extensive framework. Such models being unfit 
to perform precisely on smaller databases have not been 
proved yet from the perspective of generalized strategies. 
To overcome the overfitness issue, multiple ML algorithms 
can be used for a wider range of working principles and 
a comparative investigation can be targeted to determine a 
model for the chosen problem. To predict the MSWG rate by 
applying a series of ML algorithms, no attempts have been 
made till date. Moreover, limited studies have been reported 
for MSWG prediction using the GB predictive forecasting 
model. However, it is a fact that GB is susceptible to overfit-
ness issues and no studies have been reported to overcome 
the issue.

To address overfitness, the DT can be considered as one 
of the promising options of ML algorithms. In general, the 
ML algorithms facilitate predictive models with precision, 
ease in estimations and stability (Navada et al. 2011). DT-
based methods (Johnson et al. 2017) have been efficiently 
and effectively adapted for waste modelling using cross-sec-
tional data (Beigl et al. 2004). These models require mini-
mum data transformations (Ali & Ahmad 2019). Adapting 
the DT model, support vector machines (SVM) and ANN 
algorithms, (Kavyanifar et al. 2020) predicted the rate of 
waste production per capita in coastal areas of Hormozgan 
province, Iran. For training and model validation purposes, 
the authors used 75% and 25% of data, respectively. The 
RMSE and MAE were considered as validation parameters. 
The investigations revealed that the predictive error of the 
DT approach was lower than both SVM and ANN methods.

It is well known that the RF and GB machine learning 
algorithms have been widely used towards classification and 
predictive modelling of structured datasets (Adeogba et al. 
2019). In this regard, RF and kNN algorithms were deployed 

for MSWG prediction by few authors (Dissanayaka & Vas-
anthapriyan 2019; Nguyen et al. 2021). For the prediction of 
weekly MSWG rate in New York city, the GB was effective 
with a good r value of 0.82 (Johnson et al. 2017). Thus, GB, 
RF and DT can be considered to be potential ML algorithms 
for city wide MSWG prediction and forecasting.

With the proven limited scope of ML algorithms, three 
ensemble techniques, namely DT, RF and GB algorithms, 
have been considered in this article to develop a robust 
model and facilitate a comparative analysis and long-term 
model performance evaluation for the MSWG prediction in 
Guwahati city of north-east India. Guwahati, the capital of 
Assam state in north-east India, is one of the fast growing 
cities in India (Ahmed et al. 2021). Thereby, it can be con-
sidered as a representative city that needs appropriate and 
well-planned smart city strategies. Thereby, the city was 
selected to showcase the efficacy of chosen ML algorithms 
for MSWG rate prediction. To analyse the data, DT has been 
used as a first model that deployed ML as a nonparametric 
algorithm to model data separation limitations based on the 
learning decision rules on the input characteristics of the 
model. Following this, RF and GB were considered as the 
second and third approaches as predictive models for the 
exploration of associated correlations among socio-eco-
nomic parameters. Moreover, to address the model overfit-
ting issues, the chosen models were customized to serve 
better towards MSWG rate prediction. In this study, socio-
economic factors, namely population (POP), GDDP, literate 
population (LP), total HH, HHSize and worker population 
(WP), have been considered along with time to influence 
the MSWG rate prediction. The forecasting was carried out 
using simple moving average (SMA), weighted moving 
average (WMA) and exponential moving average (EMA) 
approaches.

Study area

Guwahati, one of the oldest urban centres of India, occu-
pies the most dominant position in administration and trade 
in the entire north-east India. The city lies between 25°5′ 
N to 26°12′ N latitude and 91°34' E to 91°5′ E longitude 
and covers a large part of the Kamrup Metropolitan district 
of Assam (Fig. 1(a)). The spatial expansion of Guwahati 
has been due to the huge population explosion over a short 
period of time. According to the census reports, its popula-
tion increased from 43,615 in 1951 to 9,68,549 in 2011. The 
average density of the population of the city is as high as 
4468 persons per km2 as per the 2011 census. The city has 
presently 60 municipal wards and recently included a new 
ward no. 61 (Narengi ward) in the Kamrup Metropolitan 
district (Census 2011–19). The city centre, old city, busi-
ness centres as well as the newly developed residential areas 
affirm highest population density. This is indicative of the 



12211International Journal of Environmental Science and Technology (2023) 20:12207–12230	

1 3

growing compactness and complexities in the land use of the 
city with time (Bhattacharyya, 2001). The highly heteroge-
neous functional characteristics of the city have led to the 
excessive population influx and rapid urban development. 
Like any other growing city, the lifestyle of the people is 
in a phase of transition due to rapid urban development. 

This resulted in high waste generation from varied sources 
in the city.

Guwahati shares 1.94% of Assam’s geographical area 
with a GDP per capita of ₹280,650 (US$3,700) in 2020–21. 
These demographics indicated it as one of the most eco-
nomically vibrant regions in north-east India (Ministry of 

Fig. 1   a Location map of the study area, b ward-wise waste generation per capita of Guwahati city (data source: GMC, 2018)
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Statistics and Programme Implementation, MOSPI Report 
2020–21). The city reportedly generates about 550 TPD 
on a daily basis (Central Pollution Control Board, CPCB 
Report, 2019). The recent garbage dumpsite for the city is 
Chandrapur, an ecologically sensitive area in the suburbs 
of Guwahati. The dumpsite is within 400 m of the Kolong 
river, 500 m of the Amchang Wildlife Sanctuary and 2 km of 
the Pobitora Wildlife Sanctuary (home to many one-horned 
rhinoceroses). Hence, the site is opined to violate conserva-
tion and management rules implying landfill sites in terms 
of their location with respect to habitation clusters, forest 
areas, protected areas, water bodies and historical places. 
The previous dumpsite for the city was in Boragaon (close 
to Deepor Beel Wildlife sanctuary). Since 2006, about 95% 
of this waste has been dumped at the Boragaon site. Deepor 
Beel is a wetland recognized by the International Ramsar 
Convention and important bird habitat. The dumpite's prox-
imity to the sanctuary violated both MSW (Management 
and Handling) Rules 2000 and the Wetland (Conservation 
and Management) Rules 2010, both for polluting a protected 
site. Further, the Guwahati Municipal Corporation (GMC) 
and the non-governmental organizations (NGOs) could not 
resolve the primary issues of the irregularities in garbage 
collection from the doorsteps of the city’s residents. Despite 
taking several proactive measures and steps for the improve-
ment of solid waste scenario, the GMC has a highly chal-
lenging issue to collect and dispose the solid waste. The 
issue is becoming chaotic and translates into an alarming 
situation. Hence, a proper planning is required in this aspect. 
Without such appropriate planning and management, such 
vast quantities of waste are bound to hinder the sustainable 
development of the city and may even lead to civil unrest 
and strife due to inadequate and imbalanced emphasis on the 
quality lifestyle for one and all.

Figure 1(b) shows the MSWG per capita in the Guwa-
hati region (Data source: GMC, 2019). It has been observed 
that the standard deviation of MSW generation per capita 
of municipalities with a lower population density (rural 
municipalities) was lower than that of the areas with higher 
population density (urban municipalities). Thus, the MSWG 
per capita in urban areas has a wider range. For instance, the 
city with an area of 14.98 km2 generates 160 tonnes waste 
per day for a population density of 2223 (33,305 persons). 
Incidentally, the ward with highest population density only 
possessed an area of 25.97 km2 but for 49,021 persons ward. 
With respect to the annual MSWG per capita, the increment 
was approximately threefold and got enhanced from 2.84 kg 
per person (1991) to 6.21 kg per person (2019).

Materials and methods

Python version 3.8 was deployed to analyse the data and 
implement the prediction models. To automate loading, 
pre-processing and integration of data, python scripts were 
developed. NumPy, Scikit-learn, Pandas and Matplotlib 
library packages have been considered to implement mod-
elling efforts on a i7-4790 CPU @ 3.60 GHz processor 
configuration.

Figure 2 outlines the overall methodology being adopted 
in this article. The figure depicts a data collection and pre-
processing phase and a modelling and analysis phase in the 
overall methodology. For the preparation and transformation 
of raw secondary data into processed data for appropriate 
modelling and analysis, several data pre-processing steps 
were needed. These refer to the extraction of data (second-
ary), data loading into proper data structures, derivation 
of socio-economic factors, data transformation, outliers 
removal through filtering mechanisms and finally integration 
of data into consolidated datasets. Finally, after retrieving 
the combined datasets, the data were fed to ML algorithms 
and for the respective functionalities of the training, valida-
tion and forecasting of the alternate models.

Data consolidation and socio‑economic parameters 
selection

The consolidated data for the conducted investigations 
include POP GDDP, GDDPper capita , LP, WP and HH infor-
mation Table 1. For these data, the best data sources cor-
respond to the Indian census data (a decennial census per-
formed nationwide), and for GDDP, the annual data were 
collected from the MOSPI. Also, the GDDPper capita was 
obtained by dividing the country's GDDP with its total 
population. For HH data, the number of HH and HH sizes 
were considered. Also, the number of HH was further sub-
categorized into good, living and dilapidated conditions. 
Accordingly, HHSize was classified as 1–3, 4–8 and above 9.

An extensive prior art in the chosen field highlighted 
socio-demographic factors and datasets as the most signifi-
cant contributors to MSWG rate (Benítez et al. 2008; Ghi-
nea et al. 2016; Johnson et al. 2017; Noori et al. 2009a, b; 
Tchobanoglous & Kreith 1994). The population (POP) has 
been unarguably a dominant parameter to critically influ-
ence the total waste generation rate. Hence, it has been 
regarded as a key variable to customize the performance 
of long-term time series prediction models (Hockett et al. 
1995; Katsamaki et al. 1998; Navarro-Esbrí et al. 2002; 
Rimaityte et al. 2012). Most socio-economic factors that 
influence the MSWG rate such as education level (Debrah 
et al. 2021), employment status (Bandara et al. 2007), total 
HH and HHSize(Suthar & Singh 2015) have been provided 
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in the national census data and at 10-year intervals. The 
annual data for GDDP (Grazhdani 2016) were obtained 
from MOSPI at the municipal level. This was as per the 
norm that the MOSPI data at subdivisions referred to that 
of the municipality level. The same was verified through 
a comparison of POP projections reported in waste gen-
eration and census data. Further, such level-based data 
classification in the census data evaluates the competence 
of the desired socio-economic factors in various alternate 
methods. Also, over the years, this level-based data varied 

substantially. Accordingly, the socio-economic factors 
were interpreted in such a way that they can be invariably 
computed using data structures in the census data of 1991, 
2001 and 2011. To evaluate the annual values from 1991 to 
2011, linear interpolation and extrapolation were adopted. 
To provide adequate consistency for short-length data 
imputation issues, linear interpolation has been reported 
(Sun & Chungpaibulpatana 2017). Additionally, an analy-
sis of the relevant socio-economic factors in the census 
reports affirmed progressive but not random variations.

In this article, the MSWG rate data for validation were 
procured from the CPCB, Government of India. The CPCB 
presents annual consolidated reports being developed with 
the forwarded reports of the SWM from the local bodies and 
then to the State Pollution Control Boards. Thereby, CPCB is 
responsible for coordination and assigns resources for waste 
management programmes deployed by multilevel municipal 
governance bodies. Thus, CPCB information with respect 
to waste generation rates is available in the public domain. 
Despite generating a compiled waste generation data from 
the municipalities, the data can have errors due to the self-
reporting strategies. Thereby, such data may not be free from 
errors due to inaccurate records, over- or under-evaluated 
waste quantity data and misinterpreted survey records. For 
this reason, since obtained process data reconciliation (PDR) 

Fig. 2   Overall MSWG prediction and forecasting methodology using ML algorithms

Table 1   Data sources for the independent and dependent variables in 
the conducted study

Parameters Data sources Available years

Independent variables
POP Census data 1991–2011
LP Census data 1991–2011
GDDP MOSPI data 1991–2011
HH data (HH count: Good, Living, 

Dilapidated and sizes: HH 1–3, 4–9 
and above 9)

Census data 1991–2011

WP (main, marginal and non-WP) Census data 1991–2011
Dependent variable
MSWG CPCB 1991–2016
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and data validation are prone to possess erroneous infor-
mation and outliers for the carried investigations, it was 
assumed that to describe cross-sectional differences among 
municipal bodies, the data possessed adequate quality and 
variation. Thereby, the data can be applied for the develop-
ment of better predictive models.

To systematically assist modelling efforts, the preliminary 
screening of socio-economic factors was targeted between 
MSWG rate and socio-economic factors. To do so, Pear-
son correlation coefficient (r) being applied in an earlier 
investigation as a ranking technique to select ML algorithm 
features was adopted (Iguyon & Elisseeff 2003). Thereby, 
the r between each variable pair was calculated using the 
expression:

where r is the correlation coefficient between variables x and 
y , and N is the number of observations. Thus, using correla-
tion coefficients, the criticality and sensitivity of the socio-
economic parameters have been addressed to considerably 
improve upon the prediction accuracy.

Pre‑processing of the data

To prepare and transform the collected data into refined data, 
various data pre-processing steps were needed for appropri-
ate modelling and subsequent analysis. These refer to the 
structures deriving socio-economic factors, transforming 
data, filtering to remove outliers and finally integration of 
the data into combined datasets.

For the detection and removal of outliers from data-
sets, interquartile range (IQR) filtering was used. Out-
liers can result into inaccurate estimates or significant 
changes in waste generation patterns due to the diver-
gence of the data from the municipal bodies. The upper 
and lower limits of the valid data range per municipality 
were determined as Upper Limit = Q3 + IQR × 1.5 and 
Lower Limit = Q1 − IQR × 1.5 . In these expressions, Q1 
and Q3 correspond to the first (or lower) and third (or upper) 
quartiles of the collected data, respectively. Subsequently, 
the data points that lie beyond and below the corresponding 
upper and lower quartiles were considered as outliers and 
were filtered.

Machine learning techniques

Regression has been a dominant and major statistical practice 
in ML and can be applied in economics, psychology, geog-
raphy and so forth (Dietz et al. 1997; Sammut and Webb, 
2017). To evaluate the dependence or relation between random 

(1)
r =

N
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�
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��∑

y
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∑
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variables of interest and thereby deduce mathematical func-
tions, regression analysis (RA) is applied in the form of regres-
sion models that explain the pertinent data correlation charac-
teristics (Dietz et al. 1997; Wisniewski & Rawlings 1990). RA 
requires two real-valued variables being represented as target/
dependent (y) and independent variables (x). The primary 
objective of RA is to map a function such that y = f (x) + � , 
where � corresponds to the error (Draper and  Smith 1981; 
Freund and  Wilson 1998). Multiregression problems arise 
due to the occurrence of more than one independent vari-
able. For such systems, regression expression transforms to 
y = f (x1, x2, x3.....xn) + � where (x1, x2, x3.....xn) ∈ x.

Several independent variables (namely POP, LP, GDDP and 
GDDPpercapita,HH, HHsize and WP ) and one target variable 
(MSWG) have been considered in this study. To estimate the 
mathematical functions, regression algorithms was applied to 
evaluate the best-fit model that represents MSWG as a func-
tion of all the considered seven core independent variables. 
Mathematically, the objective function is expressed as:

Decision tree

Tree-based models are most popular among ML models. 
This is due to their iterative divide-and-conquer nature. In 
such models, nonparametric method is followed to recognize 
complex patterns associated with the classification tasks that 
have the properties associated with several types of pattern and 
a large number of attributes (Kannangara et al. 2018). Such 
models are efficient and easy to implement but with intensive 
computation. A set of highly explicable and logical (if–then) 
conditions is constructed by the tree-based ML models. This 
was achieved recursively by subdividing the decision space 
into smaller sub-spaces using training data presented to the 
decision process in the form of a tree. Thus, the algorithms can 
discreetly implement feature selection and can be applied for 
classification and regression of datasets with larger variables 
(Quinlan 1999; Solano Meza et al. 2019). Recently, DT tech-
niques have been applied on a wider scale to predict the waste 
generation rate and for long-term waste prediction (Breiman 
1996; Breiman et al. 2017).

Numerous techniques exist to construct a tree. However, 
in this article, regression tree (RT) was constructed using a 
famous yet most widely applied framework called classifica-
tion and regression trees (CART). CART was first introduced 
by Brieman’s research group (Breiman et al. 2017). The CART 
involves the specific logical tests being conducted for the entire 
datasets (D) that exist at the root or internal node of the tree. 
Thereby, DT partitions the test data into two groups D1 and 
D2 such that the partitions mutually satisfy the minimization 
of overall sum of squared error, SSE:

(2)
MSWG = f(POP,LP,GDDP,GDDPpercapita,HH,HHsize,WP) + �
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where yD1
 and yD2

 refer to the mean predictions of the train-
ing set for D1 and D2, respectively. The process is iterated 
until the convergence criterion are met with no more pos-
sible splits. Finally, the decision nodes (last nodes) yield 
the predicted values of the targeted variables (Hastie et al., 
2011; Johnson et al. 2017; Kannangara et al. 2018).

Random forest

Using random sub-spaces and bagging approaches the 
research group of Nisbet and Breiman (Nisbet et al., 2009), 
Breiman et al. (2017) were the first to delineate upon the RF 
model-based bagging algorithm for classification purposes. 
As one of the most dominant ML algorithms, the RF incor-
porates an ensemble of tree predictors. Thereby, for all trees 
in the forest, each tree relies on the values of an arbitrary 
vector sampled individually and with the same distribution. 
Thereby, RF generates the final output as an average of all 
tree predictions (Shi & Horvath 2006).

Gradient boosting

GB model demonstrates the ability to model complex non-
linear relationships between variables. The algorithm func-
tions on the concept of the DT regression models. Prom-
ising performance to achieve higher prediction accuracy 
than that being achieved through conventional time series 
approaches has been reported (Johnson et al. 2017). DT uti-
lizes an approach to bifurcate and thereby customize various 
linear models to fit each region (Breiman et al. 2017; Hastie 
et al., 2011). Thereafter, the process is recursively performed 
through the determination of the split point (maximum 
deduction for residual sum of squares, RSS) at each stage. 
Such a procedural methodology generates a single tree-like 
structure that best depicts the underlying correlation between 
variables in a dataset.

In this study, two ensemble procedures have been used. 
These are the extensions of bagging (RF) and boosting (GB), 
respectively. Bagging (also known as bootstrap aggregation) 
and boosting are two widely used ensemble learning para-
digms (models that result in a combination of multiple sim-
ple models) in an ML algorithm. The core idea behind these 
DT-based ensemble strategies is to build several DTs and 
consolidate their predictions through the average (in regres-
sion) or voting (in classification) methodologies. Hence, 
while the variance gets reduced, the prediction accuracy 
gets enhanced. Thereby, bagging allows the construction of 
individual DT and allocates equal weight to all the DTs. 
On the other hand, in due course of the boosting of the new 
DT, the performance of the prior ones gets influenced and a 

(3)SSE =
∑

i∈D1

(yi − yD1)
2 +

∑

j∈D2

(yj − yD2)
2 weight-based assignment on the trees’ performance supports 

the computation procedures (Friedman 2001; Sutton 2005).
Table 2 lists the most frequently used approaches for 

the prediction and forecasting of the SWM. Such compara-
tive analysis will be useful for the researchers to choose 
appropriate algorithm for the mentioned problem. In the 
traditional approaches such as statistical and material flow 
models, the application of the heterogeneous data and mini-
mization of error and uncertainties are not possible. Hence, 
prediction and forecasting accuracies could not be enhanced. 
As a viable alternative, the ML has an added advantage to 
include all possible information in the database and field 
survey data. Thus, the ML-based methods, due to non-pri-
ori selection of the variable, are more successful than the 
traditional methods. The methodology outlined in the arti-
cle will assist in the decision-making process to accurately 
estimate the MSWG rate. Thereby, the limitation of tradi-
tional approaches for MSWG rate could be overcome for 
the effective planning of SWM facilities. Also, among ML, 
except DT, RF and GB, other approaches have limitations 
in terms of identification and inclusion of other influencing 
explanatory variables, sensitivity to outliers, lower accuracy, 
etc. However, the tree-based models have the advantage to 
consider available information in a particular field. Hence, 
greater possibilities exist to enhance the prediction accuracy 
of the model.

Model training

For unseen or new data samples, signifying poor perfor-
mances, the ML algorithms are susceptible to the overfitness 
issue. Hence, model testing is mandatory with the unseen 
data. To do so, the entire dataset was divided into training 
and testing datasets. While the training set was used to build 
the model, the overfitness was evaluated with the testing set. 
In general, the relevant prior art used 80:20 or 60:40, 90:10, 
85:15 (Pao & Chih 2006) ratios of the training to testing 
datasets. The trained models have been evaluated through 
the testing of new data for which no model existed previ-
ously. To do so, the training and test datasets were split as 
70:30 ratio in this work. This was justified with the observa-
tion that the chosen ratio yielded a minimum average model 
error.

Model testing and validation

To analyse the regression algorithms’ capabilities for the set 
objective, the trained models have been tested with new data-
set being not utilized for the training phase. The validation 
process has been based on a two-step hierarchy, namely a 
parameter optimization (PO) phase and a training or predic-
tion phase. During PO, for all the tree models, to infer appro-
priate parameters for the data with tenfold cross-validation, a 
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grid search was implemented simultaneously. The following 
step involved the application of parameters inferred from the 
optimization step and subsequent comparison through error 
computation strategies being summarized as follows.

The train and the test scores have been evaluated to esti-
mate the model’s accuracy. The predictive performance of 
the ML model was quantified in terms of mean square error 
(MSE), MAE and coefficient of determination (R2) (Brei-
man et al. 2017):

where Yi = predicted value, Xi = true value and n = total num-
ber of data points

where n is the number of observations, Ŷi is the model pre-
dicted value, Yi is the actual (data) value and Y  is the mean 

(4)
MAE =
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i=1
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2

n
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value of waste generation rate. The SSE was also evaluated 
as a percentage value and was achieved from the RMSE. 
For both training and testing datasets, the SSE and R2 were 
determined and affirmed performance indices. Due to the 
adjustment of model parameters and associated structure, 
the training error has been usually found to be lower than 
the testing error.

Model forecasting

Using moving average (MA) technique, the forecasted 
MSWG was determined to understand pertinent data trends 
using alternate best-fit models. Thus, the predictions repre-
sent an average trends of any subset of numbers. The MA is 
appropriate for the forecasting of long-term trends and can 
be calculated for any time period. In this article, three MA 
approaches, namely SMA, WMA and EMA, have been con-
sidered for their incorporation into the long-term forecasting 
prediction models (Droke, 2001).

The SMA is a simple and straightforward technical indi-
cator and is evaluated as the summation of the recent data 
points in a given dataset and their division with the total 
number of time periods. Thereby, the SMA is best expressed 
as:

Table 2   Advantages and limitations of the traditional and different ML algorithms used in SWM

Approach Advantages Limitations References

Statistical Reliability of results Cannot be applied to heterogeneous 
data

Kumar and Samadder, (2020)

Material flow model Reduces the likelihood of risks, down-
time and additional costs

Overlooks errors and uncertainties Huang et al., (2013); Noufal et al., 
(2020)

SVR/SVM Appropriate for small-sized problems 
with low generalization error

Hypersensitive to outliers and kernel 
selection

Abbasi et al., (2022)

k-means Fast and easy implementation with 
fewer parameters

Hypersensitive to noise and outliers Du et al. (2022)

ANFIS Combines the concept of ANN and 
fuzzy logic

Unsuitable for features with higher 
dimensions

Younes et al., (2015)

kNN Outlier insensitive High computation and lower accuracy Nguyen et al., (2021)
RF Feature selection is not necessary and 

model variance is reduced
Insensitive to attribute data with vary-

ing values
Ghanbari et al., (2021); Nguyen et al. 

2021
DT High observability and efficiency Overfitting issues and insensitive to 

feature correlation
Kavyanifar et al., (2020)

GB/GBRT Train faster on larger datasets and 
accuracy more

Computationally expensive Adeogba et al., (2019)

CNN Feature extraction ability Requires parameter tuning and huge 
datasets

Lin et al., (2021)

ANN High robustness and fit for any nonlin-
ear relationship

Requires multiple parameters Kavyanifar et al., (2020)

ARIMA Better performance for long-term 
forecast

Computationally expensive Yu et al. (2015)
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where A = average in period and n = number of time periods
The WMA involves the assignment of heavy weights to the 

more current data points due to their greater relevance than 
the data that corresponds to the distant past. Thus, different 
weights have been assigned at diverse points of the sample 
window during WMA. Mathematically, the WMA is the 
complexity of the data with a fixed weighting function and 
is expressed as:

where W = weighting value, D = data values and n = num-
ber of time periods.

EMA customizes greater weight assignment to the most 
recent data points. Thereby, EMA is more responsive in the 
forecasting methodology and involves the following four steps:

Step 1: Compute the SMA over a particular time period.
Step 2: Calculate the EMA weighting multiplier (also 

known as the "exponential smoothing") as: thereby, for any 
time period t, the smoothed value St is found by computing:

In the above basic equation of exponential smoothing, the 
constant or parameter � is termed as the smoothing constant 
and y refers for the original observation.

Step 3: Use both smoothing factor and previous EM, to 
evaluate the current value.

Step 4: Assign higher weight to recent data points using 
the expression:

(7)SMA =
(A1 + A2 + ....An)

n
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(9)St = 𝛼yt−1 + (1 − 𝛼)St−1 0 < 𝛼 ≤ 1t ≥ 3
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where EMAp = EMA for the previous time period, EMAc = 
EMA for the current time period, s = smoothing, N = num-
ber of time periods​ and CT = Current time period.

Results and discussion

Data Characteristics

Data Attributes

Table 3 summarizes the datasets prior to the pre-processing 
phase. Prior to this, the MSWG data from CPCB constituted 
408 data points. Also, census and MOSPI data referred to 
360 data points. After pre-processing, the CPCB, census and 
MOSPI data were reduced to 376 and 312, respectively. The 
MSWG rate of Guwahati city has been increasing steadily 
since 1991 (Fig. S1) and affirmed a steady but not a substan-
tial enhancement in the waste generation pattern. This is in 
agreement with the literature reported hypothesis that the 
POP rise and habitat improvisation together contribute to the 
proportional enhancement in the MSWG rate. To be specific, 
the annual volume of MSWG in Guwahati city increased 
approximately twofold from 1.48 MT (metric ton) in 1991 
to 2.13 MT in 2016.

After data conditioning and integration, the socio-eco-
nomic parameters were reduced to 312 data points for each 
parameter. Figure S2(a—g) depicts the respective socio-eco-
nomic factor variation with year along with the MSWG rate. 
The plots depicting the MSWG rate along with population 
parameters, namely POP and LP, illustrated a steep increase 
in the MSWG rate and a positive trend (Fig. S2 (a-b)). In the 
recent past, due to economic growth, a significant increase in 
urban POP enhanced the dramatic urban growth and altered 
land use to thereby increase the MSWG rate (Salmon & 
Gholamalifard, 2006).

Figure S2(c) and (d), respectively, depicts the MSWG 
trend along with GDDP and GDDPper capita for Guwahati city. 

Table 3   Conditioned and 
integrated datasets summary for 
training and testing studies

Dataset Dependent variable Independent variable(s) Number of 
data points

MSWG CPCB (1991–2016) 376
POP Census Report

(1991–2011)
312

Literacy Census Report
(1991–2011)

312

GDDP Ministry of Statistics and Programme 
Implementation (1991–2011)

312

HH (count and size) Census Report
(1991–2011)

312

WP Census Report
(1991–2011)

312
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The figures clearly illustrate that for 2002 and 2006–2008, 
a highly nonlinear variation exists for the GDDP and 
GDDPper capita . However, the MSWG rate enhanced steadily 
during this period but enhanced steeply in 2010–2011. These 
variations have been due to the pertinent impact of globaliza-
tion past the Indian economy and its critical influence on the 
city’s income demographics. In this article, the GDDP was 
considered as an indicator of economic growth due to the 
fact that it is likely to be sensitive to affirm financial capacity 
for the payment towards environmental improvement.

The comparative trends of MSWG rate and HH indica-
tors are shown in Fig. S2 (e) and (f), respectively. All fig-
ures affirmed that while the HH counts and sizes enhanced 
steadily, the MSWG also enhanced steadily but with a steep 
and nonlinear increase in 2010. The correlation conveys that 
with the total increase in HH counts and HHSize , the MSWG 
rate increases. Further, the HH in good condition affirms 
more waste generation than those with livable and dilapi-
dated conditions. Similarly, HH sizes with 4–8 members 
direct more waste generation than HHSize 1–3 and above 9. 
Figure S2(g) depicts the employment scenarios for Guwahati 
city along with the MSWG rate. The data confirm more non-
WP in the city. These include students, pensioners, depend-
ents, beggars, vagrants, etc. However, for this parameter, a 
declining trend can be seen since 2001, along with a mar-
ginal reduction trend in the MSWG rate. Despite all this, 
the steep and nonlinear enhancement in MSWG rate existed 
in 2010. This is due to the strong variation in habitat and 
lifestyle parameters. The MSWG rate can be analysed to be 
positively correlated with the employment status statistics. 
However, more solid waste has been generated by the main 
WP than the marginal due to better relaxation in the eco-
nomic constraints for the former case.

Correlation analysis of the data

The correlation analysis was primarily conducted to deter-
mine and rank the socio-economic parameters with high cor-
relation indices (with dependent variables). Thereby, those 
parameters have been isolated with weak or no correlation 
with each other. Such an analysis would be helpful to obtain 

the most relevant information on the modelling efforts. To 
do so, a correlation matrix that estimates the correlation 
index between each variable pair has been determined and 
analysed.

Table 4 summarizes the correlation matrix for MSWG 
and mentioned socio-economic parameters. The first column 
in the table confirms that among all parameters, the POP was 
found to have the maximum r of 0.87. Figure S3 shows this 
positive correlation between POP and MSW to infer that the 
waste generation rate has been positively influenced with the 
population. The positive trends of GDDP-MSWG and WP-
MSWG have been consistent with the inferences indicated in 
the relevant prior art (Bandara et al. 2007). Also, LP-MSWG, 
GDDP-MSWG, GDDPpercapita-MSWG, HH, HHSize and WP 
with respect to MSWG have all affirmed positive correlation. 
Further, GDDP-WP, HH-HHSize , GDDP-GDDPpercapita and 
LP-WP parameter pairs have been observed to be signifi-
cantly correlated with one another. Thereby, to subdue the 
multicollinearity issues, such model pairs have been avoided 
in due course of the modelling effort. Scattered plots of POP, 
LP, GDDP, HH counts and sizes versus the MSW further 
illustrate such pairing effect (Fig. S3 (a-m)).

Following this, HH, LP and HHSize can be analysed to 
possess higher correlation coefficients of 0.85, 0.82 and 
0.81, respectively. Moreover, the number of HH and its 
sizes were found to be positively correlated with MSWG. 
Thereby, this observation validated the hypothesis that the 
size of a city influences per HH waste quantities or consid-
ered socio-economic factors. Similarly, the WP also exhib-
ited a positive correlation with respect to the MSWG rate. 
Altogether, the table reflected an overall positive correlation 
on all the variables with the lowest GDDPper capita (r = 0.72).

Modelling and prediction of MSWG

According to the ranking, the socio-economic and demo-
graphic factors were first incorporated one by one in the 
model. Table S1 summarizes the RMSE variation for train-
ing and testing cases for various combinations of considered 
socio-economic and demographic factors in the model. In 
the case studies, error analysis was obtained using a stepwise 

Table 4   Correlation matrix data 
of MSW and socio-economic 
parameters

MSWG POP LP GDDP GDDPper capita HH HHSize WP

MSWG 1
POP 0.87 1
LP 0.82 0.65 1
GDDP 0.76 0.69 0.68 1
GDDPpercapita 0.72 0.64 0.61 0.75 1
HH 0.85 0.84 0.54 0.64 0.66 1
HHSize 0.81 0.65 0.51 0.61 0.58 0.66 1
WP 0.74 0.68 0.71 0.75 0.76 0.61 0.56 1
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LR-based modelling approach. For the GB, the training 
RMSE reduced to 198.04 to 154.19 for the mentioned socio-
economic parameters but not HHsize and WP. Correspond-
ing trends in the testing model RMSE indicated a reduction 
from 111.60 to 104.56 without considering HHsize and WP. 
Similar inferences can be obtained for the RMSE trends of 
RF and DT models and for both training and testing model 
cases. In summary, the training error reduced with the inclu-
sion of more and more socio-economic parameters. This 
occurred due to adequate enhancement in the model com-
plexity. However, the testing error ceased to reduce for the 
testing model case that refers to the model performance eval-
uation for new data after considering HH parameter. Thus, 
it can be inferred that the MWSG prediction rate has been 
sensitively influenced with POP, LP, GDP, GDDPper capita and 
HH and inclusion of other additional socio-economic param-
eters did not improvise the model performance.

To assess upon the developed model accuracy, a com-
parison of secondary and simulated data was made for the 
considered observation period (1991–2011). In general, the 
obtained results indicate good accuracy of the modelling 
effort and infer upon its validity for the forecasting of the 
MWSG. For the Guwahati city, Fig. 3 depicts a comparative 
trend analysis plot for the secondary data and DT, RF and 
GB model predicted data. The results indicate that in com-
parison with the DT, the GB and RF fairly tracked historical 
developments in the MSWG patterns.

The trained models must be tested with new data (usually 
unseen data to the model), thereby analysing the capabilities 

of the studied regression algorithms. With this, confidence 
can be ensured with respect to the model performance. For 
this purpose, the total dataset was partitioned into two parts 
(70% deployed for training and 30% for the testing purpose). 
Thereby, a grid search was performed to infer appropriate 
parameters for the data with tenfold cross-validation for all the 
models simultaneously. Important observations and findings of 
the carried out investigations have been presented as follows.

For the considered DT, RF and GB tree-based models, qual-
ity results have been obtained. The training and testing case 
studies for DT, RF and GB, indicated scores of 1.00, 0.98 
and 0.99 and 0.92, 0.95 and 0.98, respectively. The maximum 
depth of DT, RF and GB during the training phase were 28, 
57 and 48, respectively. Among these, the DT produced the 
best train score. However, the variation between train and test 
scores has been observed higher for the DT value of 0.6 in 
comparison with the RF (0.2) and GB (0.1) models. This is 
due to the fact that since DT is susceptible to handle overfit-
ness associated with the application of greedy algorithms, the 
optimal tree may not be found for few cases. In other words, 
the DT model learnt the training data too well and could not 
be therefore generalized to meet the desired needs. On the 
contrary, RF and GB have been capable to fix the overfitness 
issue that exists in the DT and this is confirmed in the observed 
trends. Figure 3 depicts the MSWG rate prediction by DT, 
RF and GB models in conjunction with the secondary data 
of Guwahati city. The trends affirmed closer vicinity of data 
trends of RF and GB in comparison with the DT. Further, 
among all models, the GB exhibited a promising performance 
with an R2 and model error (calculated using data partitioned 
ratio) value of 0.997 and 3.01, respectively.

Few statistical indicators have been used to assess upon 
the performance of the investigated models DT, RF and GB. 
Table 5 and Fig. 4(a-c) exhibit and illustrate the relevant find-
ings and the fitness charts. As the model with lowest complex-
ity in the tree-based ML algorithms, the DT performed average 
with a good linear fitness relationship (R2 = 0.97). Based on 
the DT, the ensemble learning algorithms RF and GB exhib-
ited good performances. In this study, GB performed superior 
to other models with R2 = 0.99 and as a state-of-the-art ML 
model, it is good with promising features such as paralleliza-
tion, handling sparse data and avoiding overfitting. With an R2 
of 0.98, RF also performed well. As a result, GB can be used 
for further predictions, and other models can be considered as 
supplementary. Further, the index of agreement (IOA) for the 
models have been calculated as the ratio between the MSE and 
the potential error.

Fig. 3   Predicting results depicting GB, RF and DT performance to 
predict MSWG

Table 5   Performance 
comparisons of the models

Algorithms Train score Test score R2 RMSE MAE IOA

DT 0.86 0.81 0.97 325.82 302.20 0.45
RF 0.90 0.85 0.98 83.21 74.84 0.72
GB 0.94 0.91 0.99 3.01 2.86 0.94
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where Oi is the observation value, Pi is the forecast value, 
O is the average observation values and P is the average 
forecast values.

A perfect match indicates an IOA value of 1, whereas 0 
refers to no agreement at all. The RMSE is a measurement 
of goodness of fit. Also, lower RMSE means a lower error or 
better fit. In the considered tree-based models, DT exhibited 
a low train (0.86) and test score (0.81) and affirmed a R2, 
RMSE, MAE and IOA of 0.97, 325.82, 302.20 and 0.45, 
respectively. GB resulted in high train (0.94) and test score 
(0.91) and reduced RMSE (3.01) and was therefore able 
to provide an accurate prediction as discussed in Table 5. 
Along with the train and test scores, the RMSE (83.21) and 
MAE (74.84) have been better for RF. However, these are 
high in comparison with other models. The overall evalua-
tion and comparison of the three ML algorithms confirm that 
GB is the best-suited ML model.

(11)
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���
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���
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���

2
� , 0 ≤ IOA ≤ 1

Figure 5(a-c) depicts accuracy and loss graphs to illus-
trate the performance of the suggested model. The accuracy 
and loss have been represented as the y-axes in these plots 
that considered the sample size (percentage) as the x-axis. 
The number of training cycles being adopted for the com-
plete dataset or a percentage of training sets has been repre-
sented as the x-axis. For a variation in train size, the y1-axis 
for the accuracy varies as DT (0.65–0.93), RF (0.72–0.97) 
and GB (0.81–0.98) and the loss curves (y2-axis) reduced 
for DT (580.01–325.82), RF (482.55–83.21) and GB 
(138.09–3.01). A deeper introspection into the accuracy 
graph reveals that in a given set of small sample during 
the initial stages prompted the curve grew quickly for each 
model. Thereby, DT, RF and GB affirmed accuracies of 
93%, 97% and 98%, respectively. Also, both accuracy curves 
confirmed an upward tendency with percentage samples. In 
fact, the first through third sample sizes support the scenario 
of a significant expansion. The growth rate then gradually 
declined until it achieved a stationary profile. Similar to this, 
the loss measurements convey upon the model limitations 
and hence its subpar performance. The statistics indicate 
that the loss (error) has been decreasing, and hence, higher 
model performance existed with steady increase in the fit-
ness. Even though the larger time frame indicated that there 

Fig. 4   a-c Scatter plot between 
actual and predicted values from 
a DT, b RF and c GB
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have not been many peaks and valleys, the reduction in loss 
over time inferred that the model is successfully adapted and 
performed well.

Involving many attributes, the DT is a nonparametric 
technique being often applied for the recognition of com-
plex patterns in even smaller datasets. In this study, the DT 
algorithm reduced the uncertainty associated with the iden-
tification of an unknown pattern. Compared to this, the RF 
algorithms constitutes multiple DTs in which the DT model 
forms an ensemble with bagging. Hence, the RF model com-
paratively reduced the data variance and prevented the DT 
model’s greater dependence on highly influential variables. 
Lastly, the boosting approach enabled the addition of newer 
models for their sequential ensembling. In essence, boosting 
attacks the bias–variance trade-offs through the initiation 
with a weak model (for instance only with a few splits in 
the DT model) and subsequent sequential boosting in its 
performance through the continued effort of the model to 
build new trees. Thereby, the GB’s performance efficiency 
enhanced in comparison with the RF and DT.

MSWG forecasting using statistical models

MA methodology has been considered in this work for 
the MSWG forecasting using statistical models. This was 

targeted for noise minimization and outliers removal. MA 
is a statistical tool being adopted for the forecasting and 
analysis of time series data. The method functions through 
the acquisition of long-range correlations (Molugaram, & 
Rao, 2017). For the GB, RF and DT, Fig. 6(a)-(c), respec-
tively, illustrates the forecasted MSWG rate plots for the 
Guwahati city in the year range of 2012–2050. Three MA 
methods, namely EMA, SMA and WMA, have been consid-
ered to obtain useful insights and analysis of the forecasted 
MWSG rate trends for the DT, RF and GB. For GB, in the 
year range of 2012–2050, the MSWG rate has been fore-
casted to alter as 194,152–277,035, 192,750–274,105 and 
193,580–270,646 MT/year for EMA, SMA and WMA cases, 
respectively. Similarly, for RF, the corresponding fore-
casted rates were 189,231–261,759, 184,209–256,749 and 
178,973–252,646 MT/year. For DT, it was 187,477–274,012, 
181,704–269,549 and 179,934–263,157 MT/year, respec-
tively. For all models, it was observed that the EMA could 
better forecast the MSWG rate followed with SMA and then 
WMA. Also, to better evaluate the model accuracy, the MAE 
and RMSE evaluations were also considered along with the 
correlation coefficient. Overall, a positive correlation is 
apparent between waste generation and time. From the fig-
ures, the projection statistics convey that by the year 2050, 
approximately 277,035 MT of waste would be generated in 

Fig. 5   (a-c) Accuracy and loss curves of DT, RF and GB
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the city and the daily per capita waste generation in the city 
is expected to increase by approximately 20%.

Figure 7 a-d presents a comparison of the train and test 
scores for the models. For the GB, the training score of 0.94 
was obtained and for the RF and DT, these were 0.90 and 
0.86, respectively. Similarly, the test scores for GB, RF and 
DT were 0.91, 0.90 and 0.81, respectively. Figure 7 b, c and 
d illustrates a comparison of MAE, RMSE and R2 for the 
models, respectively. The RMSE values for DT, RF and GB 
are 325.82, 83.21 and 3.01, respectively. The MAE results 
show a similar trend and were 302.20, 74.89 and 2.88, 
respectively, for DT, RF and GB. The R2 value for GB, RF 
and DT were 0.997, 0.988 and 0.979, respectively.

Thus, the results affirmed that the GB performed better 
than the RF and DT. The RMSE is a measure of the good-
ness of the fit. Lower MSE indicates lower error and hence 
better fit. The overall estimate and comparative study of all 
considered tree-based algorithms inferred that the GB is the 
best-suited algorithm to predict the MSWG rate. Also, while 
RF and GB provided best results for all parameters, the RF 
at times repeated closer data prediction for few sets. On the 
contrary, the GB did not indicate such issues.

The forecasted data have been compared with the pri-
mary data obtained from the GMC. The obtained data 
referred to the MSWG pertinent rate for 2016–2019. Table 6 

summarizes the model error in conjunction with the pri-
mary data. For model validation, the MSWG data source 
was collected from GMC for the period of 2016–2019. It 
can be easily understood that the GB indicated lowest fore-
casting errors (1.22 – 1.57%, year ranging 2016–2019) in 
comparison with the RF and DT. Thus, while RF and DT 
models confirmed almost similar error values, the RF was 
better stationed to predict the MSWG rates. The same was 
also affirmed by its R2 values. Henceforth, the validation 
confirms the better performance of GB and RF.

Compared to the literature reported error values, the GB 
model was efficient to better predict the MSWG rate trends 
(Johnson et al. 2017). However, the DT model (with fore-
casting error range of 2.57–2.55%) did not perform well 
in comparison with the GB and RF. This can be attributed 
to the ability of the bagging and boosting algorithms and 
thereby learn complex nonlinear behaviour and subsequent 
optimization of model parameters. Due to its nonparametric 
nature, the DT model can build only a single model for a 
given training data. On the contrary, the bagging (RF) and 
boosting techniques (GB) can produce multiple trees that 
efficiently combine their output. Hence, better optimization 
could be targeted to find the best model.

The ML solution needs to be highly reliable and accurate. 
To resolve the issues associated with the achievement of 

Fig. 6   Predicted and forecasted MSWG trends of EMA, SMA and WMA cases for a GB b RF and c DT algorithms
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higher accuracy, the appropriate selection of several param-
eters is mandatory for the subsequent training of a model. 
To achieve these tasks, HPO is often targeted. The HPO is 
an important step towards the customized real-time applica-
tion of the ML solution methodology. Often, HPO involves 
significant time consumption towards effective training of 
the model and appropriate selection of correct parameters to 
achieve best accuracy score of the tested model. This work 
customized grid search-based determination of best param-
eters for each considered model. This involved the creation 
of several runs using different parameters with specified 

transformations and estimators. For the transformation step, 
the parametric combination yielding best results was chosen.

Along with the criticality of the HPO computation time, 
Fig. 7 (e–f) depicts the computational time demand for each 
considered model. The PO for less complex computational 
models is less than 10 min, whereas the PO for more com-
plex high-end ML algorithms is around 20 min. The GB was 
observed to be computationally expensive with 19.18 min 
due to associated training complexities. On an interval, 
the training time was close to 5 s for all three tree-based 
models. Thus, DT being a computational model with lower 
complexity demanded only 9.35 min of computational time 
for the parametric optimization. For both DT and RF, the 
training time has been lower than 15 s. Comparatively, the 
GB took 15.48 s for the training process. In the forecasting 
investigations, the computational times were similar to those 
being reported for the training scenarios. The assessment of 
computation time conveys no advantage for the high-end 
ML algorithms in terms of the accurate outcomes. On the 
other hand, dependencies of the computational time can be 
observed on dataset size and available computational power.

During forecasting studies, the socio-economic and 
demographic factors were incorporated one by one accord-
ing to their rank in the model. Thereby, POP, LP, GDP, 
GDDPpercapita and HH have been observed to improve the 
model performance considerably. Table 7 summarizes and 
compares the forecasting performance of the models for 
their optimal complexities in terms of RMSE and R2 for all 
three MA approaches. The optimal GB and DT models for 
EMA approach indicated an RMSE and R2 values of 2.12, 
4.22 and 0.981, 0.967, respectively. The obtained trends 
were similar to that being discussed for the training cases.

Generalization ability and model applications

The tested tree-based models have been inferred for their 
ability to predict in general the MSWG rates (see Table 5). In 
this article, higher R2 values was observed for both RF and 
GB models during the training and testing phases. Thereby, 
it can be inferred that the developed ML models were nei-
ther overfitted nor were overtrained. In general, modelling 
encounters two common issues (i) model that involves 
too well-fit training data and (ii) too low fit testing data. 
To mitigate the overfitness issues, resampling procedure 

Fig. 7   (a-f) Comparative depiction of (a) train and test scores, b 
RMSE, c MAE, d R2 a HPO and b train, prediction and forecasting 
time of all the tree-based models

Table 6   Forecasting error data 
of alternate models

Year MSWG GB forecasted
MT/year

GB 
model
Error (%)

RF forecasted
MT/year

RF 
Model
Error (%)

DT forecasted
MT/year

DT Model
Error (%)

2016 207,521 204,985 1.22 203,120 2.12 202,172 2.57
2017 209,812 206,722 1.47 206,115 1.76 205,448 2.07
2018 212,825 208,825 1.87 207,543 2.48 206,433 3.00
2019 213,761 210,387 1.57 209,215 2.12 208,300 2.55
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was incorporated. This involve tenfold cross-validation 
and was applied in the modelling effort. However, in this 
study, during predictive analysis for MSWG, the R2 values 
was found to be lower than 0.85 during the testing phase 
despite indicating very high R2 values (> 0.90) during the 
training phase. The comparative study shows that GB exhib-
its best performance among all the tree-based algorithms 
(a train and test score of 0.94 and 0.91, respectively). The 
RMSE, MAE and R2 among the tree-based algorithms as 
predicted from GB are 3.01, 2.86 and 0.997, respectively. 
For the prediction of the MSWG rate, the ANN and DT 
models affirmed testing phase R2 values of 0.72 and 0.54, 
respectively (Kannangara et al. 2018). However, the authors 

divided the dataset into 60:40, 70:30, 80:20, 85:15 and 90:10 
training to testing ratios. Thereby, each partition ratio gener-
ated a total of hundred arbitrary partitions.

Few authors reported good prediction performance of the 
RF model in terms of R2 (0.96), RMSE (1500.12) (Dissan-
ayaka & Vasanthapriyan 2019) and R2 (0.97), RMSE (201.6) 
(Nguyen et al. 2021). However, the DT models in both cases 
exhibited lower accuracy and influential socio-economic 
variables have not been considered. With a smaller data size 
of 232, Johnson et al., (2017) reported the prediction model 
accuracy of GB model of R2 (0.88) and RMSE (21.6). With 
good performance metrics of RMSE (0.174), the DT model 
suffered overfitting issues. Thus, an efficient testing phase 

Table 7   Forecasting 
performance of optimally 
trained models in terms of 
RMSE and R2

Approach GB RF DT

R2 RMSE R2 RMSE R2 RMSE

EMA 0.981 2.12 0.972 3.63 0.967 4.22
SMA 0.977 3.83 0.966 5.72 0.956 7.81
WMA 0.951 5.91 0.959 8.21 0.942 11.45

Table 8   Best data summary for MSWG prediction using ML algorithms

S. No Authors ML Models Dataset Dataset partition 
ratio

Prediction perfor-
mance

Inference

Training Testing R2 RMSE

1 Kannangara et al. (2018) ANN
DT

1553
Data from 2001 to 2014

80 20 0.72
0.54

20
23

ML can produce accurate 
models for prediction if 
sufficient socio-economic 
explanatory variables are 
given

2 Dissanayaka and Vasan-
thapriyan (2019)

LR
ANN
RF

Data from 2009 to 2017 80 20 0.6973
0.9923
0.9608

2706.78
622.086
1500.12

Influential variables such 
as literacy, expenditures 
have not been studied to 
increase the efficiency in 
waste management

3 Johnson et al. (2017) GB 232
(Historical data from 2005 

to 2011)

80 20 0.88 21.6 Weather conditions as an 
external feature would 
further improve the 
robustness of the model

4 Rathod et al. (2020) DT Data collected from 200 
regions of Akola city

70 30 0.5044 0.1747 The model suffered overfit-
ting issues

5 Nguyen et al. (2021) kNN
RF

189 (2015–2017) 80 20 0.96
0.97

202.3
201.6

Accuracy of the model 
was low due to the size 
and diversity of the data, 
including factors like lack 
of data at lower adminis-
trative levels

6 This study DT
RF
GB

1660, 376
Data from 1991 to 2011 

(Census of India, CPCB)

70 30 0.979
0.988
0.997

325.82
83.21
3.01

RF and GB were not 
overfitted due to high R2 
values during both train-
ing and testing

The RMSE for the GB 
model shows significantly 
better results than RF 
and DT
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modelling effort strategy has not been reported in the litera-
ture. Hence, the reported trends affirmed the lower r values. 
Contrary to this, this work reported good correlation values 
even during the testing phase and hence exhibited critical 
findings. Table 8  conveys a comparison and contrasting of 
the data. In summary, this study demonstrated the efficient 
performance of chosen ML algorithms for the MSWG rate 
prediction using smaller datasets.

Practical implications

The outcome of this study has numerous practical implica-
tions for researchers, policymakers or environmental protec-
tion groups. Foremost, the estimated MSWG in any region 
can be implied to investigate urban metabolism in order to 
apply and develop circular economy concept. Urban metabo-
lism is broadly used to delineate upon a city’s ecosystem 
in terms of its consumption of material, food, energy and 
water to support its growth and reproduction, and to generate 
products and by-products (e.g. GHG, pollutants and waste) 
(Lu et al. 2021). The amount of waste generated is a criti-
cal metric for understanding the urban eco-metabolism and 
especially in the industrial sector (Zhang et al. 2018). It is 
also a useful index to apprehend the efficiency of a circular 
economy system (MacArthur, 2013) that attempts to repur-
pose certain waste resources for more circular applications.

Second, the predicted MSWG rate can be employed to 
catalyse an evidence-based policy-making. For instance, it 
can be used to plan a region's waste management capacity, 
such as landfill space and existing and expected 3R capaci-
ties. In due course of the implementation of this activity, 
planners frequently encounter issues such as lack or limi-
tations of data. Policymakers can create adequate arrange-
ments such as incentives for recyclers and penalties for pol-
luters. This can be set based on the severity of the problem 
and waste management capabilities. Subsidies, tax deduc-
tions and low-cost land usage have all been widely used in 
the past to assist recyclers in terms of their enhanced profit-
ability. The predicted result can also be utilized to coordinate 
inter-regional planning and coordination. One of the most 
significant pieces of information for such policy research 
and development activities will be a very good estimation 
study of MSWG.

Lastly, the MSW generated can be employed in a variety 
of public engagement activities. The urgency of the problem 
can be better perceived by the general public by exhibiting 
the capacity of recycling and landfills, as well as the MSWG. 
As a consequence, it may be more effective in persuading 
stakeholders to avoid the not in my back yard (NIMBY) 
mentality (Bao et al. 2019) and to actively pursue a cir-
cular economy (López Ruiz et al. 2020). Such an estimate 
will provide a longitudinal dataset that conceptualizes the 
trend of the SWM performance. Thereby, it will likely assist 

people to achieve a virtual circle between built environment 
development and natural environment protection. However, 
to do so, it shall be performed on a regular basis.

Summary of the studies

MSWG data at the regional level is critical to develop effec-
tive SWM planning. However, many regions and especially 
emerging ones, lack reliable data. This study used limited, 
publicly available data and adequate data analytics to predict 
MSWG in Guwahati city. Seven factors such as POP, GDDP, 
GDDPper capita , HH, HHSize , LP and WP were adopted. The 
results of the data analysis show that these factors can 
explain the majority of the variations in MSWG, with coef-
ficients of determination (R2) of 0.75 or higher. To describe 
the variation of MSWG rate, despite their nationwide avail-
ability, the socio-economic and demographic parameters 
from census data were not sufficient. These data can be used 
to develop waste management strategies such as monitor-
ing the urban metabolism of input (e.g. materials, energy) 
and output (e.g. waste), and planning waste management 
facilities (e.g. recycling plants or landfills). This approach in 
predicting municipal waste can be used as a guide for other 
regions by considering their own development and environ-
mental issues.

This research also contributes to MSWG estimation meth-
ods. Three tree-based models, namely DT, RF and GB, as 
popular and powerful ML models were chosen and com-
pared based on their strengths and drawbacks. GB and RF 
delivered promising results in comparison with DT. GB 
exhibited better performance among the two algorithms (R2 
and RMSE values of 0.997 and 3.11, respectively). The DT 
approach showed higher errors (3.00% for the year 2018) 
and low R2 values (around 0.967–0.942) in comparison with 
GB and RF models. The GDDP data appear to be critically 
required to effectively predict the MSWG rate. Moreover, the 
RMSE for EMA-GB forecast results (2.12) was the best and 
outperformed the RF (3.63) and DT (4.22) models.

This study has its share of limitations. At first, it is based 
on a small number of data points, despite the best efforts 
being made to collect data. Second, while it is permissible 
to extrapolate data-scarce locations from data-rich ones, 
individual characteristics of each smaller region have yet to 
be taken into account in the estimation. Finally, projecting 
future waste generation from current data is necessarily inex-
act. As a result, researchers should take a dynamic approach 
to monitor modelling outcomes, and thereby carry out need-
ful adjustments. Therefore, the most important reason for 
such estimation projects is to use the results in real-life situ-
ations. This research illuminates potential viability of devel-
oping tools to aid regional waste planning by gathering, pre-
processing, integrating and modelling publicly available data 
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from varied sources for achieving waste management goals. 
Future studies can be conducted by considering other socio-
economic factors and address environmental and planning 
policy and management issues which are reliably accessible 
at the urban municipal level. Henceforth, waste models can 
be built with better prediction and modelling performances.

Conclusion

An accurate prediction of MSWG rate is critical for sustain-
able and efficient MSW management. With this as a primary 
objective, the widely used ML models have been proved 
for their efficacy. Despite such thematic prior art, the arti-
cle for the first time assessed the performance of GB with 
RF and DT for MSW rate prediction. Also, MA approaches 
have been deployed for long-term forecasting of the MSWG 
rate. The modelling effort involved the needful integration 
of prominent explanatory factors. Indian census programme 
data, MOSPI and CPCB data further supplemented the 
annual MSWG datasets.

The model performance has been assessed in terms of 
five metrics, namely r, R2, RMSE, MAE and IOA. Several 
inferences have been deduced from the modelling studies. 
Firstly, POP, HH counts, LP, GDDP indicated strong posi-
tive correlation index. Secondly, among all algorithms, the 
RF and GB with response train and test scores of 0.90 and 
0.94, respectively, performed well and among these two, 
the GB had a model accuracy of 97%. Thirdly, critical 
novelty referred to the overfitting issues of the DT struc-
tures being mitigated using the grid-based search tenfold 
cross-validation (a hyper-tuning approach) and forecast-
ing with the MA-based approach. Thereby, this article 
uniquely contributed to overcome overfitness issues of DT 
to model nonlinear data and lower learning speed with the 
HPO for the RF model. Overall the GB model (r = 0.94, 
R2 = 0.99, RMSE = 3.01, MAE = 2.86 and IOA = 0.94) sur-
passed the RF model (r = 0.90, R2 = 0.98, RMSE = 83.21, 
MAE = 74.84 and IOA = 0.72) and DT (r = 0.82, R2 = 0.97, 
RMSE = 325.82, MAE = 302.20 and IOA = 0.45) model 
performance. Fourthly, the R2 and RMSE values for EMA-
GB and SMA-GB were 2.12 and 3.83, respectively, and 
confirmed their statistical distinction, On the contrary, the 
RMSEs for EMA-DT and WMA-DT were 4.22 and 11.45, 
respectively, and henceforth affirmed indifference among 
the models. Thus, the GB exhibited the best performance to 
predict MSWG rate for Guwahati city.

In this article, the comprehensive major findings are as 
follows. Firstly, the HPO fine-tuned tree-based ML models 
had higher test scores and confirmed superior model predic-
tive accuracy values. Secondly, hyper-tuned DT exhibited 
linear prediction and the RF model performance improved 
with the enhancement of the learning speed. Thirdly, the 

input data have its own limitations due to survey-based 
restrictions. Hence, for any city, further data in terms of 
ward-wise information will further complicate model per-
formance and the HPO has been anticipated to meet such 
stringent needs. Thus, the suggested methodology is generic 
in nature and can be applied suitability for any city and 
for much complex input datasets through an appropriate 
modification of influential parameters. Also, the accuracy 
graph-based analysis confirmed that for a given set of small 
samples, each model curve grew quickly during the initial 
stages, and the DT, RF and GB had accuracies of 93%, 97% 
and 98%, respectively. Fourthly and finally, the quest for 
generalized application of ML algorithms for MSWG rate 
prediction has been complimented to target GB for its pre-
diction speed and accuracy to handle complex datasets with 
greater ease.

The research confirmed that the estimation of MSWG rate 
is very crucial for the subsequent system planning of MSW 
management from both short- and long-term perspectives. 
Using statistical data in different cities, the presented generic 
approach can be applied for MSWG rate prediction in any 
city in the world. To do so, influencing parameters need to 
be investigated through careful introspection and analysis 
of the complex data. Best findings of this work can foster 
the Guwahati metropolitan region to initiate and develop an 
integrated decentralized community-based SWM approach, 
enhanced recycling and composting practices (bio-waste) 
for the subsequent realization of circular bio-economy. 
According to this study, HH with higher incomes produces 
more waste. Therefore, the study conveyed the need for the 
implementation of decentralized community-based SWM 
strategies through micro-management strategies in the 
municipality. For this, cooperative working culture between 
government and other local entities is the need of the hour. 
With such strategies, MSWM can gradually reduce associ-
ated environmental pollution and health risks in the city.

This study showcased the added value of the ML and MA 
approaches to model historical data and thereby effectively 
serve the dynamic needs of the solid waste industry. The 
limited historical datasets at a municipal level are charac-
teristic terms that are to be addressed by MSWG modelling 
strategies. However, in this article, the ML methods have 
been to be effective and outperformed well with respect to 
the classical statistical methods. Moreover, the ML mod-
els simultaneously minimized prediction uncertainty and 
enhanced prediction vigour. Besides these, the ML models 
can provide insight into decision-making for stakeholders 
and open pathways for the systematic improvisation of solid 
waste environmental policies. The critical findings of the 
article serve as a baseline or benchmark information on the 
MSW problem in the residential areas of the city. Such use-
ful analysis will assist in the formal understanding of the 
critical issues of the SWM. Since solid waste assessment 
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is a continuous process, the periodic assessment strategies 
will successfully support the associated dynamic challenges.

Future studies need to target more complex survey-based 
data along with a wider variety of demographic and socio-
economic data of MSWG to supplement and verify ML 
algorithm’s competence in terms of updation, retraining and 
CPU time marginalization. Such research efforts could also 
target the examination of alternate optimization algorithms 
to effectively train the tree-based models for MSWG rate 
prediction. The proposed model could also be strengthened 
by choosing the most critical input elements from the dataset 
using dimensionality reduction techniques such as principle 
component analysis (PCA). In summary, the carried investi-
gations and critical findings provide new hope and horizon 
for the generic representation and resolution of MSWG rate 
prediction and forecasting problem using tree-based ML 
models.
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