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Abstract
Arsenic is a toxic metalloid widely present in the aquatic environment, showing severe health hazards. Natural bentonite clay 
(BN) showed little affinity toward arsenic (arsenic(III) and arsenic(V)). However, organosilane functionalized clay showed 
greater affinity toward arsenic(III) and arsenic(V). Therefore, natural bentonite was functionalized with 3-mercaptopropyl-
trimethoxysilane (3-MPTS) and 3-aminopropyltrimethoxysilane (3-APTES). Materials’ characterization was extensively 
conducted with advanced analytical methods and surface area analysis by the BET analyzer. Under batch experiments, the 
materials were then utilized to eliminate arsenic(III) and arsenic(V) in an aqueous medium. Compared to the pristine ben-
tonite, the functionalized materials increased the adsorption capacities of arsenic(III) and arsenic(V). The moderate solution 
pH (pH 4–6) significantly favored the elimination of arsenic(III) and arsenic (V) by these advanced materials. The maximum 
sorption capacity of arsenic(III) by 3-MPTS/BN and arsenic (V) by 3-APTES/BN was found at 11.93 and 10.50 mg/g, respec-
tively. These functionalized materials showed fast uptake of arsenic, which attained apparent equilibrium within 180 and 
120 min of contact, respectively, for arsenic(III) and arsenic(V). The influence of ionic strength and several co-existing ions 
showed an insignificant influence on the removal effectiveness except in EDTA and phosphate. The results further showed 
the selectivity and efficiency of functionalized materials toward the studied pollutants. The novel functionalized materials 
showed potential for the efficient decontamination of arsenic.

Keywords  Arsenic removal · Silane functionalized bentonite · Characterization of materials · Sorption mechanism · 
Adsorption isotherms · Kinetics of sorption

Introduction

The spreading of toxic arsenic in an aquatic environment is 
one of the world's most critical environmental issues. Human 
activities such as mining, pesticides, agriculture, etc., and 
natural processes, including volcanic eruption, and biologi-
cal activity have led arsenic into the aquatic environment 

(Cortés-Arriagada and Toro-Labbé 2016; Song et al. 2017; 
Alka et al. 2021). Inorganic arsenic is relatively more toxic 
than organic arsenic and poses a severe threat to the environ-
ment (Sarkar and Paul 2016). The inorganic arsenic com-
monly exists as arsenite (As(III) and arsenate (As(V)) in the 
aquatic environment (Mohan and Pittman 2007; Luo et al. 
2012). However, the toxicity and mobility of arsenic(III) are 
higher than arsenic(V) and complicated to eliminate from 
the aquatic environment (Zhu et al. 2016a; Maji et al. 2018). 
Generally, the intake of As by humans occurs through the 
consumption of contaminated water and food. Long-term 
exposure to high levels of As led to several biological disor-
ders, such as skin lesions, inflammation in the kidney, black-
foot disease, cardiovascular disorders, diabetes, endocrine 
disorders, dysfunction of the respiratory system, hyper-
tension, etc. (Sabir et al. 2019; Chen et al. 2019; Medda 
et al. 2021; Yadav et al. 2021). Moreover, inorganic arse-
nic is a Group 1 carcinogen (Wang et al. 2019). The WHO 
reduced the permissible quantity of arsenic in potable water 
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to 10 µg/L (WHO 2011). Among Southeast Asian coun-
tries, people living in India, Bangladesh, China, Myanmar, 
Vietnam, Cambodia, Nepal, and Pakistan are significantly 
affected by arsenic (Uppal et al. 2019).

Different treatment processes, including chemical pre-
cipitation, oxidation, phytoremediation, coagulation-floc-
culation, adsorption, ion exchange, coagulation, membrane 
technologies, etc., are demonstrated to eliminate arsenic in 
water (Litter et al. 2019). However, the adsorption process 
is observed as a low-cost, efficient, and simple method for 
removing As from water bodies (Najib and Christodoula-
tos 2019; Kumar et al. 2019). Clay minerals are porous and 
extensively used to attenuate several contaminants from 
wastewaters. However, the hydrophilic nature of clay min-
erals makes it less favorable for the adsorption of anionic, 
non-polar species, and oxyanion species, viz., chromium, 
arsenic, etc. (Lee and Tiwari 2012). Bentonite is a montmo-
rillonite-type clay that includes alumina and silicates with 
a molar ratio of 2:1. It carries a net negative charge on its 
surface. Therefore, the pristine bentonite showed less affinity 
to adsorb anionic species.

The chemical and physical properties make bentonite 
suitable adsorbents for several pollutants. The micro- and 
mesopores of bentonite are useful for the sorption of several 
sorbate species (Zhu et al. 2016b; Prabhu and Prabhu 2018; 
Chen et al. 2018). The surface modification of clay minerals 
using the suitable materials improve the applicability of clay 
in decontamination of wastewaters (Su et al. 2013; Gohain 
et al. 2020). Moreover, introducing the surfactant molecules, 
viz., hexamethylenediamine (HMDA), hexadecyltrimethyl-
ammonium bromide (HDTMA), etc. within the clay network 
nevertheless, are fairly good sorbing materials. However, 
these hybrid materials are having several drawbacks, includ-
ing the formation of weaker bonds with clay, lower thermal 
stability, difficult to regenerate once loaded with pollutants 
(Sarkar et al. 2011; Wamba et al. 2018; Karki and Ingole 
2022). Moreover, the loosely bound surfactant molecule 
readily release in aqueous medium and contaminating the 
waterbodies. However, on the other hand the silylation/graft-
ing of clay minerals using suitable organo-functional groups 
(amine or thiol) has attracted attention. The material is syn-
thesized by a strong covalent bond between clay and organic 
group, which results in enhanced stability of materials.

The silylation occurs at the internal and external sur-
faces of clay minerals under moderate circumstances. It 
was observed that the property and structure of the grafted 
products strongly depend on the reaction conditions (He 
et al. 2013; Karki et al. 2021). Therefore, this study aims to 

functionalize the pristine bentonite with different silanes, 
viz., 3-mercaptopropyltrimethoxysilane and 3-aminopropyl-
triethoxysilane. Further, the functionalized materials were 
used to treat water polluted with arsenic(III) and arsenic(V) 
under batch studies. The efficiency of the functionalized sol-
ids for arsenic(III) and arsenic(V) was obtained. Moreover, 
the parametric studies, viz., the effect of solution pH, con-
tact time, pollutant concentrations, and ionic strength, are 
extensively studied to demonstrate the uptake mechanism of 
arsenic by these novel functionalized materials.

Materials and methods

Included as supplementary material D1.

Methodology

Functionalization of bentonite clay

The pristine bentonite was functionalized with organosilane 
in a facile one-pot process. Bentonite powder (12 g) was 
taken in toluene (300 mL) in a round bottom flask. The mix-
ture was refluxed for 30 min at 60 °C in an N2 environment. 
3-mercaptopropyletrimethoxy (12 mL) was slowly mixed. 
The solution mixture was refluxed overnight. The slurry 
was then rinsed with toluene, followed by ethanol. The 
solid powder was dried at 100 °C. The process enabled the 
grafting of 3-mercaptopropyletrimethoxy with bentonite and 
assigned as 3-MPTS/BN. The similar process was followed 
to functionalize the bentonite using 3-aminopropyltriehox-
ysilane, and is named 3-APTES/BN. The experiments were 
performed to obtain the point of zero charges (pHPZC) of 
raw bentonite, 3-MPTS/BN, and 3-APTES/BN following the 
method described previously (Lalhmunsiama et al. 2013).

Characterization

Included as supplementary material D2.

Sorption studies

Different studies were performed to study the effect of pH, 
contact time, co- ions, ionic strength, and initial arsenic(III)/
or arsenic(V) concentrations under batch studies. Batch 
results demonstrated the sorption reaction mechanisms 
at the solid/solution interface. 50.0 mL of arsenic(III)/or 
arsenic(V) solution was kept in the airtight containers, the 
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solution pH was maintained between pH values (2.0 to 10.0) 
and 0.1 g of raw bentonite or 3-MPTS/BN or 3-APTES/BN 
material was introduced into each container. The containers 
were put in an automatic shaker for 24 h at 25 ± 2 °C. The 
containers were taken out from the shaker, the suspensions 
were filtered with 0.45 μm filter paper. The solution pH was 
rechecked and taken as the final pH. The atomic absorp-
tion spectrometer (AAS) analyzed for the arsenic in the 
treated water samples. The initial concentration (arsenic(III)/
arsenic(V)) effect was performed at concentrations between 
1.0 to 25.0 mg/L at pH 3.5 using the functionalized mate-
rials. The time-dependent study was conducted between 
5 to 720 min on the sorption of arsenic(III)/arsenic(V) at 
pH 3.5 with initial arsenic(III)/arsenic(V) concentration of 
10 mg/L at 25 ± 2 °C. The impact of ionic strength (0.0001 
to 0.1 mol/L NaCl at pH 3.5) on the removal of arsenic(III)/
arsenic(V) was performed at 25 ± 2 °C. The removal of 
arsenic is assessed in the presence of different co-anions 
(EDTA, glycine, oxalic acid, and phosphate) and co-cations 
(magnesium(II), manganese(II), nickel(II), calcium(II)). The 
concentration of each co-ion was taken 50.0 mg/L and arse-
nic (III)/arsenic(V) 10.0 mg/L at constant pH 3.5.

Results and discussions

Materials characterization

The FT-IR results envisage the functional groups pre-
sent with materials, and the results are shown in Fig. 1a. 
The FT-IR spectra of 3-MPTS/BN showed weak vibra-
tional bands at 2927 and 2858 cm−1 assigned to the C–H 
stretching vibrations (Tonlé et al. 2007; Su et al. 2011). A 
noticeable vibrational band at 2914 cm−1 was assigned to 
the presence of methoxy group (–OCH3) from 3-MPTS 
(Yılmaz et al. 2017; Şahan et al. 2018). The thiol (–SH) 
group from 3-MPTS was observed at stretching vibration 
around 2550 cm−1 (Tonlé et al. 2008). The small distinguish-
able peaks at 690 and 1410 cm−1 were assigned as C–H and 
C–S deformation and stretching vibrations of thiol groups 
(3-MPTS/BN solids) (Carvalho et al. 2008). Moreover, the 
3-APTES/BN graph displayed a tiny band at 1490 cm–1 
due to the bending vibration of aliphatic CH2 (Undabey-
tia et al. 2019). A weak peak at ~ 1319 cm−1 indicates the 
C–N stretching vibration of grafted silane with the benton-
ite (Asgari et al. 2017). Moreover, a small distinct band at 
2970 cm−1 was due to the symmetric stretching vibrations of 
the methylene group of organosilane (Mostofi Sarkari et al. 
2019).

The textural properties of raw bentonite and functional-
ized materials were evaluated from the N2 adsorption–des-
orption isotherms obtained by BET method. It is evident 
from Fig. 1b that these solids had the type IV isotherm hav-
ing H3 hysteresis. Results inferred that the bare clay and 
the functionalized materials were contained with mesopores 
(Paul et al. 2011; Qin et al. 2014). Figure 1b reveals a big-
ger hysteresis loop for raw bentonite with pore size and 
pore volume of 68.42 Å and 0.078 cm3/g, respectively. The 
pore size and pore volume of 3-MPTS/BN and 3-APTES/
BN were 68.37 Å, 0.071 cm3/g, and 165.11 Å, 0.052 cm3/g, 
respectively. The specific surface area of bentonite, 3-MPTS/
BN, and 3-APTES/BN were 41.11, 4.68, and 12.51 m2/g, 
respectively. The specific surface area of 3-MPTS/BN and 
3-APTES/BN is considerably smaller than the pristine ben-
tonite. The pores on the clay surface were incorporated with 
the 3-MPTS/3-APTES molecules hence, caused for reduced 
surface area. Previously, it was reported that hybrid material 
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Table 1   X-ray diffraction peaks of bare bentonite (BN), 3-MPTS/BN, and 3-APTES/BN

BN 3-MPTS/BN 3- APTES/BN

Peak position d-spacings [Å] Relative Intensity Peak position d-spacings [Å] Relative Intensity Peak position d-spacings [Å] Intensity

(2 theta) (2 theta) (2 theta)

6.3001 14.0296 17.63 6.8127 12.975 15.19 7.8236 11.3006 2.32
9.6366 9.17825 7.64 9.6833 9.13404 8.63 – – –

12.4995 7.08174 8.48 12.2167 7.24501 6.94 11.9105 7.4306 4.38
19.845 4.47397 38.12 19.5763 4.53477 47.58 19.5714 4.53589 34.44
20.9405 4.24053 35.24 20.7724 4.27627 41.55 20.538 4.32454 32.1
24.9889 3.56346 13.32 25.0495 3.55497 25.38 24.5224 3.63018 11.76
26.7726 3.32911 100 26.56 3.35614 100 26.3124 3.38715 100
28.021 3.18438 12.02 – – – 27.2693 3.27043 13
30.0445 2.97436 8.48 – – – 30.0418 2.97463 5.12
34.9046 2.57055 23.35 34.8343 2.57557 33.47 34.5382 2.59698 24.18
36.6733 2.44989 23.46 – – – 36.319 2.47362 17.85
39.5748 2.2773 8.51 41.9197 2.15518 3.3 39.1458 2.30126 8.46
45.5118 1.99309 2.79 – – – 42.1211 2.14534 10.84
50.2583 1.81508 16.09 50.015 1.82368 14.61 45.3991 1.99777 8.87
54.6967 1.67814 7.71 54.4257 1.68586 12.15 49.823 1.83026 17.85
61.0826 1.53995 12.23 – – – 54.838 1.67415 11.99
61.8523 1.50007 15.6 61.8119 1.50096 22.23 59.644 1.55022 12.9
68.3428 1.37223 9.7 67.9788 1.37904 5.96 61.4578 1.50875 21.47
73.3261 1.29112 5 73.1101 1.2944 6.77 67.8237 1.38181 12.72

Fig. 2   EDX spectra of a raw bentonite; b 3-MPTS/BN; and c 3-APTES/BN and SEM images of d raw bentonite; e 3-MPTS/BN; and f 
3-APTES/BN
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intercalated with surfactant molecules exhibited a drastic 
reduction in the specific surface area of the material (Tch-
eumi et al. 2010).

The solid samples BN, 3-MPTS/BN, and 3-APTES/BN 
were subjected to XRD analysis, and the data obtained are 
given in Table 1. XRD data showed that both the function-
alized materials have almost identical crystalline structures 
compared to the bentonite. The diffraction peaks observed 
at two theta values of 20.94, 26.77, 36.67, 50.25, 61, and 
68.34 indicating the presence of quartz a major constitu-
ent in all these three materials (Thanhmingliana and Tiwari 
2015; Mohammed and Samaka 2018).

EDX analyses have been performed for the elemental 
composition of BN, 3-MPTS/BN, and 3-APTES/BN solids 
and shown in Fig. 2a, b, and c, respectively. Figure 2a, b, 
and c shows that all these solids are contained with the ele-
ments Si, Al, Ti, Fe, K, Na O, C, etc. These are the common 
components of the bentonite. However, on the other hand, 
Fig. 2b (the spectrum of 3-MPTS/BN) showed an additional 
peak of S which confirmed the grafting of 3-MPTS mol-
ecule within the bentonite. Similarly, the EDX spectrum of 
3-APTES/BN showed an additional peak of N. This inferred 
that the solid is contained with the nitrogen containing com-
pound, i.e., APTES is grafted with the bentonite. Further, 
the quantitative analysis showed that the carbon and nitrogen 
percentages were increased from 0.58 and 0.081% to 7.71 
and 2.59%, respectively, once the clay is loaded with the 
3-APTES.

The SEM micrographs of raw bentonite (BN), 3-MPTS/
BN, and 3-APTES/BN are shown in Fig.  2d, f, and e, 
respectively. The SEM images obtained for 3-MPTS/BN 
and 3-APTES/BN showed disordered and messy surface 
structures. Furthermore, the figure clearly showed that the 
porosity of 3-MPTS/BN and 3-APTES/BN solids were sig-
nificantly decreased compared to the unmodified clay which 
inferred that 3-MPTS/or 3-APTES molecules were incorpo-
rated inside the pores of the clay surface. The modification 
of natural attapulgite with organosilane (3-APTES) resulted 
in compact aggregate. At the same time, the unmodified clay 
showed a loose aggregate structure (Cui et al. 2013).

pH‑Dependent sorption study

The pH-dependent elimination of arsenic(III) and arsenic(V) 
was performed between the solution pH 2.0–10.0 with 
arsenic(III) and arsenic(V) concentration 10.0 mg/L utiliz-
ing the raw bentonite (BN), 3-MPTS/BN, and 3-APTES/
BN. The results are displayed in Fig. 3. The percentage 
elimination of raw bentonite was greatly enhanced after the 
functionalizion of materials. The removal of arsenic(III) 
and arsenic(V) by the solids 3-MPTS/BN and 3-APTES/
BN, respectively, was considerably increased as compared 
to the raw bentonite. At around pH 7, the percentage uptake 
of arsenic(III) and arsenic(V) by the pristine bentonite 
was recorded ~ 30 and 20%, respectively. However, almost 
90% of arsenic(III) and arsenic(V) were removed using the 
3-MPTS/BN and 3-APTES/BN solids, respectively.

The speciation of the adsorbate, pHpzc, and functional 
groups of adsorbents helps to demonstrate the solid/solu-
tion interface mechanism. The pHpzc of the BN, 3-MPTS/
BN, and 3-APTES/BN were obtained to be 7.81, 7.65, and 
7.64, respectively. Therefore, below the pHpzc, the materials 
have the net positive charge, and above pHpzc, the materials 
have the net negative charge. On the other hand, the specia-
tion of arsenic(III) and arsenic(V) revealed that arsenic(III) 
predominantly existed as neutral H3AsO3 species till pH 8.0 
(Cf. Figure S1(a). Above this pH, the negatively charged 
oxyanion species H2AsO3

− is dominant in the solution. In 
case of arsenic(V), a predominant neutral species (H3AsO4) 
occurred below pH 3.0. Further, increase in pH favored the 
acidic dissociation of (H3AsO4) and between pH 3.5–6.0, 
arsenic(V) existed in its oxyanion species (H2AsO4

−). Fur-
ther, between pH 6.0–10.0, arsenic(V) existed to its di-
anionic species HAsO4

2− species (Cf Figure S1(b)). There-
fore, arsenic(V) existed as anionic species of H2AsO4

− or 
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HAsO4
2− in the studied pH range (pH ~ 3.0–10.0) (Tiwari 

and Lee 2012).
The sorption results indicated that the lower pH (~ pH 

2.4–4.0) significantly suppressed the uptake of Arsenic(III) 
and arsenic(V) by the solids 3-MPTS/BN and 3-APTS/BN, 
respectively. A relatively lower uptake of arsenic(III) or 
arsenic(V) at lower pH region is due to the fact that the 
presence of excess of H+ ions which competes and inhibited 
the attraction of arsenic species toward the solid surface. 
However, at higher pH (pH ~ 4.0–6.0), a significant enhanced 
uptake of arsenic(III) was attained due to the strong affin-
ity of the surface functional groups with the arsenic(III) 
and possibly arsenic(III) forming the chelation with the 
thiol group of 3-MPTS/BN. Further, increase in pH > 6.41, 
a decrease in percentage elimination of arsenic(III) was 
observed. This is due to the acid dissociation of surface 
(pHpzc of 3-MPTS/BN: 7.65), hence, the weakening of thiol-
arsenic(III) bond resulted with lower uptake of arsenic by 
the 3-MPTS/BN solid. A similar results were demonstrated 
previously using the different materials thiol group contain-
ing materials (Hao et al. 2009; Li et al. 2014; Zhang et al. 
2015).

On the other hand, a rapid increase in arsenic(V) removal 
efficiency by 3-APTES/BN was observed from pH 2.67 to 
4.36 and remained constant until pH 6.58 and decreased sig-
nificantly beyond pH 6.58. Enhanced uptake of arsenic(V) 
between pH 4.36 and 6.58 was due to anionic species 
H2AsO4

− and the protonated amine group from 3-APTES. 
A stronger electrostatic attraction of arsenic(V) by the 
solid, resulted an enhanced uptake of arsenic(V). Further, 
the arsenic(V) is forming stronger chemical bond at the 
solid surface with the introduced amino group (Chen et al. 
2009; Boyacı et al. 2011). The decline in the elimination of 
arsenic(V) by 3-APTES/BN above pH 6.57 was due to the 
strong electrostatic repulsion that operates between the nega-
tively charged surface and the anionic species of arsenic(V), 
i.e., H2AsO4

− and AsO3
−. A similar results were reported 

previously for the sorption of arsenic(III) and arsenic(V) by 
the porous hybrid materials precursor to the bentonite (Lee 
et al. 2015).

Kinetic studies

The amount of arsenic(III) and arsenic(V) removed using the 
3-MPTS/BN and 3-APTES/BN, respectively, were obtained 
at various contact times and shown in Fig. 4a. At first, the 
elimination of arsenic by these two functionalized materials 
was rapid and the arsenic(III) and arsenic(V) elimination 
exceeded 60% within 60 min. The removals of arsenic by 
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these materials were rapid during the initial period since 
many active sites on the adsorbent are readily accessible for 
sorbate species. The rate of arsenic removal was reduced 
with time and reached equilibrium at 120 and 180 min 
for arsenic(III) using 3-MPTS/BN and arsenic(V) using 
3-APTES/BN solids. This finding inferred the suitability of 
the synthesized functionalized materials in treating water 
polluted with arsenic.

The adsorption data at different contact times for the 
elimination of arsenic(III) by 3-MPTS/BN and arsenic(V) 
by 3-APTES/BN were employed to plot the three non-lin-
ear kinetic models, viz., pseudo-first-order (PFO), pseudo-
second-order (PSO) and fractal-like pseudo-second-order 
(FL-PSO) models using the known equations (Thanhmingli-
ana and Tiwari 2015). Figures 4b and c shows the fitting 
results. The least-square sum and other constants are given 
in Table 2. The figure and calculated data show that the 
time-dependent adsorption data are well fitted to the PSO 
and FL-PSO models than the PFO model since the least 
square sum was found reasonably low for the PSO and FL-
PSO models. These results further indicated that arsenic(III) 
and arsenic(V) forming stronger chemical bonds at the solid 
surface.

Concentration‑dependent study

The concentration-dependent elimination of arsenic(III) 
and arsenic(V) were conducted, varying the initial concen-
trations of arsenic between 1.0 to 25.0 mg/L utilizing the 
3-MPTS/BN and 3-APTES/BN at a solid dose of 2.0 g/L, 
and the percentage elimination at different concentrations 
are shown in Fig. 5. Increasing the concentration of arse-
nic from 1.0 to 25.0 mg/L caused for decrease in percent-
age elimination of arsenic from 89 to 67% (for arsenic(V) 
by 3-APTES/BN) and 90% to 70% (for arsenic(III) by 
3-MPTS/BN). Relatively very high uptake of arsenic by 
these solids even at higher sorbate concentrations indi-
cated that arsenic(III) and arsenic(V) showed high affinity 
toward the functionalized materials.

The Langmuir, Freundlich, and Temkin adsorption iso-
therms were employed to deduce the sorption isotherms 
using the sorptive concentration-dependent sorption data 
(Lalhmunsiama et al. 2015; Vahedi et al. 2018;), and the 
graphs are shown in Figure S2(a, b and c). The unknown 
parameters, i.e., Langmuir monolayer sorption capacity 
(qo), Langmuir constant (b), Freundlich constants (Kf and 
1/n), and Temkin constants, A (L/g) and B (J/mol), were 
calculated and given in Table 3. The linear fitting of data 
indicated that the Langmuir and Freundlich adsorption 
isotherms are more favorable than the Temkin isotherm 
since the higher value of R2 was obtained for these iso-
therms. The applicability of the Langmuir isotherm indi-
cated that the sorbate species are forming the monolayer 
coverage and the surface-active sites are homogeneously 
distributed. Moreover, the sorbate species are forming the 
stronger chemical bond on the surface which also con-
firmed with the applicability of the Freundlich adsorption 
isotherm. Moreover, the Freundlich isotherm hypothesized 
that the surface-active sites are heterogeneously distrib-
uted (Kecili and Hussain, 2018). The Langmuir sorption 
capacity obtained removing arsenic(V) by 3-APTES/
BN and arsenic(III) using 3-MPTS/BN were 10.50 and 

Table 2   The rate constant 
obtained for PFO, PSO, and 
FL-PSO, models for removing 
arsenic(III) and arsenic(V) by 
functionalized materials

Material Pollutants PFO model PSO model FL–PSO model

qe k1 s2 qe k2 s2 qe k α s2

3-MPTS/BN Arsenic(III) 3.511 0.18 0.59 3.703 0.078 0.127 3.939 0.137 0.614 0.044
3-APTES/BN Arsenic(V) 3.821 0.086 0.355 4.074 0.161 0.088 4.041 0.028 1.057 0.085
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Fig. 5   Percentage elimination of arsenic(III) and arsenic(V) using 
solids at different initial concentrations



10292	 International Journal of Environmental Science and Technology (2023) 20:10285–10296

1 3

11.93 mg/g, respectively. Table 3 shows moderately higher 
values of Langmuir constant (b) and Freundlich constant 
(KF), and Temkin constants A (L/g) and B (J/mol) reaf-
firmed the high affinity of the functionalized materials to 
the arsenic(V) and arsenic(III) in aqueous media. Further, 
the positive value of B (J/mol) indicated that the sorption 
process involved an ‘exothermic reaction’.

Impact of ionic strength

The efficiency of the functionalized materials for 
arsenic(III) and arsenic(V) at various ionic strengths was 
evaluated. Figure 6 shows the effect of 1000 times rise in 
NaCl concentration eliminating arsenic(III) and arsenic(V) 
by functionalized materials, and the percentage removal 
remains almost unchanged. These findings inferred that 
arsenic(III) and arsenic(V) formed the inner-sphere com-
plexes onto the functionalized materials hence, aggregated 

with relatively strong chemical forces. These results fur-
ther supported the pH dependence and adsorption isotherm 

Table 3   Langmuir, Freundlich, and Temkin constants obtained for the sorption of arsenic(V) and arsenic(III)

Material Pollutants Langmuir Freundlich Temkin

qo (mg/g) b  (L/g) R2 1/n Kf (mg/g) R2 B (J/mol) A (L/g) R2

3-APTES/BN Arsenic(V) 10.504 0.594 0.99 0.672 2.257 0.987 4.101 2.374 0.922
3-MPTS/BN Arsenic(III) 11.933 0.535 0.995 0.668 2.254 0.993 4.06 2.387 0.922
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Fig. 6   Effect of various concentrations of sodium chloride in the 
elimination of arsenic(III) and arsenic(V) by the functionalized mate-
rials
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results presented previously. The variation of ionic 
strengths readily influences the outer-sphere complex at 
the solid surface, while the inner-sphere complex is unaf-
fected by an increase in ionic strength (Li et al. 2019). 
Similar influences of ionic strength were obtained in the 
elimination of arsenic(III) and arsenic(V) using manga-
nese and iron pillared clay (Mishra and Mahato 2016). 
Moreover, the presence of Ca2+, Mg2+, Cl−, SO2−

4, and 
CO3

2− did not display substantial influence in the elimi-
nation of arsenic(III) and arsenic(V) using molybdate 
impregnated chitosan beads (Chen et al. 2008).

Presence of co‑ions

The elimination of arsenic (III) and arsenic(V) in the 
existence of several ions were studied with the initial 
arsenic(III)/arsenic(V) and co-ions concentration of 10.0 
and 50.0 mg/L, respectively. The cations were taken as 
manganese(II), magnesium(II), calcium(II), and nickel(II). 
In contrast, the anions were selected ethylenediaminetet-
raacetic acid, glycine, phosphate, and oxalic acid. Fig-
ures 7a and b shows the effect of cations and anions on 
the elimination efficiency of arsenic(III) and arsenic(V) 
by these functionalized materials. Arsenic(III) elimina-
tion by 3-MPTS/BN was reduced from 82 to 74% and 82 
to 73% in the presence of EDTA and PO4

3−, respectively. 
Similarly, the percent removal of arsenic(V) by 3-APTES/
BN was decreased by 80 to 78% and 80 to 76% in the 
presence of EDTA and phosphate, respectively. Previously 
it was reported that anions, HCO3

−, and SO4
2− did not 

influence the sorption efficiency of arsenic(V) onto Fe-
modified charred granulated attapulgite. A slight reduc-
tion, i.e., 4.60% and 1.10% in the presence of HCO3

− and 
SO4

2−, respectively, was observed. On the other hand, the 
presence of PO4

3− considerably reduced the arsenic(V) 
removal using the same material and showed a maximum 
effect on the elimination of arsenic(III). Due to similar 
chemical properties of phosphate and arsenic, PO4

3− and 
arsenic compete toward the same active sites in Fe-mod-
ified charred granulated attapulgite hence, caused for 
more significant impact in the removal of arsenic (Yin 
et al. 2017). Several researchers previously reported simi-
lar results (Gong et al. 2015; Ociński et al. 2016; Te et al. 
2017). Maji et al. observed that Ca2+ and Fe2+ in the aque-
ous media showed an insignificant effect on the uptake 
amount of As by laterite soil (Maji et al. 2007).

Conclusion

Bentonite clay was functionalized by the mercapto/amino 
groups using organosilanes viz., 3-mercaptopropyltrimeth-
oxysilane and 3-aminopropyltriethoxysilane, respectively. 
The FT-IR and the EDX analyses proved the successful 
silylation of bentonite. The silanes were aggregated within 
the pores of bentonite and grafted with a strong chemical 
bond. The mercapto and amino-functionalized bentonite 
show enhanced elimination of arsenic(III) and arsenic(V) 
within the pH 4.0–6.0. A strong affinity of arsenic(III) 
toward the 3-MPTS/BN and arsenic(V) toward the 3-APTS/
BN was observed and the arsenic species were aggregated 
with stronger chemical forces at the respective solid surface. 
The kinetic data show that the PSO and EL-PSO models are 
more favorable than the PFO kinetic model. The Langmuir 
and Freundlich adsorption models described the sorption 
of arsenic(III) and arsenic(V) by the functionalized materi-
als. The Langmuir sorption capacity was 11.93 mg/g and 
10.50 for arsenic(III) by 3-MPTS/BN and for arsenic(V) 
by 3-APTES/BN solids, respectively. One thousand times 
increase in ionic strength did not affect the sorption of 
arsenic onto the functionalized materials. However, EDTA 
and phosphate in solution affected the removal efficiency 
of functionalized materials for arsenic(III) or arsenic(V). 
Results inferred that the functionalized materials possessed 
an enhanced selectivity and applicability toward arsenic in 
the aqueous medium. Hence, it is found to be efficient and 
potential in the possible implications for decontaminating 
the arsenic-contaminated water.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s13762-​022-​04506-z.
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