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Abstract
Heavy metal accumulation increases concentrations of toxic contaminants in soil and the environment. They possess momen-
tous warnings to ecosystems throughout the world. Industries and agricultural activities introduce heavy metals/metalloids 
into the ecosystem which affects agricultural crops and poses various potential health threats to humans and animals by 
entering the food chain. Therefore, neglecting its deleterious effects on the environment may worsen the current situation. 
Thus, the need for bioremediation is of paramount importance in the reclamation of polluted soils and lands. The tech-
nique involves the use of microorganisms, such as bacteria, fungi, and algae, to lower/remove the toxicity of contaminants 
in affected regions. It is an environment-friendly, efficient, and cost-effective solution for soil heavy metal and metalloid 
degradation in both in situ and ex-situ conditions. Microorganisms can also be genetically modified to be efficient for pollut-
ant degradation. Better alternatives such as nanobioremediation, vermiremediation, and genetically modified microbes have 
been discussed in detail. These integrated approaches can be more effective than conventional approaches for the restitution 
of contaminated sites and reducing the toxicity of hazardous compounds. The present review will provide a deep interpreta-
tion of the various bioremediation techniques, their merits, and their limitations to the readers. It will also give insights on 
how these techniques can be implemented as future support to direct the global problem of metal remediation.

Keywords Heavy metal and metalloids · Hazardous compounds · In situ or Ex-situ bioremediation · Genetically engineered 
microorganisms (GEMs)

Introduction

The soil is an ecosystem that comprises functions of mul-
tiple flora and fauna and promotes living organisms’ health 
by providing food, nutrients, medicines, and immune boost-
ers. However, due to geogenic and anthropogenic activities, 
there is a substantial increase in soil pollutants. World’s Soil 
Resources report (SWSR) concluded that “soil pollution is 
the main menace affecting universal soil and environment.” 
Soil pollution is gradually becoming an alarming ambush 
that contributes to third most important problem in Europe 
and Eurasia, fourth in North Africa, and fifth in Asia, (FAO 
and ITPS Report 2015). Different countries, such as China, 

India, Pakistan, and Bangladesh, are reported to be severely 
affected by heavy metals contamination due to effluents 
discharged from industries, wastewater irrigation, and inap-
propriate use of chemical pesticides and fertilizers (Bi et al. 
2020). In India, heavy metal polluting soil is an emerging 
constraint for the agricultural sector influencing the coun-
try’s economy (Kumar et al. 2019). The expanding popu-
lation, prompt urbanization, and industrialization generate 
aberrant concentrations of various toxic substances which 
accumulate in soil and water (Zobrist and Giger 2013; Giu-
dice 2016; Demkova et al. 2019). The natural constituents of 
soil and water bodies are also altered by menaces produced 
by the mining of coals and metal ores (Rajput et al. 2017; 
Barsova et al. 2019; Siddique and Kiani 2020). Global-scale 
contamination by metals and metalloids has affected plants 
and animals, most importantly the food chain (Rodríguez-
Eugenio et al. 2018). Scientific documentation suggests the 
role of soil pollution in the degradation of the biosphere and 
reduction in food security, making it unsafe for consumption 
by flora and fauna (Kumar et al. 2019; Milicevic et al. 2021). 
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Soil pollution can originate new variety of pests and diseases 
by distressing the equilibrium of ecosystems and give rise to 
the disappearance of predators or competing species (Jensen 
and Pedersen 2006; Wang et al. 2020; Borowik et al. 2019; 
Li 2017; Li et al. 2020). The United Nations Environmen-
tal Assembly (UNEA-3) acquires an aspiration for quicker 
actions to direct and govern soil pollution (https:// sdg. iisd. 
org/ news/ unea-3). This concurrence realized by more than 
170 countries shows universal applicability to finding solu-
tions to soil pollution. The absence of novel and effective 
resources to reduce the challenging task of environmen-
tal pollution is a growing and crucial concern all over the 
world (Ganie et al. 2021). In this review, we describe various 
potential methods for building an ecosystem that will reduce 
the toxic effects of metals and metalloids effectively.

Heavy metals are highly emitted contaminants (Rzymski 
et al. 2015). Industrial, mining, and anthropogenic activi-
ties are the major sources responsible for the widespread 
dispersal of heavy metals and metalloids in water and soil. 
The ever-increasing volume of metals and metalloids in the 
soil is a problem for our sustainable future. Heavy metals, 
such as Mn, Fe, Co, Ni, are beneficial for living organisms 
at low concentrations while some heavy metals such as Cd, 
Pb, and Hg are not essential and are life-threatening even at 
low concentrations. Thus, the importance of monitoring the 
concentration of heavy metals and metalloids in the environ-
ment becomes a major step toward sustainable remediation 
(Raffa et al. 2021).

Heavy metals cannot be degraded and conserved in the 
ecosystem for a very long time. Long-term remediation dis-
obedience causes contamination of sediment and soil and 
enters the food chain (Ali et al. 2013; Gaur et al. 2014). 
Heavy metal contamination causes a significant unfavorable 
impact on human health (Ayangbenro and Babalola 2017; 
Kumar et al. 2021). Drinking contaminated water and con-
sumption of seafood is the principal source of human expo-
sure to heavy metals, causing high morbidity and mortality 
worldwide (Jarup 2003; Wasana et al. 2017; Rehman et al. 
2018). The antagonistic outcome of it includes the produc-
tion of reactive species involved in oxidative DNA damage, 
genotoxicity, mutagenicity, and subsequent health hazards 
(Genestra 2007; Fu and Xi 2020; Leelapongwattana and 
Bordeerat 2020). Several diseases like immunodeficiency, 
osteoporosis, neurodegeneration and multiple organ failures 
are induced by chronic or acute heavy metal toxicity (Rzym-
ski et al. 2015). It is also responsible for cancer, mental 
retardation, cardiovascular diseases, respiratory problems, 
neurocognitive and behavioral disorders in children (Al 
Osman et al. 2019; Wang and Shi 2001; Gaur et al. 2014; 
Kumar et al. 2021). Acute or chronic exposure to females 
with heavy metals leads to endometriosis, spontaneous abor-
tions, hypotrophy, breast cancer, endometrial cancer, still-
birth, and pre-term deliveries (Rzymski et al. 2015).) The 

adverse effect of heavy metal exposure on the male repro-
ductive system is reported (Wirth and Mijal 2010).

For the persistence of living beings, remediation of these 
contaminated regions needs attention (Amundson et al. 
2015; Kopittke et al. 2019). It is pivotal to evolve a plan of 
action to combat the heightened problem of heavy metal 
and metalloid contamination of soil and water that adversely 
affects flora and fauna (Akhtar and Mannan 2020). Removal 
of polluted soil is accomplished by science-based remedia-
tion methods. To remediate a polluted environment, chemi-
cal inactivation or sequestration in the process of the landfill 
is replaced by microbial degradation or phytoremediation. 
The microbes or their enzymes transform toxic organic and 
inorganic compounds into non-toxic or less toxic metabolites 
(Ndeddy and Babalola 2016; Okoduwa et al. 2017). It is 
low energy option, cost-effective, environmentally friendly, 
and a new method to improve and promote the remedia-
tion potency (Azubuike et al. 2016; Schenk et al. 2012). 
To facilitate the prevention of soil quality deterioration and 
heavy metal pollution, microbial indicators such as micro-
bial abundance, community diversity, structure, and func-
tional activity are monitored. In this paper, we addressed 
the guideline values for major heavy metals in soil/drinking 
water, toxicity effects of various metals and metalloids in 
humans and plants, remediation through physio-chemical 
and various biological approaches including technology 
based nanobioremediation, and genetically modified micro-
organisms specific for heavy metals remediation (Fig. 1).

Sources of metal and metalloids

Major sources of soil pollution are natural and anthropo-
genic. The low concentration of heavy metals is added into 
the soil by natural processes ongoing in the earth’s crust 
(Smiljanic et al. 2019). Volcanic explosion, weather beating 
of soil native material, and mineral dust in the form of aero-
sols add heavy metal contaminants into the soils innately 
(Garrett 2000; Artinano et al. 2003; Karl et al. 2007; Ikem 
et al. 2008). Other sources of heavy metals include disposal 
of metal waste, gasoline, fertilizers, atmospheric deposi-
tion, sewage sludge, animal manures, high tension lines, 
paper processing plants, microelectronics, wood preserva-
tion, wastewater irrigation and spillage of petrochemical 
(Dhaliwal et al. 2020; Suvarapu and Baek 2017; Mishra 
2017). Nuclear tragedy and incomplete combustion of radio-
nuclide metal like lead, thallium, manganese, cadmium, and 
mercury lead to soil contaminants (Pandit et al. 2020; Shukla 
et al. 2017; Richards et al. 2020).

Metal corrosion, soil corrosion of metal ions, heavy metal 
leaching, climatic deposition, and metal evaporation from 
water resources are other environmental factors for heavy 
metal pollution (Tchounwou et al. 2012). Another important 
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provenance of soil adulteration is the multiplex combination 
of bio-waste that includes metals, organic chemicals, and 
organisms in the effluvium from infected network. The bio-
availability of heavy metals is affected by physio-chemical 
and biological factors. Adsorption, sequestration, tempera-
ture, phase association, complexation kinetics, thermody-
namic equilibrium, lipid solubility, trophic interactions, and 
adaptation play a principal role in the soil accumulation of 
heavy metals (Okodua 2018; Tchounwou et al. 2012; Kapahi 
and Sachdeva 2019).

Anthropogenic activity responsible for heavy metal and 
metalloid generation in soil are the use of pesticides, and 
industrial effluents deposited. They make soil unfertile after 
a period resulting in economic loss (Kaur et al. 2017; Liu 
et al. 2020; Yang et al. 2017; Bi et al. 2018; Bidar et al. 
2020; Ortiz-Hernandez et al. 2014; Song et al. 2020; Abdo 
et al. 2020; Fu et al. 2020). Mercury, arsenic and lead are 
active ingredient of these pesticides (Wallace 2015). Pulp 
and paper industries wastewater, sludge, municipal solid 
wastes painting pigments are the main source of Fe, Cd, Pb, 
Ni, Cr, Cu, Zn, Co, As, Hg, and Cu (Sharma et al. 2021).

Toxicity of heavy metals

The metals are appended and differ considerably above the 
soil surface. The crucial heavy metals found in the soil are 
manganese (Mn), arsenic (As), aluminum (Al), zinc (Zn), 
nickel (Ni), vanadium (V), cadmium (Cd), iron (Fe), cobalt 
(Co), gold (Au), mercury (Hg), and chromium (Cr). Met-
als cannot be degraded or destroyed, and after ingestion via 
food, drinking water, and air, they get accumulated in living 
cells and lead to toxicity (Wuana and Okieimen 2011). Like 
amino acids, heavy metals are also grouped into essential 

and non-essential metals. The essential heavy metals act as 
a micronutrient and take part in several biochemical and 
physiological functions in the living system. It includes cop-
per (Cu), nickel (Ni), iron (Fe), molybdenum (Mo) and zinc 
(Zn), etc. Insufficient supply of these micronutrients leads 
to a variety of deficiency diseases (WHO 1996). Essential 
heavy metals act as coenzymes and play an important role 
in the oxidation–reduction reaction of several biomolecules 
(Tchounwou et al. 2012; Garrett 2000). Ions of heavy met-
als  bind  to  sulfur-containing amino acids strongly and 
bio-accumulate within cells, allowing them to reach high 
localized concentrations (Jia et al. 2012). Metal ions have 
been reported to interact with the cell membrane, DNA, and 
nuclear proteins inducing DNA damage, and various con-
formational changes that may cause cell cycle alteration, 
carcinogenesis, or apoptosis (Gjorgieva et al. 2013). Heavy 
metals such as silver, lead, aluminum, cadmium, gold, and 
mercury that have no biotic character and are hazardous to 
living organisms are known as non-essential heavy metals 
(Rahman and Singh 2019; Kumar and Sharma 2019). Some 
of the potential heavy metals contaminants levels in drinking 
water are discussed below.

Human exposure to toxic heavy metals denotes serious 
health issues in the body and can be responsible for death in 
accidental exposure (Rahman and Singh 2019). Arsenic tox-
icity is a global health problem affecting many millions of 
people. It is a persistent bioaccumulative carcinogen existing 
as arsenite or arsenate, disrupting enzymatic functions of 
cells, by interfering with phosphate uptake and utilization. 
The major pathway of As metabolism is oxidative meth-
ylation and glutathione conjugation (Sattar et al. 2016). 
As can also be actively sequestered in plant and animal 
tissues (Kaur et al. 2011; Nurchi et al. 2020). The current 

Fig. 1  Diagrammatic represen-
tation of various remediation 
techniques involved in removal 
of metal and metalloids
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recommended dose of arsenic in drinking water and soil 
is 10 μg/L and < 50 μg/L, respectively (https:// www. who. 
int/ news- room/ fact- sheets/ detail/ arsen ic; Ravenscroft et al. 
2005). Rhizospheric bacteria generally play a defensive role 
against As, toxicity in the rhizosphere. They affect As level 
and burden through detoxification or mobilization into crop 
plants (Mohd et al. 2019). This phenomenon is of environ-
mental significance, for the survival of the healthy living 
organism in an As-contaminated rhizospheric environment 
(Mohd et al. 2019). In the process of remediation, microor-
ganisms are involved in the cycling of toxic heavy metals 
and the remediation of metal-contaminated sites. Microbes 
show resistance to As exposure, through the expression of 
arsenic resistance ars operon (Kaur et al. 2011).

Mercury (Hg) exposure is the second-most common 
cause of toxic metal poisoning (Patrick 2002). The maxi-
mum contaminant level of Hg is 2 µg/L set by the US Envi-
ronmental Protection Agency for drinking water (Ware 
1989). Hg is present in the environment in various forms like 
methylmercury in aquatic species, mercury vapors in dental 
amalgams, or ethylmercury in various immunogenic vac-
cines. Human exposure to Hg is mostly chronic and results 
from fish consumption or dental amalgam (Bernhoft 2012). 
There is a need to develop more sensitive and refined tools 
to monitor the effects and susceptibility to adverse metal-
mediated health risks.

Cadmium (Cd) exposure mostly damages the microbial 
life in soil (Xiao 2020). It is a non-essential environmen-
tal toxicant that shows toxicity at a low concentration. The 
USEPA has established a maximum contaminant level 
(MCL) of 0.005 mg per liter (mg/L) for cadmium in drinking 
water (Cadmium 2015). Studies reported that environmen-
tal and occupational cadmium exposure is responsible for 
various types of cancer like kidney, breast, pancreas, lung, 
nasopharynx, and prostate (Genchi et al. 2020b).

Antimony (Sb) is commonly found in sulfide mineral 
forms such as stibnite  (Sb2S3) (Park et al. 2020). Due to 
its potential to cause carcinogenicity in humans, it is listed 
in the pollutant category by USEPA and European Union 
(Bolan et al. 2022). The guideline value set by USEPA and 
WHO for antimony in drinking water is 6 ppb and 20 ppb, 
respectively (Nishad et al. 2017). Exposure and direct inges-
tion of the metal can lead to respiratory irritation, osteoporo-
sis, pneumoconiosis, skin spots, and symptoms of gastroin-
testinal problems (Romero-Freire et al 2017; Liu et al. 2018; 
Zhong et al. 2020).

Chromium (Cr) is a toxic environmental pollutant respon-
sible for degrading rhizobia, legumes, and their symbio-
sis. Cr occurs in different oxidation states of which trivalent 
Cr(III) and hexavalent Cr(VI) are the most stable. Cr(III) 
is an essential oligo-element, and Cr(VI) is mutagenic and 
carcinogenic, has DNA-damaging effects, and is involved in 
several allergic reactions (Joutey et al. 2015). The EPA has 

established a drinking water standard of 100 parts per bil-
lion for all forms of chromium. The toxic effect of Cr (VI) is 
due to inhibition of pigment synthesis, increased production 
of ROS, and modification of various cellular components 
(Stambulska et al. 2018). It enters the human body through 
the food chain and affects human health (Tang et al. 2021).

Lead (Pb) is a highly toxic metal in aquatic environments 
and gets accumulated in fish tissues causing oxidative stress 
and inducing synaptic damage, neurotransmitter malfunc-
tioning leading to neurotoxicity in fish (Lee et al. 2019). 
The Guideline for EPA’s maximum acceptable concentration 
for lead is 0.01 mg/L (EPA-hse-drinking-water-consumer-
advice-note-lead.pdf). Occupational exposure is the main 
cause of lead poisoning (Fouad et al. 2020). Lead speciation 
is influenced by soil organic matter, colloids, pH, clay miner-
als, and iron oxides (Kushwaha et al. 2018).

Nickel (Ni) is a transition element. Its role as a trace ele-
ment in humans and animals has not yet been fully discov-
ered. It can occur in mono-, bi-, trivalent forms in living 
organisms. The highest acceptable nickel concentration is 
0.1 mg/L, which puts it in the group of the most toxic met-
als. Various forms of nickel are introduced into the environ-
ment through sulfidic and lateritic nickel ores. Industrial, 
municipal effluents, solid, and liquid fuels wastes contain 
various concentrations of Ni (Pruiett et al. 2020; Genchi 
et al. 2020a). In healthy human tissue, the concentrations of 
Ni range from 0.04 to 2.8 mg/g on a dry basis (Solomons 
et al. 1982).

Zinc (Zn) is an important trace element that has the 
potential to regulate cellular metabolism, particularly in 
the immune system and other physiological functions such 
as absorption, excretion, and homeostasis (Roohani et al. 
2013). In many cases, it retards the biochemical reactions 
leading to oxidative stress (Rasmussen et al. 2010). In com-
parison with other metal ions, zinc is less toxic (Plum et al. 
2010). In humans, the total zinc content in the body has 
been estimated to be 30 mmol (Hambidge 1987). However, 
a high concentration of zinc in humans can lead to anemia 
and reduce enzyme activities and absorption of copper and 
iron (WHO 553 2009). Zinc-contaminated agricultural land 
has been recorded to have reduced bacterial diversity (Gen-
ova et al. 2022).

Copper (Cu) is an essential trace element and plays an 
important role in iron consumption, production of RBC, 
metabolism of cholesterol, and glucose in humans (Attar 
2020). In the environment, it is released from wastewater 
of industries that contaminates agricultural products and 
aquatic bodies.

Selenium (Se) is yet another element that is beneficial for 
plants and the normal functioning of the body. But due to the 
increase in activities of mining, emission of harmful wastes, 
and agricultural practices, its accumulation is increasing in 
crops threatening human health indirectly (Fu et al. 2021). 

https://www.who.int/news-room/fact-sheets/detail/arsenic
https://www.who.int/news-room/fact-sheets/detail/arsenic
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The guideline value of selenium in drinking water suggested 
by WHO is 40 μg/l. (WHO 2011). Acute and chronic seleno-
sis may occur depending upon the dose and time of selenium 
consumption. Genotoxicity, embryotoxicity, cytotoxicity, 
immunotoxicity, and reproductive toxicity may be induced 
due to its excessive concentration (Lv et al. 2021).

Aluminum (Al) is a potentially toxic metal when exposed 
or ingested beyond its acceptable limits. It can cause bone 
disease, microcytic anemia, and neurological problems 
(Oleti et al. 2014; Klotz et al. 2017) In 2011, the WHO 
declared the guideline limit of 900 μg/L of health-based 
drinking water. But this guideline was not applied because 
the expected concentration of aluminum was exceeded in 
drinking water even after treatment with aluminum-based 
coagulants (WHO 2011).

Remediation of metals and metalloids

Previous studies reported that eradication of metal and 
metalloids is not fully possible, but they can be effectively 
converted or neutralized into a low toxic form that reduces 
their detrimental effect on the environment (Pratush et al. 
2018). Enzyme machinery inside the microbial system plays 
a significant role in transforming heavy metals. Biodegrada-
tion of other environmental pollutants is inhibited by heavy 
metals by inhibiting the function of metabolizing enzymes 
(Schroder et al. 2009; Wuana and Okieimen 2011). The 
approach for heavy metal remediation from the soil includes 
physical, chemical, and biological.

Physio‑chemical approach

Physical remediation includes soil flushing, soil washing 
with various acids, and mixing contaminated and uncon-
taminated soil (Lim et al. 2014). Soil washing with varying 
concentrations of chemicals such as nitric acid, sulfuric acid, 
hydrogen bromide, and phosphoric acid is an effective way 
of metal removal from the soil (Mahimairaja et al. 2005). 
Because of the high cost of chemicals, soil washing can 
be used for only small-scale processes. Mixing leads to an 
acceptable level of metal in the contaminated soil (Mahi-
mairaja et al. 2005). The chemical remediation operations 
involve immobilization, adsorption process with the use of 
specific media, modified coagulation along with filtration, 
precipitations, and complexation reactions (Fan et al. 2016; 
Guerra et al. 2018; Fu et al. 2021). Chemical remediation 
is famous because of its great success rate but is found to 
be expensive when used for the remediation of a large area 
(Mahimairaja et al. 2005). The combination of physio-chem-
ical remediation techniques includes soil washing, stabili-
zation, solidification, and thermal treatment to control soil 
contamination (Xu et al. 2015). Thermal desorption, elec-
trokinetic, soil flushing, and washing treatments mobilize 

and capture insoluble metal species in the contaminated 
regions. Solidification, stabilization, and vitrification pro-
cesses immobilize various metals by converting them into 
less soluble forms (He et al. 2015). Physicochemical remedi-
ation is applicable for moderate-to-high/severe contaminated 
soil in both in situ and ex-situ conditions. The requirement 
of human power for the physicochemical method may vary 
depending upon the type of contaminants and the choice of 
the method adopted for their removal. A study on the effi-
cacy of soil washing for the removal of heavy metals and soil 
quality revealed it as a two-sided coin where washing that 
removed Pb and Cd in soil, also reduced soil quality. Neu-
tralization of soil has alleviated the adverse effects induced 
by soil washing (Wang et al. 2020).

Biological remediation

There is an imperative need for green approaches to explore 
efficient and cost-effective methods in the eradication of 
heavy metals from the polluted site. One such eco-friendly, 
cheaper, solar-driven, novel and effective alternative to abol-
ishing heavy metals is biological remediation or bioremedia-
tion (Mahimairaja et al. 2005; Rudakiya and Patel 2021). 
It is a technique that includes the recruitment of biologi-
cal organisms like microorganisms, green plants, biochar, 
genetic engineered microbes, or enzymes for the eradica-
tion of heavy metals, organic and inorganic contaminants 
present in soil or water (Azubuike et al. 2016; Verma and 
Shrama 2017; Kalogerakis et al. 2017; Ye et al. 2017). The 
recruited biological organisms can be unicellular or multi-
cellular. Over the years, bioremediation of hazardous metals 
has gained much more interest. Based on site, its bioreme-
diation can be divided into intrinsic or engineered bioreme-
diation (Mahimairaja et al. 2005). Intrinsic bioremediation 
involves the degradation of heavy metals by naturally occur-
ring microorganisms at the native site with no interference 
from humans. This process is appropriate for the remedia-
tion of soil having less concentration of toxic compounds 
(Mahimairaja et al. 2005). In engineered bioremediation 
techniques, human intervention is required for optimizing 
the environmental conditions to accelerate the prolifera-
tion and activity of microorganisms in a particular area. In 
the highly contaminated region, engineered bioremediation 
method is more suitable (Mahimairaja et al. 2005). Although 
bioremediation has many limitations, these approaches have 
gained interest due to their cost-effectiveness in the removal 
of heavy metals and metalloids. Some important character-
istics of physicochemical and biological remediation are 
compared in Table 1.

The association of biological action of invertebrates, 
plants, and microorganisms in the soil has a great potential 
of creating new and low toxic metabolites. It depends on the 
use of pollutants as derivatives of energy and food and their 
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transformation into water and carbon dioxide without the 
generation of secondary metabolites in the ecosystem. The 
mechanisms involved in heavy metal degradation include 
immobilization, photocatalytic degradation, Fenton-like oxi-
dation, reduction reaction, and collective processes (Qian 
et al. 2020b). Tang et al. 2019 have summarized the role 
of microbiological indices to monitor soil pollution caused 
by heavy metals. They have used microbiological indica-
tors such as microbe’s abundance, diversity, structure, and 
functional activity to observe the microbial reaction to 
stress induced by heavy metals in soil. They have found 
an increased number of heavy metals in the soil, which 
promotes the growth of plant growth-promoting bacteria 

(PGPB) in the gut of earthworms that may alleviate the phy-
toremediation of heavy metals (Liu et al. 2020a). Based on 
the biological organism involved in the remediation of heavy 
metals from the land, it can be of the following types. The 
processes involved in the bioremediation of various met-
als and metalloids from contaminated sites are summarized 
in Table 2.

Phytoremediation

Phytoremediation is an eco-friendly alternative technique 
that requires low capital cost in removal of metal and met-
alloids (Haq et al. 2020). It is an environmental clean-up 

Table 1  Comparison of characteristics of physicochemical and bioremediation techniques

S.No Characteristics Physicochemical remediation Bioremediation

1 Nature Physical and Chemical Based Natural Process
2 Site of Treatment May be in situ or ex-situ Mostly in situ
3 Sensitivity toward Toxicity Not sensitive Highly sensitive
4 Removal of Toxicant Particular toxicant will be removed Complete destruction of contaminant
5 Cost Highly Costly Cost effective
6 Instrument requirement Tedious instruments and chemicals are 

required
Instruments not required

7 Time required Less time taking Tedious/Time taking
8 Technological need Highly advanced technique required Techniques involved in construction of 

Genetically Engineered Microorgan-
ism

9 Specificity Specific Highly Specific
10 Regulation Requirement Required Not Required except GEM
11 Action Against Compounds Selected compounds will be degraded All biodegradable compounds can be 

degraded
12 Scale up Can be easily scaled up Tough to scale up remediation process
13 Effect of soil environment (pH, temperature, 

water, oxygen, nutrients, microbial popula-
tion)

Not affected Highly affected

14 Control Highly controlled environment Less control over the process

Table 2  Bioremediation processes used for removal of various soil contaminants

Soil Pollutants Sources Bioremediation pro-
cesses

Principle of degradation References

Inorganic Pollutants Heavy metals Natural and anthropo-
genic

Biosorption, Biostimula-
tion, Biotransforma-
tion, Bioaccumulation 
Bioprecipitation, 
Biofilm, Bioleaching

Enzymatic Alloway 2013; Igiri et al. 
2018; Kapahi and Sach-
deva 2019; Dhaliwal 
et al. 2020; Qin et al. 
2021. Choudhury and 
Chatterjee 2022

Metalloids Mostly anthropogenic Biodegradation, phytore-
mediation, bioventing 
bioleaching

Enzymatic, solubiliza-
tion, stabilization, 
precipitation, etc.

Raffa et al. 2021; Nguyen 
et al. 2021

Radionuclids Natural and anthropo-
genic

Biosorption, phytoreme-
diation

Solubilization, precipi-
tation, stabilization, 
etc.

Yan et al. 2021
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process for pollutant remediation using plants and associ-
ated microorganisms (Nedjimi 2021). Plants can spread their 
roots more than 100 million miles per acre, which enhances 
their potential for the removal of toxic compounds in natural 
environments. It has the potential versatility to eradicate a 
wide variety of hazardous pollutants. It is a non-invasive, 
sustainable, environment-friendly eco-technology that can 
be easily implemented to soil pollutants for large-scale 
clean-up and eco-restoration of polluted sites. The plants 
that bring out phytoremediation of metals are referred to as 
metallophytes. Metallophytes are of three types; metal indi-
cators, metal excluders, and metal hyperaccumulators (Awa 
et al. 2020). Metal indicators are plants that accumulate high 
concentrations of heavy metals in plant parts such as shoots 
and leaves from soils. The plant later dies due to metal phy-
totoxicity (Ahmad et al. 2019; Awa et al. 2020). Plants that 
collect the absorbed heavy metals in their root and terminate 
the translocation to their aboveground shoots and leaves are 
known as metal excluders (Masarovicova et al. 2010). Metal 
hyperaccumulators are plants that accumulate heavy metals 
in high concentrations, inside their tissues without being 
affected or showing signs of metal phytotoxicity (Shrivastava 
et al. 2019). Based on the mechanisms for removal of con-
taminants, phytoremediation techniques can be categorized 
into phytoaccumulation, phytostabilization, phytoextraction, 
phytodegradation, phytofiltration, phytovolatilization, and 
hydraulic control (Muthusaravanan et al. 2018; Yadav et al. 
2018). Phytostabilization and phytoextraction are frequently 
used remediation techniques that can be differentiated in the 
accumulation of metals or heavy metals in the root portion 
of the plant or above the ground, respectively (Ghosh and 
Singh 2005). High contamination affected sites inhibit the 
growth of plants, including roots through oxidative stress, 
and limit the speed of phytoremediation in situ conditions 
(Jagat et  al. 2020). Microbe assisted-phytoremediation 
enhances phytoremediation efficacy by producing growth 
hormones, siderophores, secondary metabolites, and devel-
oping an effective antioxidant system (Sharma 2021).

The literature works suggest that phytoremediation causes 
the successful eradication of toxic heavy metals from the 
soil with time (Ayan et al. 2020). Heavy metal accumulat-
ing plant, Eleocharis acicularis, has the potential to phy-
toremediation copper-contaminated soil sediments naturally 
(Sakakibara et al. 2011). A wetland plant Cyperus alternifo-
lius showed high metal accumulation ability for the uptake of 
Pb, Zn, Cd, from the rhizospheric region and root in flooded 
conditions of metal-contaminated wetlands (Yang et al. 
2017). It has been found that three types of grass namely 
Elephant grass, Rhodes, and Vetiver showed metal uptake 
efficiency of Mn, Cu, and Zn under the hydroponic condition 
in municipal solid waste generated leachate (Hassan et al. 
2020). Water hyacinth, Eichhornia crassipes, effectively 
lowers the potential environmental risk by phytoremediation 

of untreated wastewater polluted with cadmium, arsenic, 
and mercury (Nazir et al 2020). Phytovolatilization of arse-
nic has been studied in plant Arundo donax (Guarino et al. 
2020). The energy crop of Miscanthus giganteu indicates 
good phytostabilization efficiency for Hg and Cd (Zgorelec 
et al. 2020). The root and shoot of Ricinus communis have 
potential of phytoextraction of metals iron, copper, zinc, 
manganese, nickel, and lead which indicates that it has high 
hyperaccumulation and translocation efficiencies of metals 
and heavy metals (Kumar et al. 2021). Phytofiltration of 
heavy metals such as iron, copper, nickel, zinc, and man-
ganese from wastewater has been shown by Monosoleum 
tenerum (Sut-Lohmann et al. 2020).

The need for a longer duration time in remediation 
because of the slow growth of plants is the main demerit 
of the phytoremediation strategy. It is also limited by the 
change in climate and characteristics of the soil. The con-
taminants may enter the environment again by litter effects 
and exudates of roots increasing the solubility of contami-
nants to enhance their rate of distribution in soil (Jacoby 
et al. 2017).

Phycoremediation

The algae are widely used for clean-up strategies of waste-
water, resulting in treated waters as well as the formation of 
useful algal biomass which serves as feedstock for a range 
of valuable products, such as food, fodder, biofertilizer, 
pharmaceuticals, and biofuel (Phang et al. 2015). Phycore-
mediation involves the participation of various algae and 
cyanobacteria effective for heavy metal remediation by 
either removal or deterioration of contaminants (Chabuk-
dhara et al. 2017). Metal-binding sites are present on algae 
that are composed of carboxyl, hydroxyl, phosphate, and 
amide chemical moieties. Algae are autotrophic in nature, 
need low nutrients, and produce a large amount of biomass 
in comparison with other microbial biosorbents. These algal 
biosorbents have been used in the treatment of heavy-metal-
contaminated effluent through adsorption or by integration 
into cells (Abbas et al. 2014). Microalgae growth determines 
the duration of the phycoremediation process. Phycoremedi-
ation by Spirulina sp. removed 88 to 98% of  Ca2+ and  Cd2+ 
from municipal wastewater and aqueous solution (Anasto-
poulos and Kyzas 2015; Al-Homaidan et al. 2015). Goher 
et al. 2016 used Chlorella vulgaris dead cells to eliminate 
 Cd2+,  Cu2+, and  Pb2+ ions in an aqueous solution under con-
ditions of pH, biosorbent dosage, and contact time. Cultiva-
tion of freshwater algae (Cladophora glomerata, Oedogo-
nium westii, Vaucheria debaryana and Zygnema insigne) in 
industrial wastewater lowers the biological oxygen demand, 
chemical oxygen demand, electrical conductivity, total dis-
solved solids, and nitrate level. C. glomerata showed a high 
accumulation of Cd about 80.3%, and O. westii showed high 
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removal capability of Ni about 66.3% (Khan et al. 2017). 
Studies on heavy metal biosorption from the biomass of 
seaweeds (Chaetomorpha sp., Polysiphonia sp., Ulva sp., 
and Cystoseira sp.) have shown the effective removal of Zn 
in aqueous solution (Deniz and Karabulut 2017). Genetic 
modification leads to overexpression of metal tolerance 
protein performed in Chlamydomonas reinhardtii, which 
showed a two-to-threefold increase in tolerance of  Cd2+ and 
uptake, respectively, in comparison with its wild type (Ibuot 
et al. 2017). Studies by Apandi et al. (2019) showed more 
than 90% phycoremediation potential of Scenedesmus sp. 
to exclude Cd, Cr, Fe, and Zn from wet market wastewater. 
Microalgae S. obliquus has phycoremediation potential and 
high tolerance against lead  (Pb2+). The cells undergo oxida-
tive stress in presence of Pb, which is defended by the anti-
oxidant system through enzymatic and non-enzymatic mech-
anisms (Danouche et al. 2020). The mechanisms utilized in 
the removal of heavy metal ions by microalgae are biosorp-
tion and bioaccumulation (Salama et al. 2019). Green algae, 
Botryococus brurauni, significantly reduced the level of Pb, 
Cd, and Cu from wastewater effluent (Uddin and Lall 2019). 
Biosorption is a physio-chemical process in which contami-
nants or hazardous elements are removed by the cellular 
structures or surfaces through passive adsorption (Mohita 
et al. 2020). Chlorella and Scenedesmus sp. are found to 
decrease the level of heavy metals such as copper, sulfate, 
nickel, lead, and zinc in pharmaceutical effluent (Pratibha 
et al. 2020). Algae Cladophora fracta has shown effective 
phycoremediation of silver (Ag) and gold (Au) from mine 
gallery water (Murat et al. 2020). The transgenic strain of 

Chlorella sp. DT. modified with mercuric reductase (MerA) 
obtained from Bacillus megaterium B1 showed improved 
two-fold  Hg2+ removal ability, in comparison with control 
and low level of oxidative stress (Leong and Chang 2020). 
Sangeetha et al. 2020 studied the phycoremediation efficacy 
of Spirogyra sp. using sugar plant cushion and showed that 
it can exclude metals such as Ni, Cr, Fe, and Mn. Nostoc 
commune, Oscillatoria limosa and Chlorella vulgaris were 
studied for phycoremediation potential, demonstrating up to 
90% removal of lead in contaminated industrial wastewater 
(Atoku et al. 2021). Diatoms Pseudostaurosira brevistriata 
and Staurosira construens were found effective in phy-
coremediation of silver (Ag). The rate of photosynthesis of 
these diatoms affects the adsorption of silver (Asiandu and 
Wahyudi 2021). Development, screening, and identification 
of macro- and microalgae that have special attributes can be 
efficient for nutrient removal algal systems. Phycoremedia-
tion of heavy metals /metalloids are summarized in Table 3.

Rhizoremediation

Rhizoremediation is an in situ phyto-restoration system 
that involves plant and related rhizospheric microbes in the 
breakdown of pollutants. Rhizoremedial strategy requires 
the microorganisms which are capable to divide and prolifer-
ate in the root system (necessary for enhancing the catalytic 
potential) and operative catabolic pathways responsible for 
remediation of the pollutants (Segura et al. 2009). The bac-
teria residing in the rhizosphere may convert some metals 
or metalloids (Hg, Te, Tn, Se, As, Pb, Sb) into volatile form, 

Table 3  Algae used in heavy metal /metalloids remediation at contaminated site

S.No Algae Remediation of heavy metals/metalloids References

1 Spirulina sp. Ca2+ and  Cd2+ Anastopoulos and Kyzas 
2015; Al-Homaidan 
et al. 2015

2 Chlorella vulgaris dead cells Cd2+,  Cu2+, and  Pb2+ ions Goher et al. 2016
3 Cladophora glomerata Bioaccumulation of Cd (80.3%) Khan et al. 2017
4 Oedogonium westii Ni removal capacity about 66.3% Khan et al. 2017
5 Chaetomorpha sp., Polysiphonia sp., Ulva sp. and Cystoseira sp. Biosorption of Zn Deniz and Karabulut 2017
6 Scenedesmus sp. Ability to exclude Cd, Cr, Fe, and Zn Apandi et al. 2019
7 Botryococus brurauni, Pb, Cd and Cu Uddin and Lall 2019
8 S. obliquus Pb2+ Danouche et al. 2020
9 Chlorella and Scenedesmus sp Cu,  SO4

2−, Ni, Zn and Pb Pratibha et al. 2020
10 Cladophora fracta Ag and Au Murat et al. 2020
11 Nostoc commune, Oscillatoria limosa and Chlorella vulgaris 90% removal of Pb Atoku et al. 2021
12 Geotrichum sp. Cu, zn, Ni He et al. 2022
13 Spirogyra sp. Cladophorasp. Cd(II), Cu(II) Mane and Bhosle 2012
14 Spirulina sp. Cr, Cu, Fe, Mn, Zn Mane and Bhosle 2012
15 Hydrodyctylon, Oedogonium, Rhizoclonium As Kaur et. al. 2019; Christo-

bel and Lipton 2015
16 Oedogonium spp., Chlorella spp., Scenedesmus Hg Quiroga-Flores et al. 2021
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through a detoxification mechanism. The bioavailability and 
toxicity of many metalloids are influenced through micro-
bial oxidation, reduction, and methylation process. Some 
microbes have the ability to antimonate Sb (V) as a termi-
nal electron acceptor and convert it into antimonate Sb (III) 
during anaerobic respiration (Alloway 2013). During this 
process, the root of plants secretes the exudates which either 
enhance or stimulate the growth and activity of microor-
ganisms in the rhizosphere, resulting in effective pollutant 
degradation (Saravanan et al. 2019). The interaction is mutu-
ally beneficial for plants and microorganisms; plants provide 
necessary nutrients to the microbe, and in turn, microbes 
prevent the pathogenic attack (Glick 2014). The action of 
microorganisms on heavy metals is accomplished through 
chelation, precipitation, transformation (oxidation–reduc-
tion, methylation), biosorption, and accumulation (Verma 
and Rawat 2021). The rhizoremediation process is influ-
enced by various physicochemical and biological factors 
such as temperature, pH, soil conditions, microbial commu-
nities, aeration, the content of organic matter, exudation rate, 
age of the plant, and nutritional requirements, and contami-
nants contents (Oberai and Khanna 2018). The significant 
advantage of rhizoremediation over phytoremediation is the 
higher rate of contaminant degradation through assistance 
received by microbes (Sathishkumar et al. 2008). A rhizo-
bacterium, Pseudomonas sp. CPSB21, has also been found 
to be involved in rhizoremediation of Helianthus annus in 
chromium (Cr)-contaminated soil (Gupta et al. 2018). Meth-
ylobacterium oryzae strain CBMB20 and Burkholderia sp. 
strain CBMB40 have been reported to decrease the toxi-
cant level of nickel and cadmium in tomato by decreasing 
the uptake and transportation of heavy metals from root to 
stem and fostering plant growth in metal-contaminated soil 
(Madhaiyan et al. 2007). A study done found that copper-
resistant Pantoea dispersa strains increase the bioaccumu-
lation of copper ions in Sphaeranthus indicus with increas-
ing concentration of copper through the rhizoremediation 
process (Yaashikaa et al. 2020). Filamentous fungal strain 
Purpureocillium sp., found in wheat farmland soil, showed 
Cd-resistant nature. Rhizo-inoculation of the fungus showed 
a decrease in Cd stress to wheat, by a significant reduction 
in Cd concentration of wheat seedlings (Zheng et al. 2021).

Mycoremediation

Mycoremediation is a profitable, environment-friendly, and 
reliable method for remediation of environmental pollutants 
with the use of fungi or its derivatives. It is an advantageous 
method to other conventional bioremediation methods. The 
soil fungi show adaptation to various adverse environments 
making them play an effective role in the degradation of 
various pollutants such as PAHs, pharmaceutical wastes, 
and agricultural and heavy metals. Fungal accumulation 

capacity for various heavy metals can be potentially utilized 
for their removal from contaminated sites. The importance 
of fungi in environmental remediation is due to their ability 
to biotransform xenobiotics and accumulate heavy metals. 
The mycoremediation process is controlled by soil type, 
pH, temperature, organic matter content, concentration and 
nature of heavy metals, dose, and characteristics of fungal 
biomass. The composition, concentration of impurities, and 
age of mycelium affect the remediation process. The content 
of mushroom fruiting bodies is correlated with the emis-
sion of pollutants (Muszynska et al. 2017). Metallotolerant 
fungi have been utilized for bioleaching of heavy metals 
from industrially contaminated soil (Khan et al. 2019).

The biomechanisms involved in the removal of heavy 
metals by fungi include bioaccumulation, biosorption, bio-
synthesis, biomineralization, bio-reduction, bio-oxidation, 
extracellular and intracellular precipitation, surface sorption, 
etc. (Javanbakht et al. 2014; Xu et al. 2020). C-S stretching, 
C-N stretching, C=O, C=N, C-H, and N–H bending are the 
important functional groups entangled in the mycoremedia-
tion of metals. The bioaccumulation of heavy metals is influ-
enced by the species, ecological types, morphological traits, 
parts, the lifetime of mycelium and fruiting bodies, the inter-
vals between fructifications, the ecological environments, 
and bioaccumulation characteristics and genetic potentials of 
macrofungi (An and Zhou 2007). The mushroom, Galerina 
vittiformis, has the potential to uptake heavy metals, from 
soil artificially polluted with Cd (II), Cu (II), Cr (VI), Pb 
(II), and Zn (II). It has been observed that within 30 days, 
G. vittiformis effectively removes added metals from soil 
(Damodaran et al. 2014). It has also been possible that a 
single fungus can effectively remediate multiple heavy met-
als. An entomopathogenic fungi Beauveria bassiana has the 
capacity to remove various heavy metals individually or in 
multiple (Gola et al. 2016). Indigenous metallotolerant fun-
gal strains of Aspergillus from the Pb and Hg contaminated 
soil samples can be utilized in in situ and ex-situ remediation 
of soils polluted with Pb and Hg. The semi-solid culture 
system can provide valuable information for the remedia-
tion of heavy metal-polluted soil by fungi. Another strain A. 
fumigatus has the potential to eradicate some Cd from the 
contaminated soil in the semi-solid culture system. (Chen 
et al. 2017).

In psycho-remediated soil, treatment of H. annuus with 
wood rot fungi Trichoderma shows an effective increase 
in the soil’s extracellular enzyme activities. The activities 
of biochemical enzymes like invertase, cellulase, amyl-
ase, dehydrogenase, urease, and phosphatase significantly 
increased in arsenic and lead-affected soil. Trichoderma sp. 
can be an effective candidate for the remediation of arsenic 
and leads in polluted soil (Govarthanan et al. 2018). Another 
study on fungi-assisted phytoextraction of Pb explored the 
potential of five non-pathogenic fungal strains namely 
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Trichoderma harzianum, Penicillium simplicissimum, Asper-
gillus flavus, Aspergillus niger, and Mucor sp., to promote 
phytoextraction of lead by enhancing Pb phytoavailability 
in soil. It also improves plant biomass production (Manzoor 
et al. 2019). In another experimental study, it is observed that 
A. niger is the most successful strain in removing heavy met-
als from the soil with the highest bioaccumulation efficiency 
for cadmium and chromium. It indicates that new strategies 
could be developed for the remediation of soil polluted with 
heavy metals (Cd and Cr) through in situ or ex-situ mycore-
mediation (Khan et al. 2019). A study by Lin et al. (2020) 
revealed that some fungi have a strong capability to decrease 
the toxicity of heavy metals by biodegradation and create a 
proper soil environment to help to grow food crops. Fungal 
cellular sulfur and phosphorus compounds are also involved 
in Ag(I) binding (El-Sayed 2020). The secretion of organic 
acids from filamentous fungi is responsible for the dissolv-
ing of metals and is able to tolerate a high number of heavy 
metals (Dusengemungu et al. 2021).

Vermiremediation

In addition to improving soil fertility and crop production, 
earthworms can resist high concentrations of soil pollutants 
and play a vital role in their removal effectively (Dada et al. 
2021). Vermiremediation is the use of earthworms to remove 
contaminants from soil or help to degrade non-recyclable 
chemicals. It is proved to be an alternative, very effective, 
low-cost technology for treating heavy-metal-contaminated 
sites (Zeb et al. 2020). The eco-biotechnology employs 
earthworms as natural bioreactors for decomposing organic 
matter that may be used for remediation of pollutants present 
in various organic matter sources. The valorization potential 
of earthworms and their ability to detoxify heavy metals in 
industrial wastes is because of their strong metabolic system 
and involvement of earthworm gut microbes and chlorago-
cyte cells (Bhat et al. 2018). The addition of earthworms 
in sewage sludge composting enhances the degradation of 
polycyclic aromatic hydrocarbons and heavy metals (Rorat 
et al. 2016). The study has shown that earthworm Eudrilus 
eugeniae could be applied as possible bioremediation of 
heavy metals and petroleum hydrocarbons in diesel con-
taminated soil (Ekperusi and Aigbodion 2015). It is dem-
onstrated that the addition of another earthworms Eisenia 
fetida, in various sludge wastes generated from industries, 
increases the degradation rate of heavy metals and hydrocar-
bons found in it (Suthar et al. 2014; Martinkosky et al. 2016; 
Kavehei et al. 2018). It decreases the bioavailability of Cd in 
soil and simultaneously improves soil fertility (Cheng et al. 
2021). Metaphire posthuma was used in the vermiremedia-
tion of toxic jute mill waste (Das et al. 2015). A combination 
of earthworms, with biochar or Bacillus megatherium, has 

been found as an alternative method for Cd-contaminated 
soil remediation (Xiao et al. 2021).

Nanobioremediation

It is very fragile to develop a feasible remediation method 
that does not disturb the ecosystem and ensures a safe and 
healthy environment. Microbes have various mechanisms 
of metal sequestration that hold greater metal biosorption 
capacities (Ojuederie and Babalola 2017). Nanotechnol-
ogy includes the use of engineered nanomaterial to create 
innovative approaches for soil remediation. The microbial 
biosorbents are eco-friendly and cost-effective, providing 
an efficient alternative remediation pathway for the removal 
of heavy metals and metalloids from contaminated environ-
ments. The goal of microbial biosorption is to eliminate met-
als and metalloids from the contaminated site, using living 
or dead biomass or their components. It is a new safe and 
sustainable technique for persistent organic compounds and 
heavy metals remediation (Ganie et al. 2021). It is possible 
because nanomaterials have a high surface area to volume 
ratio, and unique features of high reactivity, selectivity, and 
versatility (Guerra et al. 2018). It assures quick and efficient 
performance with minimized adverse effects on the ecologi-
cal system (Esposito et al. 2021). The combination of nano-
technology with phytoremediation and micro-remediation 
becomes very popular and effective in remediation (Xue 
et al. 2018). The conjugate nanoparticles have a bio-inter-
face strategy, hierarchical architecture, water-dispersibility, 
long-term colloidal stability in environmental media, and 
non-specific toxicity (Basak et al. 2020). Rhizospheric fun-
gal isolates along with silver nanoparticles (AgNPs) show 
degradation of crude oil (Al-Zaban et al. 2020). White rot 
fungi (WRF) along with metal nanoparticles are used in the 
bioremediation of contaminants. Metallic nanoparticles act 
as supports or synergistic agents that enhance the stabil-
ity and bioremediation performance of WRF in wastewa-
ter treatment and the biosynthesis process (He et al. 2017). 
Zero-valent iron has been reported as a successful remedia-
tion agent for environmental issues, due to its high specific 
surface area. These are extensively used in soil and ground-
water remediation for removal of pollutants from contami-
nated sites (Corsi et al. 2018; Galdames et al. 2020; Qian 
et al. 2020a). Ligand-coated dense nanoparticles have been 
used for the remediation of heavy metals from the contami-
nated site of soils (Huang and Keller 2020).

Bacterioremediation

Decontamination of metal and metalloid polluted sites can 
be done through microbial/enzymatic metal immobiliza-
tion. Microbial remediation is an innovative technique for 
the removal of polluted toxic heavy metals into less toxic 



10601International Journal of Environmental Science and Technology (2023) 20:10591–10612 

1 3

forms by microbes or their enzymes (Banerjee et al. 2018). 
Some of these metals are incorporated into enzymes and 
cofactors (Cu, Fe, Mn, Co, Zn, and Ni), whereas some heavy 
metals exert toxic effects on microbial cells (i.e., mercury, 
lead, cadmium, arsenic, and silver). In various bacteria, 
metal resistance has been found due to genes present on 
plasmids, whereas bacterial chromosomes contain genes for 
resistance to many of the same heavy metals’ cations and 
oxyanions as do plasmids (Igiri et al. 2018). Bacteria have 
evolved various processes including biosorption, entrap-
ment, precipitation, efflux, and reduction in heavy metal 
ions to a less toxic state inside the cell (Nies1999; 2003).

Xanthomonas citri subsp. citri  (Xcc) has developed 
resistance to copper as a consequence of using copper 
bactericides (Behlau et al. 2012). Copper resistance genes 
have taken place from strains of X. alfalfae subsp. cit-
rumelonis  and Xanthomonas citri  subsp. citri  (Behlau 
et al. 2013). Sulfolobus metallicus, Frankia strains may 
precipitate the  Cu+2-phosphate complex to the hyphae. 
Acidithiobacillus ferrooxidans  have the potential to 
detoxify  Cu+1 metal by formatting phosphate granules 
through stimulation of polyphosphate hydrolysis and 
formation of metal-phosphate complexes (Alvarez and 
Jerez 2004). The Staphylococcus aureus and Citrobacter 

freundii accumulated Pb as an intracellular lead-phosphate 
(Levinson and Mahler 1998). CadA ATPase of Staphy-
lococcus aureus  and the ZntA ATPase of Escherichia 
coli has been reported as the efflux of Pb(II) (Rensing 
et al. 1998). Cupriavidus metallidurans show resistance 
to zinc and cadmium (Hynninen 2010). S. aureus, Citro-
bacter freundii (Levinson et al. 1996), and Vibrio har-
veyi  (Mire et al. 2004) precipitate lead as a phosphate 
salt. In Streptococcus thermophilus Strain 4134, two genes 
(cadCSt and cadASt) were confirmed to constitute in cad-
mium/zinc resistance (Prabhakaran et al. 2018). Selenite 
reduction may be catalyzed by Thauera selenatis, Enter-
obacter cloacae,  Thiosphaera pantotropha,  Thauera 
selenatis, and Clostridium pasteurianum. Recent studies 
have indicated that NADPH-/NADH-dependent selenate 
reductase enzymes bring about the reduction in selenium 
(selenite/selenate) oxyanions. Selenite can be reduced to 
inert elemental selenium, which occurs in the selenite-
resistant Frankia strains CN3, EuI1c, EUN1f, and DC12 
(Richards et al. 2020).

Microorganisms (algae, fungi, and bacteria) used in the 
remediation of various heavy metals and metalloids at the 
contaminated site are summarized in Table 4.

Table 4  Microorganisms used in heavy metal remediation of contaminated site

Microorganisms Name of Microorganism Remediation of Heavy Metals/metal-
loids

References

Bacteria Kokuria flava, Desulfovibrio desul-
furicans (immobilize on zeolite) 
Flavobacterium sp., Bacillus firmus, 
Micrococcus sp.

Cu, Ni Kim et al. 2015; Kumar et al. 2018

Actinobacter sp., Bacillus cereeus, B. 
subtilis, Sporosarcina saromensis 
(M52), Pseudomonas aerogenosa

Cr(II) Kim et al. 2015; Zhao et al. 2016

Sporosarcina ginsengisoli As(III) Chen et al. 2017; Sher and Rehman 2019
Pseudomonas veronii, Bacillus firmus Cd, Zn, Cu Peng et al. 2018
Pseudomanas putida, Enterobacter 

cloacae B2-DHA, Bacillus subtilis
Cr(VI) Rahman et al. 2015; Basu et al. 2015

Pseudomonas and Burkholderia sp. Ni, Zn Meng et al. 2021
Fusibacter Pb, Zn, Cu, Co, Ni, Cd, and Ag Meng et al 2021
Syntrophorhabdus Meng et al 2021

Fungi Aspergillus versicolor Ni, Cu Taştan et al. 2010
Aspergillus niger Cd, Cr Khan et al. 2019
Aspergillus fumigatus Pb Khatoon et al. 2021
Gloeophyllum sepiarium Cr(VI) Ojuederie and Babalola 2017
Cladosporium cladosporioides Cr(VI) Garcia-Hernandez et al. 2017
Candida parapsilosis Hg Muneer et al. 2013
Pleurotus species Cd, Cr, Pb, Cu, Ni, Zn, Hg Kapahi and Sachdeva 2017; Rhaman 

et al. 2021
Yeast Saccharomyces cerevisiae Pb,Cd, Cr Fathima et al. 2010; Ozturk et al. 2021

Yarrowia lipolytica Pb, Cr, Ni, Zn, Cu, As Mamaev and Zvyagilskaya 2021
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Genetically engineered microorganism (GMO) 
as bioremediator

Pollutants directly harm soil microbial sustainability and 
the assistance provided by the afflicted organisms. Nowa-
days, several genetically modified microorganisms (GEMs) 
are used for heavy metal bioremediation of soil and water 
(Paliwal et al. 2012; Sharma et al. 2021). GEMs are com-
petent microorganisms that bioremediate various ranges of 
contaminants (Ojuederie and Babalola 2017). To improve 
the capability of bacteria for bioremediation, several strate-
gies have been developed. Desirable properties are added to 
the microorganism through the transfer of genes, for modi-
fying metabolic pathways (Urgun-Demirtas et al. 2006). 
Microorganisms can be genetically modified with the use 
of genetic engineering techniques. A wide variety of sub-
stances such as heavy metals, pesticides, dyes, oils, radioac-
tive wastes, organic pollutants have been treated with GEMs 
to elevate degradative potential (Pant et al. 2021). Removal 
of pesticides can be done through the expressing plasmid 
gene and chromosome gene in the bacteria. Manipulation of 
gene sequences is based on the basis of genetic interactions 
between toxic compounds and microbes (Jaiswal and Shukla 
2020). Deinococcus radiodurans, a radioresistant bacterium, 
was genetically engineered to metabolize ionic mercury and 
toluene found in radioactive nuclear wastes (Gogada et al. 
2015).

Rhizospheric or endophytic bacterial species obtained 
from the harsh environment can be genetically modified to 
produce specific enzymes and enhance their degradative 
ability against toxic substances. The construction of GEMs 
for bioremediation involves several steps. 1) Identification 
and cloning of efficient degradation genes. 2) Enhancement 
in the expression of enzymes involved in effective degrada-
tion. 3) Construction of super-engineered microorganisms 
degrading various pollutants. 4) Incorporation of genes from 
both parents through protoplast fusion for bioremediation of 
pollutants (Joutey et al. 2013). The advantage of using these 
modified microorganisms having a high degradation capac-
ity within a small amount of cell mass and speeding up in 
recovery of polluted wasteland sites (Abatenh et al. 2017).

Metal regulatory genes possessed by microbes encode 
proteins that convert heavy metals into their low toxic 
forms (Singh et al. 2011). Genetically engineered Escheri-
cia coli strain M109 and Pseudomonas putida consisting of 
the merA gene have been found to be effective in eradicating 
mercury from contaminated sediments and soil (Verma et al. 
2020). Chromium-containing industrial wastewater has been 
remediated through GEMs containing heavy metal degrada-
tion genes. Cadmium at naturally polluted sites can be reme-
diated through genetically modified Bacillus subtilis BR151 
[pT0024] (Ivask et al. 2011). Rhodopseudomonas palustris, a 
recombinant photosynthetic bacterium, has been constructed 

for mercury degradation in wastewater (Verma and Kulia 
2019). Yang et al. 2010 have reported conversion to a non-
toxic form of arsenic through TTHB128 and TTHB127 genes 
that encode enzyme arsenite oxidase produced by Thermus 
thermophilus HB8. For effective phytoremediation, microbial 
genes are introduced and expressed in plants for improving 
heavy metal tolerance (Kumar et al. 2018). E. coli strain 
overexpressing ELP153AR (metalloregulatory protein ArsR) 
has been reported to be remediated arsenic in contaminated 
drinking groundwater (Kostal et al. 2004). The major risk of 
using GMOs is horizontal gene transfer which interferes with 
native microbial genetic structure (Bhayani et al. 2020). “Sui-
cidal genetically engineered microorganisms” (S-GEMS) 
have been introduced to reduce the risk on native microbes 
and ensure a safer effective degradation system (Paul et al. 
2005). Releasing genetically modified microbes into the 
environment can impose potential risks related to safety 
concerns, legislatorial issues, and public perceptions. These 
risks can be minimized by regulatory guidelines provided by 
environmental protection agencies (EPA) and other regulat-
ing bodies. A set of advisory guidelines have been proposed 
to control GEMs by International Technical Guidelines for 
Safety in Biotechnology for microorganisms (Hussain et al. 
2018). Some genetically engineered microorganisms (GEMs) 
used in the bioremediation of metals and metalloids are sum-
marized in Table 5.

Limitations of physicochemical remediation 
and bioremediation

The physicochemical approaches have numerous environmen-
tal hazards. Physicochemical remediation of heavy metal is 
technically challenging and costly, depending on the heavy 
metal involved in contamination. The physicochemical remedi-
ation process is influenced by soil type, and chemical and metal 
content (Khalid et al. 2016). Application of physicochemical 
methods for the removal of metal and metalloid causes extreme 
soil disturbances (mechanical), loss of soil minerals, color, and 
diffusion of refractory cheaters or surfactants in soil. This pro-
cess requires fine soil with low permeability for the effective 
removal of contaminants. With its moderate efficacy in perfor-
mance, intoxicant removal, much human power is needed in 
the application of the physicochemical method. Although they 
are rapid, effective, and conventionally used, they are uneco-
nomical and time-consuming. These processes are laborious 
but can be applied at the highly contaminated site. They dete-
riorate soil properties and disturb soil’s native flora and fauna 
(Ali et al. 2013). The existing physicochemical technologies 
also generated hazardous waste that necessitates their proper 
disposal in a regulatory manner.

Bioremediation  is cost-effective, effective, eco-
friendly, solar-driven, novel, and an efficient alternative to 
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abolishing heavy metals. Bioremediation consumes much 
time compared to other treatment options, such as excava-
tion and removal of soil from contaminated site. Biore-
mediation process is largely specific and limited up to the 
biodegradable compounds only. The process of bioremedi-
ation takes place in the presence of metabolically capable 
microbial populations, suitable environmental growth con-
ditions, and adequate levels of nutrients and contaminants 
at the contaminated sites. Too much effort is required to 
scale up of bioremediation from bench- and pilot-scale 
studies to full-scale field operations. More research is 
required to develop and advance bioremediation technolo-
gies that are appropriate for sites with complex mixtures of 
contaminants that are not evenly distributed in the environ-
ment, i.e., it may be present as solids, liquids, and gases. 
Regulatory uncertainty about completion of remediation is 
major drawback of bioremediation because we are unable 
to 100% sure about completion of metal and metalloids 
remediation at contaminated site, as there is no known 
definition of clean. Along with that performance evalu-
ation of bioremediation is very complex, and there is no 
fixed endpoint for bioremediation treatments. Merits and 
demerits of different bioremediation techniques are dis-
cussed in Table 6.

Future prospective

Cleaning up of soil is a challenging venture due to the com-
plexities of heavy metal/metalloids presence along with 
financial and technical implications. Based on the references 
cited, we are able to say that each bioremediation technique 
has its own merits and demerits. Phytoremediation will not 
only provide a link between researchers and farmers but 
also improves the economy of developing countries. The 
choice of bioremediation will be based on the level of met-
als and metalloids at the site of soil pollution. Rhizoreme-
diation metabolizes the metals and metalloids present in the 
rhizospheric region and acts as a plant growth-promoting 
process. Metals and metalloid removal through edible mush-
rooms enables waste accumulation and production of pro-
teinaceous food. Vermiremediation is an economically and 
environment-friendly technology that can accelerate the 
process of micro- and phytoremediation in combination. 
Nanobioremediation is an effective approach to designing 
novel catalysts and adsorbents for the metabolism of heavy 
metals and metalloids. Cited references advocate the rapid 
removal of metals and metalloids at the contaminated site by 
the application of genetically modified organisms by genetic 
engineering technique. Many genes responsible for heavy 

Table 5  Some genetically engineered microoorganisms (GEMs) used in bioremediation

Heavy metal Year of study Microorganism Bioaccumulative capacity**(DW, 
dry weight)

References

Nickel and Cobalt 2013 Escherichia coli JM109 0.88 mgNi gDW − 1 Krishnaswamy and Wilson 2000
2014 Escherichia coli K-12 MG1655 4.8 mgCo gDW − 1, 6 

mgNi gDW − 1
Duprey 2014

2015 Deinococcus radiodurans R1 0.012 mgCo gDW − 1 Gogada 2015
Arsenic Sp 2013 Escherichia coli BL21 (DE3) 5.24 mgMMA gDW − 1 3.92 

mgDNA gDW − 1
Yang et al. 2013

2014 Corynebacterium glutami-
cum 13,032

2.16 mgAs4 + gDW − 1 Villadangos et al. 2014

Cadmium 2013 Escherichia coli BL21, MG1655 7.5 mgCd gDW − 1 Chang and Shu 2013
2015 Escherichia coli BL21  ~ 6 mgCd gDW − 1 Gong et al. 2015

Copper 2017 Saccharomyces cerevisiae BY4743 103.3 mgCu gDW − 1 Geva et al. 2016
Mercurial Species 2011 Rhodopseudomonas palus-

tris GIM1.167
77.58 mgHg gDW − 1 Deng and Jia, 2011

2018 Escherichia coli 4.012 mgHg gDW − 1 Shahpiri and Mohammadzadeh 
2018

Uranium 2013 Deinococcus radiodurans R1 10,700 mgU gDW − 1 Kulkarni et al. 2013
Multi Metal 2012 Escherichia coli TB1, BL21(DE3), 

LF20012
1.51 mgCd gDW − 1 0.4

9 mgAs3 + gDW − 1 0.
31 mgCu gDW − 1 0.94 
mgHg gDW − 1 1.79 
mgPb gDW − 1

Sauge-Merle et al. 2012

2014 Escherichia coli BL21 (DE3) 0.13 mgCd gDW − 1 0.057 
mgCu gDW − 1

He et al. 2014

2015 Escherichia coli Rosetta (DE3) 2.24 mgCd gDW − 1 12.39 
mgCu gDW − 1 0.82 
mgHg gDW − 1

Li et al. 2015
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metals/metalloids resistance involved in enhanced expres-
sion of the selected protein can be incorporated into many 
more plant or microbial cells to resist heavy metal contami-
nation. Legal and environment-safe application of chelat-
ing agents along with genetically engineered plant/micro-
bial systems can be done through an effective transgenic 
approach. The invention of the enzyme-based biosensor is 
needed for rapid detection and detoxification of metal/met-
alloids from polluted soil. It remains interesting to explore 
the role of various microorganisms in the methylations, 
reduction, and oxidation of various metal compounds. This 
ensures a high potential application in the future. Along with 
it, awareness of various metabolic pathways used by biologi-
cal organisms in remediation is required for the enhancement 
of bioremediation processes.

Conclusions

Contamination of soil by heavy metals and metalloids is 
a global concern. Reliable and economical remediation 
techniques are needed to protect soil quality and fertility. 
For effective clean-up of heavy metal polluted sites, vari-
ous physical, chemical, and biological methods have been 
developed. In this review, we have explained briefly the 
various biological remediation techniques. The heavy metal 
remediation by various strains of bacteria, fungi, plants, and 
earthworms has been explained in detail. The new branch of 
science, i.e., nanotechnology has also been proved an effec-
tive approach for the remediation of various metals. The 
release of secondary contaminants is the main limitation of 
physicochemical remediation techniques. Biological reme-
diation techniques enable us to remove heavy metals from 

Table 6  Merits and demerits of different bioremediation techniques

Bioremediation techniques Merits Demerits

Phytoremediation Low capital cost
Sustainable
Effective bioremediation of organic contaminants
Effective bioremediation of heavy metals such as Cd, As, 

Zn, Pb, Hg, Cu, Mn
Effective accumulation of heavy metals

High contamination limits the speed of remediation
Increases phytotoxicity
Depends upon climate and characteristic of soil
Contaminants may enter environment by litter effects

Phycoremediation Algae require low nutrient for survival
Produce large amount of biomass
Cost reliable technique for wastewater treatment
Effective in bioremediation of Cd, Cu, Pb, Cr, Fe, Ni

Expensive to harvest algal biomass
Limited for large-scale clean-up

Rhizomediation Higher rate of contaminant degradation than phytoreme-
diation

Bioremediation of Hg, Te, Tn, Se, Pb, Sb, As

Influenced by various physicochemical and biologi-
cal factors such as temperature, pH, soil conditions, 
microbial communities, aeration, content of organic 
matter, exudation rate, age of the plant, nutritional 
requirements, and contaminants contents

Mycoremediation Fungus adapts to various adverse environments
Degradation of various pollutants such as PAHs, pharma-

ceutical wastes, agricultural and heavy metals
Improves plant biomass production
Secretion of organic acids helps to tolerate high number 

of heavy metals

Process is controlled by soil type, pH, temperature, 
organic matter content, concentration and nature of 
heavy metals

Vermiremediation Earthworms can resist high concentrations of soil pollut-
ants

Degrade non-recyclable chemicals
Low-cost technology
Improves soil fertility

Proper care and attention for worms
Requires maintenance of moisture level for worms

Nanobioremediation New safer and sustainable technique for persistent organic 
compounds and heavy metals remediation

Quick and efficient performance with minimized adverse 
effects

Synthesis of nanoparticles by biological enzymes may 
render the desired characteristic of it

Bacterioremediation Thermophilc, acidophilic and presence of gene resistance 
to heavy metal/metalloids make them perfect choice for 
genetic engineering

Environmental variability may hinder the remediation 
process

Genetically modified organ-
isms (GMOs)

Competent microorganisms that bioremediate various 
range of contaminants

High degradation capacity within a small amount of cell 
mass

Speed up in recovery of polluted waste land sites

Costly compared to other bioremediation process
Risk on native microbes
Potential risk related to safety concerns, legislatorial 

issues, and public perceptions
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the large contaminated area without disturbing soil quality. 
It is a less destructive, eco-friendly, safe, and cheap method. 
Further basic and field-scale research-based technology is 
required to develop fast, effective, eco-friendly bioremedia-
tion techniques.
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