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Abstract
Recently gravity data modeling plays an important role in the study of volcanic activity and geothermal investigation. 
Generally, gravity data modeling assumes the subsurface either homogenous or spatially variable densities within modeled 
source rocks and surrounding sediments. As a result, the subsurface geothermal and volcanic goals and targets are included 
and validated using simple-geometric sources in gravity data modeling. The Bat algorithm, which is considered one of the 
most recently, developed metaheuristic algorithms in geophysics applications, permits to discovery and delineation of the 
source’s parameters. Here, we presented the contribution of the Bat algorithm technique in elucidating 2D gravity profiles 
for geothermal exploration and volcanic activity cases. The Bat algorithm is based on the echo-location behavior of bats to 
perform global optimization. The Bat optimization algorithm is applied to 2D gravity data to estimate the source’s param-
eters such as depth, origin location, amplitude factor, and geometric shape of the causative buried body. The stability and 
efficiency of the introduced optimizing algorithm were checked to different synthetic cases, i.e., for model 1, which repre-
sents a horizontal cylinder model, and model 2 represents a multi-sources effect. Furthermore, the successful applications of 
the proposed algorithm for discovering the geothermal and volcanic activities in Japan and India were have presented. The 
obtained results are in good agreement with the available geological, geophysical, and borehole information.

Keywords Bat algorithm · Geothermal investigation · Gravity anomaly · Source depth · Volcanic activity

Introduction

Nowadays, gravity data was gathered in large quantities for 
environmental and geological applications, such as oil and 
mineral explorations, groundwater investigations, geother-
mal investigations, and volcanic activity studies. The accu-
rate estimation of the depth to the body sources improves 
in budgeting and preparing drill boreholes and exploration 
programs. In the oil industry, for example, accurate assess-
ments of basement depth are important for understanding the 
basin exploration (the thickness of the sedimentary layer) 
more clearly and reduce the exploration risk factor (Li and 
Oldenburg 1983; Florio 2020). Gravity data are needed 
for oil exploration mapping of sedimentary basins and salt 

structures (Sarsar Naouali et al. 2017; Essa et al. 2021a). In 
mineral and ore exploration, the estimation of the dominant 
orebody parameters (depth, types, shape,…etc.) reduces 
the risk associated with mining and plan for future invest-
ments (Snowden et al. 2002; Sultan et al. 2009; Zhang et al. 
2022). In engineering and environmental studies, the gravity 
method has important uses in exploring, locating, and distin-
guished the subsurface voids, karst, buried hazardous metal 
containers, mapping landfills, delineating abruptly dipping 
geologic contacts and disruptions, visualizing regions of 
potential stress amplifications such as faults (Hinze et al. 
2013; Eshanibli et al. 2021). In geothermal exploration, the 
gravity data elucidation mainly purposes to assess the loca-
tion and depth of the sources, which are crucial to target-
ing the geothermal potential reservoirs anomalies (Athens 
and Caers 2021). In volcanic activities studies, the gravity 
method can clarify the geodynamic process based on their 
temporal variations, which have got up from earthquakes 
and volcanic activity (Lichoro et al. 2019; Casallas-Moreno 
et al. 2021).
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Generally, the gravity method has been receiving atten-
tion in more targets as declared above because it can eluci-
date and visualize the variant anomaly structures. So, several 
methods for the complete interpretation were developed and 
categorized as follows: 1) Conventional and non-conven-
tional methods, which depend on the characteristic distance 
and points, nomograms, matching curves, window and depth 
curves, various types of transformations, minimization algo-
rithms, gradients-based, moving average, Euler deconvolu-
tion, DEXP, fair function minimization (Telford et al. 1990; 
Abdelrahman et al. 2003; Al-Garni 2008; Asfahani and 
Tlas 2012; Essa 2013; Abdelrahman and Essa 2015; Ekinci 
and Yiğitbaş 2015; Hiramatsu et al. 2019; Cooper 2021). 
2) Methods depend on 2D and 3D imaging, modeling, and 
inversion (Zhang et al. 2001; Asfahani and Tlas 2015; Essa 
et al. 2020). 3) Methods used simple geometric shapes such 
as spheres, cylinders, faults, and contacts (Biswas 2015; 
Tlas and Asfahani 2018; Uzun et al. 2020; Essa 2021). 4) 
Methods rely on the application of the global optimization 
algorithms such as particle swarm optimization (PSO), dif-
ferential evolution algorithms (DE), simulated-annealing 
(SA), genetic algorithms (GA), ant-colony optimization 
(AC), gravitational search algorithm (GSA) (Biswas 2016; 
Kaftan 2017; Pallero et al. 2017; Essa and Munschy 2019; 
Essa and Géraud 2020; Rathee and Chhillar 2020; Pace et al. 
2021).

Bat algorithm represents one of the recent proposed 
metaheuristic algorithms simulating the echolocation 
attitude of bats to obtain global optimization in geophys-
ics especially, a potential field. In recent decades, many 
metaheuristic inspiring algorithms have been developed to 
solve complex problems (Mirjalili et al. 2014). For exam-
ple, the genetic algorithm (GA) (Holland 1984; Montesinos 
et al. 2005), the particle swarm optimization (PSO) algo-
rithm (Kennedy and Eberhart 1995; Roshan and Singh 2017; 
Essa 2021; Essa et al. 2021b), the differential evolution (DE) 
algorithm (Storn and Price 1997; Ekinci et al. 2016), the 
simulated annealing (SA) algorithm (Kirkpatrick et al. 1983; 
Biswas 2015), the ant colony optimization (ACO) algorithm 
(Dorigo et al. 1996; Dorigo and Stützle 2003), bee colony 
algorithm (Karaboga and Basturk 2008) dolphin echoloca-
tion (Kaveh and Farhoudi 2013), and gravitational search 
algorithm (Rashedi 2009).

In comparison to traditional optimization techniques, 
these algorithms are common among researchers because 
of their versatility and superior ability to deal with a variety 
of problems. These swarm intelligence algorithms have been 
developed and applied to various real-world problems, but 
the use of the Bat algorithm in geophysical data analysis is 
relatively new (i.e., in seismic refraction; Poormirzaee 2017; 
Poormirzaee et al. 2019). Fister (2013) concluded that the 
Bat algorithm outperforms the PSO after conducting various 
experiments on the implementation of the Bat algorithm. 

Although methods like genetic algorithms (GA) and PSO 
can be quite beneficial, they still have certain limitations 
when it comes to multi-modal optimization issues (Yang 
2013).

The proposed Bat algorithm technique have several 
advantages: One of the key advantages of this technique 
is that it provides highly quick convergence by switching 
from exploration to exploitation at a reasonably early stage. 
This makes it a good choice for applications that require a 
quick response, such as classifications. Bat algorithm may be 

Fig. 1  The schematic diagrams for the different geometrical shapes

Table 1  Definitions of A, q and μ of the idealized bodies shown in 
Fig. 1. σ is the density contrast (gm/cm3), γ is the universal gravita-
tional constant (6.67384 ×  10−11  m3   kg−1   s−2), and r is the radius of 
the idealized body (m)

Case A q μ

Vertical cylinder πγσr2
1∕2 0

Horizontal cylinder 2 πγσr2 1 1
Sphere 4

3
 πγσr3 3∕2 1
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used as both a global and a local optimizer and is capable of 
effectively handling multi-model problems. As the iteration 
advances, Bat algorithm uses the controlling parameter to 
update the parameter. Bat algorithm is committed to preserv-
ing the population's diversity of solutions. The drawbacks of 
the Bat algorithm technique lie in the following items: It has 
a lack of good exploration. It required the parameter tuning 
to achieve better search output. Switching between explora-
tion and exploitation requires a better control strategy.

Finally, the present study aims to infer and elucidate the 
2D gravity data profile acquired over geothermal and vol-
canic areas in different regions in the world to estimate the 
source origin (depth & location) using the Bat algorithm 
technique, which is discussed below.

The structure of the paper organized as follows: “Bat 
algorithm” section covers the fundamentals of echolocation 
as well as the conventional formulation of the Bat algorithm. 
The “Forward modeling” section describes the modeling and 
formulation of the proposed Bat algorithm. The “Methodol-
ogy” section provides the methodology of the proposed Bat 
algorithm to invert gravity data. The “Synthetic datasets” 

section discusses the synthetic dataset examples accuracy 
and efficiency. The “Field datasets” section discusses the 
applicability of the proposed Bat algorithm to various field 
data examples. Finally, “Conclusions” section is drawn.

Bat algorithm

Bat algorithm (BA), which is a natural-inspired metaheuris-
tic algorithm, was introduced by Yang (2010). The echo-
location actions of micro-bats inspired this algorithm. 
Micro-bats use echolocation to locate their nest in the dark, 
avoid obstacles, and track prey. Bats release a very noisy 
sound pulse within 8 to 10 kHz in range and then listing 
to an echo backing from nearby objects. Every pulse is a 
few thousandths of a second long (up to about 8 to 10 ms). 
When bats are close to prey or an object, their pulses rate 
increases while their sound volume decreases (Yang 2010). 
As a result, the echolocation activity of micro-bats can be 
expressed in a way to optimize objective functions. The 
main rules of the Bat algorithm can shorten in three stages: 
first, Bats are applying the echolocation to assess distance; 

Fig. 2  Bat algorithm (BA) 
pseudo-code (modified after 
yang 2010)

Define Objective Function FObj (xj) [equation (8)]
Initialize the bat population Xi (i = 1, 2, ..., n) and Vi
Define pulse frequency Qi at Xi

Initialize pulse rates ri and the loudness Li

while (t < Max number of iterations)
Generate new solutions by adjusting frequency, and updating velocities 
and locations/solutions [equations (2) to (4)]
if (rand > ri)

Select a solution among the best solutions Generate a local 
solution around the selected best solution

end if
Generate a new solution by flying randomly
if (rand < Li & FObj (Xi) < FObj (Xbest) )

Accept the new solutions
Increase ri and reduce Li

end if
Rank the bats and find the current Xbest

end while
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second, Bats are locating their sources objects by flying at 
a stable frequency in a range of  [Qmin,  Qmax] with an initial 
speed (Vi) at position (Xi); and third, the loudness (Li) and 
rate of pulse emission (ri) which depend on the distance 
between the bat and the source.

The wavelength spectrum  [Kmin,  Kmax] refers to the fre-
quency range  [Qmin,  Qmax]. For an optimization problem, 
changing the frequency or wavelength may be used to 
change the movement range of bats (Eqs. 1–3). The selec-
tion of a suitable frequency or wavelength range is critical, 
and it should select to be equal to the scale of the domain of 
awareness before toning down to smaller ranges. The spec-
trum of [0, 0.5] was calculated as the optimal frequency 
range in this analysis after the code runs with various values. 
The pulse rate, ri, can be simply in the range [0, 1], which 0 
denotes no pulse and 1 is the maximum pulse emission rate. 
The range is determined by the target's proximity. Moreover, 
the initial loudness, i.e., Li, can be normally within the range 
[1, 2] (Yang 2010). The loudness of the bats decreases as 
they approach their prey, whereas the rate of pulse emission 
increases. Only if the new solutions improve can the Bat 
algorithm update the loudness and emission rates, indicat-
ing that the bats are approaching the optimal solution (Fister 
2013; Eqs. 4–5). The equations below presented the relation-
ship between algorithm parameters (Yang 2010).

where, Qi is the frequency of ith bat and updated in every 
iteration, � is a random vector of uniform distribution within 
a range [0, 1] and  Xbest is currently the global best solution 
among all bat numbers, � and � are constants, 0 < �  < 1 and 
� > 0 and � is the scaling factor.

(1)Qt
i
= Qmin +

(

Qmax − Qmin

)

�
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i
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i
+ (Xt

i
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t
i
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i
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i
+ V
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Fig. 3  The flowchart shows the public steps of The Bat algorithm 
(BA)
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Fig. 4  Model 1: noise-free theo-
retical example. a The observed 
gravity anomaly generated by 
horizontal cylinder model (True 
model parameters), as well as 
the calculated gravity anomaly 
(Recovered model param-
eters) using the Bat algorithm 
technique, b loudness of the 
bats, c emission rat of the bats, 
d NRMSE of the global best 
solution  (FObj) of the bats versus 
the iteration numbers, and e the 
average NRMSE of all the bats

Table 2  Model-1: True and 
recovered model parameters of 
the noise-free synthetic example 
with corresponding RE and SD 
for each parameter using the Bat 
algorithm

Model parameters True value Search range Recovered 
value

RE (%) SD OFObj

A (mGal.m) 70 10: 100 70 0 30.27 0.0000
z (m) 15 1: 20 15 0 5.91
x0 (m) 0  − 100: 100 0 0 58.60
q 1 0.5: 1.5 1 0 0.50
μ 1 0: 1 1 0 0.70
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Fig. 5  Model 1: Noisy theoreti-
cal example. a The observed 
gravity anomaly generated by 
horizontal cylinder model (True 
model parameters) after added 
20% random Gaussian noise, as 
well as the calculated gravity 
anomaly (Recovered model 
parameters) using Bat algorithm 
technique, b loudness of the 
bats, c emission rat of the bats, 
d NRMSE of the global best 
solution  (FObj) of the bats versus 
the iteration numbers, and e the 
average NRMSE of all the bats

Table 3  Model-1: True and 
recovered model parameters 
of the noisy synthetic example 
(20% random Gaussian noise) 
with corresponding RE and SD 
for each parameters using the 
Bat algorithm

Model parameters True value Search range Recovered 
value

RE (%) SD OFObj

A (mGal.m) 70 10: 100 73 4.28 26.41 0.0009
z (m) 15 1: 20 14 6.66 6.05
x0 (m) 0  − 100: 100 0 0 58.60
q 1 0.5: 1.5 1 0 0.50
μ 1 0: 1 1 0 0.70
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Bat algorithm utilizes a random path to produce new 
results from every chosen best solution in the local search, 
as follows:

where � ∈ [-1, 1] is a random number, and  Lt represents the 
average loudness of all bat numbers at the current stage.

(6)Xnew = Xold + �At

In terms of accuracy and performance, the Bat algorithm 
(BA) outperforms most other algorithms. The bat algorithm 
basically becomes the regular PSO if the frequency vari-
ations are replaced by a random parameter and Li = 1 and 
ri = 1 are set.

Fig. 6  Model-2: Interfer-
ence effect. a The composite 
gravity anomaly generated by 
horizontal cylinder and sphere 
model (True model parameters), 
as well as the calculated gravity 
response of them (Recovered 
model parameters) using the Bat 
algorithm technique, b loudness 
of the bats, c emission rat of the 
bats, d NRMSE of the global 
best solution  (FObj) of the bats 
versus the iteration numbers, 
and (e) the average NRMSE of 
all the bats
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Forward modeling

Gravity anomaly at an observation point,  xj, along a profile 
(Fig. 1) is given by (Salem et al. 2004; Asfahani and Tlas 
2008; Essa 2014):

where xj and x
0
 represent the horizontal locations of the 

measured points and the origin of the buried source, z is the 
depth of the source, q is the shape factor (dimensionless), 
and A is the amplitude coefficient, whose dimension is deter-
mined by the shape factors (q and μ), yielding g in mGal 
units. The definitions of A, q, and μ for the above idealized 
bodies are shown in Table 1.

Materials and methods

In gravity data interpretation, it is essential to obtain accu-
rate results for the subsurface model parameters. There-
fore, an inversion algorithm of large capacities is needed 
to accomplish accepted evaluations of subsurface model 
parameters such as depth, location, the shape of the buried 
body, etc. In various case studies, metaheuristic inversion 
methods have achieved promising results. Most metaheuris-
tic inversion algorithms are quicker, easier, and more effi-
cient than traditional inversion methods.

A new inversion Bat algorithm code was developed. The 
most significant parameters are depth, location, shape of 
the body, in addition to the amplitude coefficient (z, x0, q, 
A). Therefore, the proposed algorithm is searched to find an 
appropriate subsurface model that fits the actual data, i.e., 
assess the best-fit parameters. In general, each bat's location 
in search space represents a solution. Bats hover haphazardly 
in search space and implement a solution to each iteration. 
Each bat's position is determined using the optimum loca-
tions. The best location is the one that has the lowest misfit 
function value, and it is chosen as the best solution  (Xbest). 
The best solutions are then matched, and the best solution 
for every iteration is chosen. This process is repeated a pre-
determined number of times. Finally, after the final iteration, 
the  Xbest is picked as the best solution. The Bat algorithm 
inversion code was first tested on various synthetic models 
in this research. After that, it was tested on real datasets.

The proposed algorithm that is utilized to invert the grav-
ity data constitutes of the following procedures:

First step; The virtual bats’ initial position Xi (i = 1, 2, 
…, N), frequencies Qi, velocities Vi, loudness Li, and the 
pulse rates ri: In the search space, each bat signifies a solu-
tion. Xi represents the variables of the characteristic source 
parameters [i.e., depth (z), origin (x0), Amplitude coefficient 

g
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(A), and shape factor (q)] randomly selected from the search 
space, and Vi represents the velocity for each individual, 
virtual bat.

Second step; Finding the  Xbest.
The objective function (FObj) is defined as the normal 

root-mean-square (NRMSE) misfit error between the 
observed and calculated gravity data anomalies:

(8)
FObj =

100

Max
�

g
obs

�

−Min
�

g
obs

�

�

�

�

�

�

�

N
∑

j=1

�

g
obs − g

cal

�2

N

where, N is the total number of data points, gobs is the 
observed gravity and gcal is the calculated gravity. The gcal 
is calculated by the forward modeling algorithm. Initially, 
Eq. 8 is applied to compute misfits, and then the bat with the 
minimum misfit is selected as the  Xbest.

Third step; While the program still doesn't reach the 
maximum number of iterations operate the following 
instructions:

Fig. 7  Model-2: Noisy inter-
ference effect. a The noisy 
composite gravity anomaly 
generated by data set shown 
in Fig. 6a after adding 20% 
random Gaussian noise (True 
model parameters), as well as 
the calculated gravity response 
of them (Recovered model 
parameters) using the Bat 
algorithm technique, b loudness 
of the bats, c emission rat of the 
bats, d NRMSE of the global 
best solution  (FObj) of the bats 
versus the iteration numbers, 
and e the average NRMSE of all 
the bats
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- Adjust the frequency (Eq.1) and update the velocities and location/solutions to create a new solution (Eqs. 2 and 

3).

- if rand > ri

- choose a solution between the best solution.

- produce a local solution around the picked best solution (Eq.6), where rand represents a random number 

with a uniform distribution.

- end if

- if rand < Li and FObj (Xi) < FObj (Xbest)

- admit the new solutions

- increase ri and decrease Li (Eqs. 4 and 5)

- end if

- Rank the bats and catch the current Xbest

- end while

Table 5  Model-2: True and recovered model parameters of the noisy composite interference gravity anomaly of a horizontal cylinder and a 
sphere model with corresponding RE and SD for each model parameters using the Bat algorithm

Model param-
eters

True value Search 
range

Recovered value RE (%) SD OFObj

Horizontal 
cylinder 
model

Sphere 
model

Horizontal 
cylinder 
model

Sphere 
model

Horizontal 
cylinder 
model

Sphere 
model

Horizontal 
cylinder 
model

Sphere 
model

A
(mGal.m2q−μ)

50 250 10: 300 40 260 20 4 30.27 47.60 0.0058

z (m) 17 13 10: 20 18 14 5.88 7.69 6.05 1.87
x0 (m)  − 50 50  − 100: 

100
 − 50 50 0 0 58.60 58.60

q 1 1.5 0.5: 1.5 1 1.5 0 0 0.50 0.50
μ 1 1 0: 1 1 1 0 0 0.70 0.70

The Bat algorithm basic steps can be outlined in the pseudo-
code illustrated in Fig. 2 and the flow chart shown in Fig. 3.

Results and discussion

Synthetic datasets

The introduced Bat algorithm was tested on two synthetic 
datasets to demonstrate its validity and accuracy in gravity 
data inversion. The synthetic responses are confined to the 
simple class of the geometrical shapes of vertical cylinder, 

horizontal cylinder, and spheres. Then to prove the stability 
of the proposed Bat algorithm inversion approach, the inver-
sions are performed on noisy data as well as interference 
effect model example.

Model 1

First, a noise-free simple synthetic example of a horizontal 
cylinder model has been inspected. The gravity effect of 
a horizontal cylinder model with input parameters: A = 70 
mGal.m, z = 15 m, x0 = 0 m and q = 1 is calculated using 
Eq. (7) with a 201-m long profile (Fig. 4a). Following the 
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procedures of the Bat algorithm technique proposed in 
Sect. 2. Figure 4b shows the average loudness of all bat 
numbers obtained for several iterations. The number of 
iterations is determined based on reaching the minimum 
NRMSE and getting the best solution of the residual grav-
ity anomaly (Fig. 4a). Figure 4c shows the emission rate of 
all bats obtained for every iteration process; the loudness of 
the bats decreases as they approach their prey; while the rate 
of pulse emission increases. Figure 4d shows the NRMSE 
of the global best solution (minimum objective function) vs. 

the iteration numbers. The NRMSE reaches the minimum 
after the 500 iterations process for all bat numbers. Figure 4e 
shows the average NRMSE of all the bats obtained for every 
iteration process.

The global best solution of the gravity anomaly (i.e., 
model parameters) is obtained when the objective func-
tion  (FObj) approaches the minimum of the NRMSE for the 
different iteration processes. Table 2 shows that the recov-
ered model parameters of the proposed noise-free synthetic 
example are identical with the true-model parameters when 

Fig. 8  Simplified geological and tectonic map of the Deccan traps 
(green) and adjacent area showing locations of some important igne-
ous complexes in the NW and central India. Grey color rectangles 

indicate the present study area covering Phenaimata igneous complex 
(after Krishnamurthy et al., 2000; Singh et al. 2014)
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the objective function  (FObj) approaches the minimum. The 
result shows that the proposed Bat algorithm technique is 
stable and talented in recovering the true values of the model 
parameters of the buried model. Also, Table 2 illustrates the 
used search space for every model parameter, relative errors 
(RE), and the standard division (SD) of the given model. 
The search ranges are selected based on the aforementioned 
true-model parameters. Therefore, the search range should 
be approved to simulate more realistic examples where a 
priori information is absent.

A 20% random Gaussian noise has been added to the 
free-noise observed gravity anomaly (Fig. 5a) to test the 
proposed Bat algorithm stability. By applying the pro-
cedures of the Bat algorithm declared-above to the noisy 
data, the best results of the recovered model parameters 
will be corresponding to the minimum objective functions 
 FObj (NRMSE). The loudness and emission rate of the bats 
are shown in Figs. 5b and c. Figures 5d and e depict the 
NRMSE of the global best solution (min objective function) 

and the average NRMSE of all the bats. Table 3 shows that 
the recovered model parameters of the proposed noisy syn-
thetic example (i.e., corresponding to min objective function 
 FObj) are not significant influenced by the contaminated 20% 
random Gaussian noise, and recovered parameters are close 
to the true ones. As a result, it can be inferred that the BA 
technique suggested here is stable concerning for noise. The 
RE and SD of the recovered model parameters are illustrated 
in Table 3.

Model 2

The gravity data of an anomalous buried object can be 
impacted by an interfering effect (that is, the action of sur-
rounding structures) in specific geologic contexts (Mehanee 
and Essa 2015). We computed the composite gravity 
response (using formula (7)) of two surrounding geologic 
objects, namely a horizontal cylinder model with true model 
values [A1 = 50 mGal.m, z1 = 17 m, x01 = -50 m and q1 = 1] 

Fig. 9  Detailed geology and 
physiography of the area around 
Phenaimata igneous intrusive. 
BB' shows profile adopted for 
gravity interpretation using the 
Bat algorithm technique (after 
Hari et al. 2011; Singh et al. 
2014)
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and a sphere model with true model values [A2 = 250 mGal.
m2, z2 = 17 m, x02 = 50 m, and q2 = 1.5], along a profile 
length of 201 m (Fig. 6a) to test this influence on the truth-
fulness of the characteristic parameters estimated from the 
Bat algorithm methodology presented here. Applying the 
procedures of the Bat algorithm technique described-above, 
the calculated gravity response of the two models is obtained 
in Fig. 6a. The obtained average loudness of the composite 
response is shown in Fig. 6b, while the emission rat of bat 
for the composite anomaly is shown in Fig. 6c. The NRMSE 
of the global best solution (min objective function,  FObj) is 
given in Fig. 6d, and the average NRMSE of all the bats is 
shown in Fig. 6e. Figure 6 and Table 4 show that the Recov-
ered model parameters of the two introduced models are 
identical to the true ones. This result supports that the Bat 
algorithm technique is stable in the cases of multi-structures 
relying on the extent of the neighboring effect.

To further investigate the procedure of BA on Multi-
structure and surrounding effect, we contaminated the 
composite gravity response (Fig. 6a) with a noise level of 
20% of random Gaussian noise (Fig. 7a). Figures 7b and c 
present the average loudness and emission rate of the bat 
to the overall composite gravity anomaly, respectively. Fig-
ures 7d and e show the NRMSE of the global best solution 
(min objective function,  FObj), and the average NRMSE of 
all the bats, respectively. Figure 7a and Table 4 illustrate that 
the calculated composite anomaly and the recovered model 
parameters of the two introduced models even after being 
contaminated with noise. Also, they reveal that the recov-
ered model parameters differ slightly from the true ones due 
to the effect of both the surrounded objects and noise. In 
general, the model parameters recovered using BA from the 
noisy interference sources for the first and second models 
are in good matching with the exact values (Table 5). These 
results support and confirm the Bat algorithm method find.

Fig. 10  Bouguer gravity anomaly map of Phenaimata igneous complex, Gujarat, India. + indicates gravity stations. BB' shows profile location 
adopted for gravity interpretation using the Bat algorithm technique (after Singh et al. 2014)
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Based on the numerical models presented above, the 
method described here is stable and appropriate for field 
gravity data interpretation, as explained in the following 
section.

Field datasets

Two field cases for geothermal investigation and volcanic 
activity study are analyzed to examine the applicability of 
the established methodology.

The Phenaimata gravity anomaly, Gujarat, India

The Phenaimata igneous complex lies northern the Narmada 
River and is part of the Narmada-Tapti tectonic zone (NTTZ) 
(Fig. 8). The Narmada rift appears to regulate the position-
ing of this plug-like entity. This intrusive is located 23 km 
southwest of Chhota Udaipur, on the left bank of the Heran 
River (Fig. 9). It's also a bimodal igneous complex, with 
plutonic and volcanic rock types representing tholeiitic and 
alkaline magmatism. Basalt, layered gabbro, diorite, nephe-
line-syenite, lamprophyres, and granophyres make up the 
Phenaimata plug, which is a differentiated igneous complex 

Fig. 11  The Phenaimata 
anomaly, Gujarat, India. a 
The observed gravity anomaly 
profile (blue squares), and the 
calculated best-fitting gravity 
response (red circles) using 
the Bat algorithm technique, b 
loudness of the bats, c emission 
rat of the bats, d NRMSE of the 
global best solution  (FObj) of the 
bats versus the iteration num-
bers, and e the average NRMSE 
of all the bats

Table 6  The Phenaimata anomaly, Gujarat, India. Recovered model 
parameters with the corresponding minimum  FObj and the SD for 
each parameter using the Bat algorithm

Model parameters Search range Recovered 
value

SD OFObj

A (mGal.km2) 800: 1100 960 87.03 0.0002
z (km) 3: 7 5.3 1.58
x0 (km)  − 15: 15 1 8.87
q 0.5: 1.5 1.5 0.50
μ 0: 1 1 0.71
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(Sukeshwala and Sethna 1969; Hari et al. 2011 and 2014). 
The Phenaimata complex is made up of two-thirds basalts 
and one-third alkaline plutonic series. The Phenaimata igne-
ous complex produced orthopyroxene gabbro, according to 
Hari et al. (2011). According to the petrological modeling, 
the origin of gabbroic rocks was caused by magma accu-
mulation in the crust, contemporaneous assimilation, and 
fractional crystallization. Also, reverse magnetization has 
been found in olivine gabbro and syenite rocks and implying 
emplacement toward the end of the major Deccan volcanism 
period in the Phenaimata igneous complex (Basu et al. 1993; 
Poornachandra Rao et al. 2004).

The Bouguer gravity anomaly map in the Phenaimata 
igneous exposure displays an elliptical-shaped anomaly clo-
sure to the North of the complex, with the principal axis of 
the anomalies aligned roughly in the ENE–WSW direction, 
which aligns with the Narmada-Tapti tectonic zone's orien-
tation (Fig. 10). A north–south BB' 30 km long profile was 

taken perpendicular to the closure anomaly of the Bouguer 
gravity map using a 0.5 km sample interval. The BB' resid-
ual gravity anomaly profile (Fig. 11a) was obtained after 
separating the regional anomaly from the BB' Bouguer grav-
ity anomaly profile using a suitable separation technique.

The Bat algorithm methodology was applied to the 
residual gravity anomaly using the probable search range 
of the characteristic parameters (Table 6). Figures 11b and 
c illustrate the average bat loudness and emission rate for 
the residual gravity profile, respectively. Figures 11d and e 
illustrate the NRMSE of the global best solution (min  FObj) 
and the average NRMSE of all bats, respectively. The best 
optimum model parameters correspond to the min  FObj. The 
minimum  FObj is 0.0002 mGal, and the best model param-
eters are [A = 960 mGal.km, z = 5.3 km, x0 = 1 km, q = 1.5, 
and μ = 1], which recommend that the intrusive body of the 
Phenaimata igneous complex anomaly is approximated by 
sphere like model (Table 6).

Fig. 12  Results of 2.5 D joint modeling of Gravity–Magnetic anomalies along N-S profile BB' over the Phenaimata intrusive complex Bougeur 
gravity map. Where ρ is density, S is susceptibility and M is magnetization are given in CGS units (after Singh et al. 2014)
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Fig. 13  Geologic map of the Kusu basin and Shishimuta area of the Hohi volcanic zone, Kyushu, Japan (modified after Kamata 1989b). Dotted 
circles represent the locations of drill holes and opened circles refer to the location of 3000- m deep drill holes with spot coring
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The measured and computed gravity anomalies of the 
Phenaimata igneous complex anomaly are in good agree-
ment, as shown in Fig. 11a. Using a density of the volcanic 
intrusive rock (Gabbro) of 2.86 gm/cm3 and average den-
sity of the surrounding rocks of 2.65 gm/cm3, then the den-
sity contrast (Δρ) is 0.21 gm/cm3 according to Singh et al. 
(2014), the depth to the top will be 2.76 km, which is in 
good agreement with the results obtained by joint modeling 
of Singh et al. (2014) (Fig. 12).

The Hohi volcanic gravity anomaly, Kyushu, Japan

The Hohi volcanic zone in central Kyushu, southwest Japan, 
is a 70 km long, 45 km wide volcano-tectonic depression 
with Plio-Pleistocene volcanic materials widely dispersed 
in an E-W orientation. With a limited amount of volcanic-
clastic material, these volcanic rocks are mostly made up of 
andesitic lava flows and dacitic pyroclastic-flow deposits. 

From around 5 Ma to the present, the Hohi volcanic zone 
provides a strong indication that volcanic activity and sub-
sidence alternated under a regional extensional stress field, 
with the depression mainly remunerated by filling of an 
equal amount of volcanic material (Kamata 1989a, b).

Based on drill-hole, geochronologic, and gravity data, 
the buried Shishimuta caldera was identified beneath post-
caldera lava domes and lacustrine deposits in the center 
of the Hohi volcanic zone. The Yabakei pyroclastic flow, 
which erupted 1.0 Ma ago with a bulk volume of 110  km3, 
is the source of the Shishimuta caldera in the center of the 
Hohi volcanic zone (Fig. 13). The Shishimuta caldera is 
an 8-km wide, 3-km deep breccia-filled funnel depression 
with a V-shaped negative Bouguer gravity anomaly of up 
to 36 mGal (Fig. 14). The andesitic breccia fills the caldera 
and has a relatively low density; it was likely produced by 
fragmentation of disturbed ceiling rock during the intense 
Yabakei eruption and subsequent collapse (Aramaki 1984). 

Fig. 14  Bouguer gravity map of the central part of Hohi volcanic 
zone, Kyushu, Japan. Contour interval is 2 mGals. Assumed density 
is 2.3 g/cm3. The dotted line refers to the location of the Shishimuta 

caldera (modified after Kornazawa and Kamata 1985). The gravity 
anomaly profile (Fig.  15a) subjected to interpretation using the Bat 
algorithm is denoted by AB
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Komazawa and Kamata (1985) and Kamata (1989a, b) intro-
duced a gravity model that defined the V-shaped depression 
with depth to the Pre-Tertiary basement up to 3.8 km below 
sea level.

A NE-SW AB profile was taken normal to the trend of 
the Shishimuta caldera anomaly of the previous Bouguer 

gravity map to be subjected to the BA interpretation proce-
dures (Fig. 15). The AB Bouguer gravity anomaly profile 
with a length of 13.5 km was digitized at 0.1 km sampling 
intervals (Fig. 15a).

The Bat algorithm interpretation procedures have been 
applied to the AB anomaly profile of the Shishimuta cal-
dera of the Hohi volcanic zone using the suitable search 
range of the characteristic parameters. Figures 15b and c 
demonstrate the average bat loudness and emission rate for 
the Bouguer gravity profile, respectively. Figures 15d and 
e demonstrate the NRMSE of the global best solution (min 
 FObj) and the average NRMSE of all bats, respectively. Note, 
the increase in the NRMSE of the objective function  (FObj) is 
due to work directly on the Bouguer gravity anomaly profile 
instead of the residual gravity anomaly profile in the other 
field example mentioned-above. The best interpretive model 
parameters correspond to the min  FObj. The minimum  FObj is 
0.0043 mGal, and the best-recovered model parameters are 

Fig. 15  The Hohi volcanic 
anomaly, Kyushu, Japan. a 
The observed gravity anomaly 
profile (blue squares), and the 
calculated best-fitting gravity 
response (red circles) using 
the Bat algorithm technique, b 
loudness of the bats, c emission 
rat of the bats, d NRMSE of the 
global best solution  (FObj) of the 
bats versus the iteration num-
bers, and e the average NRMSE 
of all the bats

Table 7  The Hohi volcanic anomaly, Kyushu, Japan. Recovered 
model parameters with the corresponding minimum FObj and the SD 
for each parameter using the Bat algorithm

Model parameters Search range Recovered value SD OFObj

A (mGal.km)  − 105: − 205  − 145 29.58 0.0043
z (km) 1.5: 10.5 3.9 2.64
x0 (km)  − 6.1: 7.3 0.15 3.91
q 0.5: 1.5 0.5 0.50
μ 0: 1 0 0.71
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[A = -145 mGal.km, z = 3.9 km, x0 = 0.15 km, q = 0.5, and 
μ = 0], which recommend that the source of the Shishimuta 
caldera anomaly is approximated by vertical cylinder-like 
model (Table 7). Figure 15a shows great matching between 
the observed and calculated anomaly.

Drill holes outside Shishimuta caldera (boreholes with 
dotted circles; a – k in Fig. 13) encounter Pre-Tertiary rocks 
at depths of 2.0—2.5 km (Sasada 1984; Tamanyu 1985). 

While drill holes up to 3 km deep within the caldera (bore-
holes with opened circles; y and z in Fig. 13), on the other 
hand, penetrate Plio-Pleistocene volcanic rocks instead of 
Pre-Tertiary materials (MITI 1986). According to depth 
modeling to gravity basement of the caldera, Komazawa and 
Kamata (1985) and Kamata (1989a, b) suggest the Pre-Ter-
tiary rocks lie about 3.8 km underneath the surface (Fig. 16). 
The proposed technique of BA interpreted the depth to Pre-
Tertiary basement rocks of the caldera about 3.9 km, which 
agree very well with the drilling and modeling information 
of Kamata (1989a, b) and Komazawa and Kamata (1985).

Conclusion

Estimation of an appropriate and precise model for repre-
senting the subsurface structures is critical in gravity data 
interpretation. The inversion process, which involved model 
parameter estimation, represents the main stage in the geo-
physical data analysis and interpretation and produces an 
appropriate model relying on the physical characteristic of 
the deliberated environment. A new metaheuristic algorithm 
called the Bat algorithm, based on the echolocation behav-
ior of bats, was applied to gravity data to obtain the best 
convenient characteristic parameters and discover a satisfac-
tory model. The best-interpreted model parameters (depth, 
origin location, amplitude coefficient, and geometric shape 
factor) are obtained corresponding to the minimum objec-
tive function after reaching the global best solution. The BA 
technique does not require a priori information; The devel-
oped inversion technique of the BA is simple, fast, accurate, 
and easy to be applied to gravity datasets. Furthermore, the 
appropriate efficiency and accuracy of the proposed BA 
technique have been confirmed on synthetic datasets with 
noise-free & noisy examples, as well as on multiple struc-
tures to test the interference effect. Finally, the BA technique 
is successfully applied to two field data examples from India 
and Japan for geothermal exploration and volcanic activity 
study. The inverted outcomes of the BA technique are found 
in good agreement with the available drilling & geological 
information and the published literatures. We concluded that 
the proposed technique is helpful in geothermal investiga-
tions and the study of volcanic activity and we recommend 
that the proposed technique of BA can extend to mineral & 
ore exploration in future studies.

Fig. 16  Interpretive N-S profile of the Shishimuta caldera (modified 
after Kamata 1989b)
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