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Abstract
Acorn pericarps of the Algerian holm oak (Quercus ilex) constitute a largely underexploited forestry co-product. In the aim of valoriza-
tion, adsorption efficiencies of crude, parietal, and lignocellulosic fractions of acorn pericarps were evaluated towards lead, cadmium, 
nickel, and copper ions. The results were modeled using Langmuir and Freundlich isotherms. The best results were obtained with the 
lignocellulosic fraction towards lead and cadmium with qmax values of 370.37 and 303.03 mg.g−1, respectively. On the contrary, crude 
and parietal fractions showed the highest capacities for nickel and copper, with qmax values of 200 and 303.03 mg.g−1, respectively. This 
work thus provides the first trial of acorn pericarps of oaks growing in northwest Algeria as an efficient biosorbent for the removal of 
metallic cations from aqueous solutions, whose adsorption capacities surpass most of the previously described biosorbents.
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Introduction

Water pollution by metallic trace elements (MTE) is of great 
environmental concern. MTE such as cadmium, copper, mer-
cury, lead, nickel, and zinc, present in various industrial effluents, 
appear on the high-priority list of hazardous pollutants in water 
and soil (Ahmaruzzaman and Gupta 2011; Sharma et al. 2019).

The use of agricultural and industrial wastes to purify waste-
water has been the subject of several in-depth studies (Bailey et al. 
1999; Mohan et al. 2014; Vikrant et al. 2018) which showed that 
biosorption is a cost-effective tool for wastewater treatment. These 
materials are inexpensive, available at large scale and reusable 

(Barka et al. 2013). Successful adsorption of metal ions by agri-
cultural waste mostly depends on their lignocellulosic content; 
solvent-exposed phenol and carboxylate groups of lignin consti-
tute major fixation sites for MTE (Haroon et al. 2017). In addi-
tion, unconventional biosorbents have also been evaluated, which 
were obtained by chemical modification of raw materials, e.g. by 
increasing the number of surface carboxyl groups (Astier et al. 
2010; Hachem et al. 2012; Wang et al. 2016). However, the prac-
ticality of these methods is limited by the use of toxic substances 
and/or organic solvents, expensive equipment, and lengthy proto-
cols (Yeo et al. 2012). Therefore they do not offer real advantage 
over conventional methods.

Oaks (Quercus) represent an important forest resource in Alge-
ria since they account for about 40% of the Algerian forest (Louni 
1994). Among the several species of the Quercus genus, the domi-
nant one in Algeria is the holm oak (Quercus ilex) (Hochbichler 
1993; Solymos 1993). Acorns, called achenes, are made up of 
two starchy cotyledons which constitute the edible part. They are 
consumed either alone or mixed with wheat couscous semolina 
(Charef et al. 2008). Pericarps are considered as a waste. In the 
course of our studies on the valorization of natural products, we 
have been interested in studying acorn pericarps with the aim of 
developing a simple, efficient, and environmentally friendly tech-
nique for the removal of trace metals from water. The chemical 
composition of acorn pericarps, and more precisely their phe-
nolic and carboxylic acid contents, highlights their high cation-
exchange capacity. The present work describes for the first time 
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the adsorption capacities of different fractions of acorn pericarps 
from Q. ilex—the crude, parietal and lignocellulosic fractions—
towards four trace metallic cations: lead, cadmium, nickel, and 
copper.

Materials and methods

Plant material

Due to its abundance in the North-West Algeria forest, the 
acorn species (Q. ilex) was chosen, and acorns samples were 
collected in December 2016 in the Saida region (34°48′45.5″N 
0°09′43.5″E). After cleaning, pericarps were manually detached 
from acorns, then dried in a ventilated oven (40 °C), milled (parti-
cle size < 200 µm), and stored in desiccators at room temperature.

Preparation of the biosorbents

Parietal (R1) and lignocellulosic (R2) fractions were isolated 
from pericarps (R0) according to the methods of Bailey 1967 
and Carpita 1984 (Fig. 1). Briefly, the milled powders were sub-
jected to 80% ethanol (v:v) extraction at 90 °C with continuous 
stirring for 20 min. The solid residue (parietal fraction R1) con-
sisted of cellulose, pectin, hemicelluloses, and lignin. Pectins 
were removed from R1 by two successive extractions, first with 
 H2O at 100 °C for 20 min, and then with 1% ammonium oxalate 
at 85 °C for 2 h. R2, the lignocellulosic fraction of pericarps, 
was finally obtained after removal of hemicelluloses from R1 
by two successive extractions, first with 4.3 M KOH and then 

4.3 M NaOH at 22 °C for 24 h. During all these fractionation 
steps, the same method of separation of the solid residue from 
the solution was used: filtration on sintered glass (porosity 3).

Batch biosorption experiments

Solutions of MTE were prepared by dissolving cadmium nitrate 
(Cd(NO3)2), lead nitrate (Pb(NO3)2), copper nitrate (Cu(NO3)2), 
and nickel nitrate (Ni(H2O)6(NO3)2) in Milli-Q deionized water 
(Millipore system). Adsorption experiments were conducted by 
stirring 0.1 g of each fraction (crude, parietal or lignocellulosic 
fraction) with 50 mL MTE cation solution in the following con-
centration ranges: 0–2,000 mg.L−1 for Pb(II), and 0–1,000 mg.
L−1 for Cd(II), Ni(II) and Cu(II). The pH of these solutions 
was adjusted to 5.0 by dropwise addition of 0.1 N  HNO3. The 
flasks were placed on an orbital shaker platform and shaken at 
250 rpm. After 2 h of equilibration at room temperature, the 
biosorbent was separated from the solution by vacuum filtration 
through a sintered glass filter (porosity 3).

Metal ion quantification

Residual MTE concentrations infiltrates were determined by flame 
atomic absorption spectrometry with a Perkin Elmer Analyst 400 
spectrophotometer; wavelength was set at 217.0, 228.8, 341.1, 
and 216.6 nm for lead, cadmium, nickel, and copper, respectively. 
Standards were made up in the following concentrations ranges: 
lead: 0.5–10 mg.L−1 cadmium: 0.5–3 mg.L−1, nickel: 1–15 mg.

Fig. 1  Isolation of the lignocel-
lulosic fraction residue from 
acorn pericarp
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L−1, copper: 0.5–5 mg.L−1. Adsorption capacity was obtained from 
Eq. 1 (Hameed et al. 2008)

where qe is the equilibrium adsorption capacity expressed 
in mg of cation per g dry weight of biosorbent (mg.g−1), V 
is the volume of the heavy metal solution (L), Ci and Ce are 
the initial and final free heavy metal concentration (mg.L−1)
before and after incubation, respectively, and W is the dry 
weight of biosorbent (g).

Results and discussion

Yield of pericarp fractions

The results obtained show that the yield of parietal residues or 
cell wall residue from pericarp is important since it represents 
88.9% of the dry mass of the Q.ilex pericarps (Table 1). The 
lignocellulosic residue remains the major component of the 
cell wall (nearly half of the initial dry mass), confirming the 
secondary nature of the walls. Our previous work indicated that 
the cell wall of the holm oak pericarp contains also pectins and 
hemicelluloses (Mébarki et al. 2019a). The biosorption phenom-
enon is generally presented as an exchange between the metal 
cations present in solution and protons of the solvent-exposed 
surface of lignocellulosic or polysaccharidic materials such as 
the carboxylic acid functions of pectins (Thakur et al. 2019), or 
the phenolic functions of condensed tannins (Qiu et al. 2019) 
and lignins (Li et al. 2016). Other constituents might also be 
involved, notably hemicelluloses or cellulose (Dhabhai et al. 
2018).

Batch biosorption studies

Biosorption isotherms

The experimental isotherm at adsorption equilibrium is represented 
by plotting the adsorbed quantity qe (mg.g−1) against Ce (mg.L−1) at 
constant temperature. The isotherms of metallic cation adsorption 
on the crude, parietal, and lignocellulosic fractions of the pericarp of 
Q.ilex are shown in Fig. 2. According to the classifications proposed 

(1)qe =
(Ci − Ce)V

W

by Brunauer et al. (1940), the adsorption isotherms obtained with 
the different fractions, whatever the MTE studied are of types II 
and III, and they are generally observed for adsorbents with a wide 
range of pore sizes. For each system, there is a continuous pro-
gression with the creation of adsorption multilayers. This is due to 
capillary condensation in the mesopores. It could also be mentioned 
that an absorption process might occur and so could contribute to 
the retention of MTE by the biosorbent. Brunauer et al. (1940) 
proposed a classification of physical adsorption isotherms into five 
classes, based on van der Waals’ theory of adsorption. Class I cor-
responds to the so-called “Langmuir isotherm” and type II and III 
to the “sigmoid” isotherm (Balbuena and Gubbins 1992). A quick 
analysis could result in misinterpretation of the results. Indeed, if at 
first sight, the curves described differ only moderately, the math-
ematical interpretation of these data according to the Langmuir and 
Freundlich models allows the characterization of the adsorption 
mode of each one of the different cations on the different residues 
of pericarps.

Isotherm models

Isotherm models are generally studied to describe the adsorption 
process and the related mechanisms (Haroon et al. 2017). Langmuir 
and Freundlich are two widely used models of isotherms.

The Langmuir adsorption model (Langmuir 1918) assumes that 
ligands adsorb as a monolayer at active homogeneous sites on the 
adsorbent surface and that these adsorbed ligands do not interact 
with each other. Langmuir’s Eq. (2) and its linearization (3) are as 
follows:

where: qe: the amount of trace element adsorbed by the 
adsorbent at equilibrium (mg of ions per g of biosorbent); 
qmax: the maximum adsorption capacity (mg of ions per 
g of biosorbent); KL: the Langmuir equilibrium constant 
that reflects the affinity between adsorbent and the ligands 
(L.mg−1); Ce: the concentration of metal ions in solution at 
equilibrium (mg.L−1).

Another useful parameter in Langmuir equation is RL, the degree 
of suitability, that describes the properties of the equation. RL is 
defined by Eq. (4):

The value of RL is representative of the state and quality of the 
adsorption isotherm model. If RL > 1, RL = 0, RL = 1 and 0 < RL < 1, 
the process is considered to be unfavorable, irreversible, linear or 
favorable, respectively (Foroutan et al. 2019; Vafakhah et al. 2016).

(2)qe =
qmax.KL.Ce

1 + KL.Ce

(3)
1

qe
=

1

qmax

+
1

KL.qmax

.
1

Ce

(4)RL =
1

1 + KL.Ci

Table 1  Fraction yields from acorn pericarp of Q.ilex 

*Percentage weight of the 15  g starting pericarps powder (dry 
weight)
**Weight % from the cell wall residue

Residue of cell wall (R1)* Lignocellulosic residue 
(R2)**

Yields (%) 88.9 ± 2.30 48.9 ± 8.5
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The Freundlich isotherm is frequently used to describe adsorption 
on heterogeneous surfaces (Freundlich, 1906). It is described by the 
following equation:

where qe (mg.g−1) is the amount of trace element adsorbed 
at equilibrium, Ce (mg.L−1) is the concentration of the metal 
ion in solution at equilibrium. KF and n are indicators of 
adsorption capacity and intensity, respectively (Vafakhah 
et al. 2016). KF and n can be determined from the linearized 
plot of log qe versus log Ce as follows:

Figures 3 and 4 show the Langmuir and Freundlich equilib-
rium diagrams obtained from lead, cadmium, nickel, and copper 

(5)qe = KF.Ce
1∕n

(6)log qe = log KF +
1

n
logCe

adsorption on the different residues. The values of the constants 
and other parameters of the two models are listed in Table 2.

The results obtained showed that in the cases of lead and cad-
mium, the highest value of the retention capacities (qmax) was 
obtained with the lignocellulosic residue, (370.37 mg.g−1 and 
303.03 mg.g−1, respectively). These results surpass those obtained 
by Hachem et al. (2012) in the same experimental conditions with 
Douglas fir barks whose measured qmax were 213.37 mg.g−1 (lead) 
and 67 mg.g−1 (Cadmium) after chemical modifications. Fur-
thermore, these results surpass those of Li et al. 2016 who have 
reported maximum adsorption capacities of 325.2 and 257.2 mg.
g−1 for these two ions, respectively, with thiosemicarbazide-mod-
ified chitosan.

On the contrary, for nickel, the highest qmax value, 200 mg.g−1, 
was obtained with the crude residue, these results remain high com-
pared to those obtained by Siti et al. (2013) with nickel on banana 
peel, rice straw, and tea waste with 6.88, 35.08 and 15.26 mg.g−1 

Fig. 2  Lead, cadmium, nickel and copper adsorption isotherms on crude (R0), parietal (R1) and lignocellulosic (R2) fractions of acorn pericarp of 
Quercus.ilex 
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respectively. Adsorption capacities of copper were the highest on 
parietal residues with qmax = 303.03 mg.g−1; this value was much 
higher than those recently achieved with other adsorbents for the 
removal of copper from aqueous solutions (Mébarki et al. 2019b; 
Moreira et al. 2019; Roozegar and Behnam 2019), with adsorption 
capacities ranging from 12.58 to 53.76 mg.g−1.

In the present study, adsorption capacities were overall higher 
than those reported for other biosorbents cited in the literature 
(Table 3).

The RL values displayed in Table 2 (ranging from 0.27 to 0.80) 
for the different residues (crude, parietal and lignocellulosic frac-
tions) of pericarp acorn indicate that these materials are favorable 
for adsorption of the metallic trace element (0 < RL < 1). In terms 
of affinity, the values (KL) between 0.005 and 0.047 L.mg−1 are 
broadly similar.

The variability of retention capacity as a function of the residue 
and the metal cation tested attests to sorbent selectivity which may 

rely on the physical and chemical characteristics of metal cations 
(ionic radius, polarizability, hydration energy). According to the 
HSAB theory (Pearson 1987) lead is considered as a medium-
strength acid and cadmium as a soft acid. The latter therefore has 
a stronger affinity for hydroxyl functions as compared with lead, 
which in turn has a stronger affinity for medium sites such as 
aromatic rings, which is why the interaction with lignocellulosic 
residues is more favorable in the case of lead than in the case of 
cadmium. However the lead cation has an ionic radius of 0.132 nm 
while those of the Cd, Cu, and Ni ions are 0.097, 0.096, and 
0.069 nm respectively (Panayotova and Velikov 2002), so the latter 
(Ni) can more easily access the more congested sites. The structure 
of the crude fraction (R0) is denser and probably less porous than 
those of the parietal and the lignocellulosic fractions. This is why 
the retention capacities of Ni are higher than those of the other three 
cations.

Fig. 3  Langmuir linearization of lead, cadmium, nickel and copper adsorption on the crude (R0), parietal (R1), and lignocellulosic (R2) fractions 
of acorn pericarp of Quercus ilex 
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Fig. 4  Freundlich linearization of lead, cadmium, nickel and copper adsorption on crude residue (R0), parietal residue (R1), and lignocellulosic 
residue (R2) of acorn pericarp of Quercus.ilex 

Table 2  Langmuir and 
Freundlich parameters for MTE 
adsorption with the different 
fractions (crude, parietal and 
lignocellulosic fractions) of 
pericarp acorns of Q.ilex 

The maximum value obtained for each element either for Qmax(Langmuir isotherm) or KF (Freundlich iso-
therm) are indicated in bold

Metals Biosorbent Langmuir isotherm Freundlich isotherm

qmax (mg.g−1) KL (L.mg−1) R2 RL KF 1/n n R2

Lead R0 111.11 0.029 0.86 0.40 5.24 0,57 1.74 0.94
R1 142.85 0.012 0.92 0.62 2.81 0.69 1.44 0.97
R2 370.37 0.022 0.97 0.47 0.85 0.97 1.03 0.95

Cadmium R0 119.04 0.006 0.98 0.76 2.08 0.64 1.56 0.91
R1 66.66 0.005 0.92 0.80 0.82 0.72 1,38 0.89
R2 303.03 0.007 0.98 0.74 0.48 0.80 1,25 0.93

Nickel R0 200 0.007 0.98 0.74 1.99 0.80 1,25 0.98
R1 106.38 0.013 0.97 0.60 1.44 0.85 1,17 0.99
R2 50 0.047 0.78 0.29 1.69 0.81 1,23 0.92

Copper R0 69.44 0.027 0.97 0.42 3.09 0.59 1.69 0.96
R1 303.03 0.006 0.80 0.76 0.12 1.18 0,84 0.90
R2 71.94 0.008 0.90 0.71 0.74 0.86 1.16 0.96
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Based on the correlation coefficients (R2) presented in Table 2, 
it can be concluded that the Freundlich model is adequate to 
model the isotherms of copper, nickel and lead adsorption on the 
different residues of the pericarps, (R2)ranges between 0.90 and 
0.99. Therefore, among the two models used, the Freundlich iso-
therm model better matched experimental data, since the correla-
tion coefficients R2 ranged from 0.78 to 0.98 with the Langmuir 
model.

The highest of the 8 calculated KF values were recorded with 
the crude fraction of acorn pericarp which reached 5.24 mg.g−1 
for lead. This indicates a high adsorption capacity. Also, the values 
of 1/n lie between 0.57 and 0.8 which are close to zero. According 
to (Haroon et al. 2017) such values indicate a heterogeneity of the 
adsorption sites. These results should be related to the chemical 
compositions characteristic of the crude residue compared with the 
other fractions studied.

Conclusion

This study shows that acorn pericarps can be used as an efficient 
sorbent to remove metal cations from synthetic aqueous solutions. 
The results obtained by modeling the experimental isotherms of 
adsorption by the Langmuir and Freundlich models show that the 
latter (Freundlich) is adequate for modeling the adsorption process 
of copper, nickel and lead on the different residues of the peri-
carps. Indeed, the correlation coefficients R2lie between 0.90 and 
0.99, while the Langmuir is adequate for modeling the isotherms 
of adsorption of cadmium. Adsorption capacities of crude acorn 
pericarps or parietal residues were higher than those of other previ-
ously described biosorbents. Furthermore, the results of the adsorp-
tion studies allow us to conclude that the selectivity of the pericarps 
with respect to metal cations can be optimized by diversifying the 
chemical composition of the residues to be tested. Comparatively to 
previous studies, this work has shown that it is possible to generate 
such functions directly on the structure by sequential extraction of 

the constituent polysaccharides of the materials without scratching. 
Since acorn pericarps is freely abundant, cheap, locally available, and 
has a high adsorption capacity, it can be considered as economically 
viable for the elimination of trace metal elements in polluted water.
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