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Abstract
Magnetic Fe3O4 carbon-shell (MFC) functionalization with lanthanum (MFC@La(OH)3) was successfully synthesized 
with various weight ratios between Fe and La utilizing the facile procedure to obtain high adsorption capacity and an easily 
separable adsorbent from water. FTIR result showed La-OH vibration bond and the residual NO3

− anion confirming the 
La functional group’s successful formation on the surface of the outer carbon shell of the magnetite core. Furthermore, the 
asymmetric stretch vibration of the P-O group within the HPO4

2− and H2PO4
− species of phosphate confirmed the adsorption 

phosphate on the surface layer of the adsorbent. The MFC@La(OH)3 1:2 has the highest BET surface area among the other 
adsorbents and is selected as the highest adsorbent for phosphate removal. It was discovered that the adsorption capacity 
increased at pH 4–6, which can be attributed to La(OH)3 functional group which was protonated (positively charged), thus 
provoking an electrostatic interaction reaction with the negatively charged phosphate species. The equilibrium data were 
fit into various adsorption isotherms and found to fit well with the Freundlich model (indicating that novel adsorbent had 
heterogeneous surface and multilayer adsorption mechanism processes) with a maximum adsorption capacity of 30.85 mg 
P/g, whereas the adsorption kinetics followed pseudo-second-order kinetics. After adsorption, the magnetic separation was 
easily achieved, and the adsorbent could be regenerated continuously for five cycles. The current study found that the novel 
adsorbent has high adsorption capacity, easy to separate and recover, and appropriate for further investigation of large-scale 
water and wastewater treatment applications.
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Introduction

Phosphorus is a mineral nutrient that is required by all living 
things. Both aquatic and terrestrial ecosystems require P for 
their growth and primary production (Hecky and Kilham 
1988; Wu et al.2017a, b). Phosphate is mainly utilized for 
phosphate fertilizer, household detergent, and food bever-
ages products, where possible run-off to the aquatic environ-
ment will inevitably cause several problems to both environ-
ment and living organisms. The problem can be referred to 
as eutrophication, which causes algae overgrowth, known 
as booming algae, dissolved oxygen depletion, and reduced 
water quality in general (Worsfold et al. 2016). There are 
typically three phosphate types, namely H2PO4

−, HPO4
2−and 

PO4
3− in an aqueous solution with a pH range of 2–10. The 

removal of P from water and wastewater may be done using 
physicochemical, biological, and combinations of both treat-
ments to cope with such a troublesome potential occurrence 
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(Bunce et al. 2018). Physicochemical processes of P removal 
are included precipitation and ion exchange mechanisms. 
These processes are generally reliable and effective; how-
ever, some can affect the pH of the effluent, require the 
addition of chemicals, and produce extraneous solids during 
treatment (Cornel and Schaum 2009). Biological treatment 
is considered a cost-effective and environmentally sustain-
able alternative to chemical treatment (Acevedo et al. 2012). 
However, the biological treatment is not wholly reliable due 
to fluctuating performance and difficulty in process con-
trol (Seviour et al. 2003). As a result, other methods are 
needed to solve the problems resulting in previous treatment 
methods.

Adsorption was considered the most suitable method for 
phosphate removal in water treatment because of conveni-
ence, ease of operation, and simplicity of design (Ahmad 
et al. 2012; Wang et al. 2015). Adsorption is a technique 
focusing primarily on surface forces of a chemical engineer-
ing unit system to perform physical or chemically binding of 
other substances on the unit’s surface and the concentration 
of substances on the surface of such material. Alternatively, 
it can also be defined as a chemical species’ partitioning 
between the bulk and an interface phase (Bajpai and Rajpoot 
1999). In the adsorption treatment of wastewater, the adsor-
bent plays the most crucial part of the system.

Magnetic nano-adsorbents have advantages such as nano-
size, high surface area to volume ratio, super-magnetism, 
large surface-bulk atom ratios, easily separated from water 
by an external magnetic field, abundant defect sites easy to 
recycle. Iron oxide for adsorbent has attracted much attention 
from researchers (Afkhami et al. 2010; Wang et al. 2015; Lai 
et al. 2016). Metal oxides with more affinity toward phos-
phate species at acidic pH have a more significant positive 
effect in removal capacity than other materials (Mitrogiannis 
et al. 2017; Li et al. 2019). Moreover, easy synthesis, coat-
ing, and modifying, in general, combining with its low toxic-
ity and chemical inertness, has provided magnetic material 
with unparalleled versatility (Dias et al. 2011).

A fabricated nano-sized particle Fe3O4@mZrO2 (Fe3O4 
core with ZrO2 outer shell) shows a tremendous phosphate 
removal capacity (up to 1.26 mmol/g). Simultaneously, it 
maintains more than 80% of adsorption capacity after four 
adsorption–desorption cycles (Sarkar et al. 2010). Moreo-
ver, the capacity for phosphate removal is also significantly 
affected by the pH of the solution. pH is considered the 
most important condition that strongly affects phosphate 
adsorption of the materials due to adsorption mechanisms 
in various pH ranges, like electrostatic binding in an acidic 
environment (Ahmed et al. 2019). On the other hand, under 
the alkaline environment, the surface of the nanomaterial is 
deprotonated. Thus, the binding between surface compound 
and phosphate is inhibited due to Donnan co-ion exclusion 
or electrostatic repulsion. The surface hydroxyl groups are 

protonated with a positive charge under low pH and attract 
negatively charged phosphate ions.

Lanthanum (La) has been studied progressively and 
proved an excellent binding chemical for phosphate. In 
addition, lanthanum showed superior phosphate adsorption 
ability (Zhang et al. 2010; Wu et al. 2017a, b; Liu et al. 
2018). However, after treatment, these sorbents are difficult 
to isolate from wastewater. Centrifugation and filtration are 
two traditional methods for recovering sorbents. When sepa-
rating nanoparticles from wastewater, magnetic separation is 
quicker and more efficient than centrifugation and filtration. 
However, just a few studies on the use of magnetic La-based 
sorbents for phosphate removal have been published due to 
several obstacles, such as financial problems, complicated 
synthetic procedures, or low phosphate removal capacity 
(27.8 mg P/g for Fe3O4@SiO2@La2O3) (Lai et al. 2016).

Furthermore, the disadvantages can be overcome by 
combining magnetic nanoparticles (e.g., Fe3O4) with La to 
enhance removal efficiency and make sorbent separation 
and recovery simpler. La serves as active sites for phosphate 
removal in water, while the Fe3O4 allows for magnetic sepa-
ration. In this study, Fe3O4 and La(OH)3 were synthesized 
using hydrothermal and precipitation methods. The adsorp-
tion isotherm and kinetics, the adsorbent composition and 
dosage, the initial phosphate concentration, pH, different 
compete for anions, temperature, and reusability were inves-
tigated. Fourier transform infrared spectroscopy (FTIR) and 
Brunauer–Emmett–Teller (BET) were used to characterize 
the adsorbent.

Materials and methods

Materials

Iron (III) chloride hexahydrate (FeCl3.6H2O) was purchased 
from nacalai tesque, Japan. Lanthanum (III) nitrate hydrate 
(La(NO3)3.xH2O) was purchased from Alfa Aesar, USA. 
Urea (CH4N2O) was purchased from the Japanese test, 
Taiwan. Glucose (C6H12O6) was purchased from Sigma-
Aldrich, USA. KH2PO4 was purchased from PanReac Appli-
Chem, Germany. All of the chemicals used were the analyti-
cal grade reagents.

Preparation of MFC@La(OH)3 adsorbent

FeCl3.6H2O (0.006 mol), CH4N2O (0.1 mol), and C6H12O6 
(0.01 mol) were put into 40 mL of deionized water and 
stirred vigorously for 15 min to obtain clear yellow orange. 
The resulting solution was transferred into a Teflon-lined 
stainless-steel autoclave and heated at 180 °C for 14 h and 
then allowed to cool to room temperature naturally. The 
black precipitated magnetic microspheres were collected via 
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magnetic separation, followed by washing thoroughly with 
deionized water and absolute ethanol at least six times. The 
final product of MFC nanocomposites was dried overnight. 
The Fe3O4 cores were formed by reducing Fe3+ by glucose 
under alkaline conditions obtained from urea decomposition. 
Glucose was used to carbonize the amorphous carbon shells. 
The MFC nanocomposites had an average size range from 
100 to 200 nm (Xuan et al. 2007).

MFC nanocomposite (0.45 g) was dispersed in 100 mL 
of deionized water, and then a predetermined amount of 
La(NO3)3.xH2O was injected into the suspension. Next, by 
adding 1 M NaOH dropwise, the pH of the combined solu-
tion was changed to 10.5. Finally, the precipitated magnetic 
product was collected, rinsed thoroughly with deionized 
water, and dried overnight (Liu et al. 2018).

Preparation of phosphate solution

Dissolving 2.2171 g of KH2PO4 was done to produce a 
1000 mg P/L stock (dried in 105 °C for 1 h beforehand) in 
500 mL deionized water. This recipe follows the instruc-
tion from EPA, Taiwan. All phosphate in this study refers to 
orthophosphate unless otherwise specified.

Adsorption isotherm studies

The adsorption isotherm is used to define the characteristics 
of the adsorption process between liquid and solid phases 
when it reaches equilibrium, and an adsorption isotherm 
study was conducted. The Langmuir and Freundlich mod-
els were chosen to fit the equilibrium data obtained from the 
batch adsorption experiments by varying the initial concen-
tration of phosphate. The adsorption isotherm experiment 
was conducted by introducing 0.5 g/L of adsorbents to a 
50 mL solution with various initial phosphate concentrations 
(1, 5, 10, 15, and 20 mg/L)m and they were placed onto an 
orbital shaker at 150–200 rpm for 24 h for absolute equilib-
rium. After that, the supernatant was taken out and filtered, 
and then the phosphate residue was measured. The experi-
mental analysis results are the mean values of the tripli-
cated experiments of the phosphate adsorption process. The 
amount of equilibrium adsorption (q, mg/g) for phosphate 
was determined following Eq. (1).

where C0 = initial concentration of adoptive (mg/L); 
Ce = concentration of adoptive at the time t (mg/L); V = vol-
ume of bulk solution (L); m = mass of adsorbent.

The Langmuir isotherm is based on the assumption that 
the adsorbent surface contains homogeneous binding sites 
with identical sorption energies and no interaction with the 

(1)qe =

(

C0 − Ce
)

V

m

adsorbed molecules. The Langmuir isotherm model was 
adopted to analyze the isotherm data and expressed accord-
ing to Eq. (2) (Freundlich 1906; Wu et al. 2017a, b; Li et al. 
2019).

where KL is the Langmuir equilibrium constant (L/mg) and 
qmax is the monolayer adsorption capacity (mg/g). This equa-
tion is usually evaluated by a separate factor, RL, which can 
be calculated according to Eq. (3).

where C0 is the maximum initial concentration of solute 
(mg/L) and this element demonstrates the nature of the 
adsorption process and the isotherm as follows: unfavorable 
(RL > 0), linear (RL = 0), favorable (0 < RL < 1), and irrevers-
ible (RL = 0).

The Freundlich isotherm is one of the earliest models that 
explain non-ideal and irreversible adsorption without limit-
ing monolayer formation, so multilayer and non-uniform dis-
tribution adsorption heat and heterogeneous surface affinities 
can be added to this empirical model according to Eq. (4) 
(Freundlich 1906; Wu et al. 2017a, b; Li et al. 2019).

Adsorption kinetic studies

The experimental data at different contact times correspond-
ing to changes in the amount of phosphate adsorbed to assess 
the kinetic adsorption of phosphate onto the adsorbents were 
fitted into three other kinetic models, including pseudo-first-
order, pseudo-second-order, and intra-particle diffusion. The 
adsorption kinetics was carried out by applying 0.5 g/L of 
adsorbent material with a phosphate concentration of 5 mg/L 
to a 50 mL solution and placed firmly on an orbital shaker 
at 150–200 rpm. To be precise, at each time interval, 30th, 
60th, 120th, 240th, 360th, 480th, and 600th minutes 1 mL 
of supernatant was taken out and filtered. Phosphate resi-
due was measured. The experimental analysis results are the 
mean values of the triplicated experiments of the phosphate 
adsorption process. The pseudo-first-order model (Eq. (5)) 
(Lagergren 1898), the pseudo-second-order model (Eq. (6)) 
(Ho and McKay 1999), and the intra-particle diffusion model 
(Eq. (7)) (Weber 1963) were adopted and expressed as the 
following equations in order to analyze the kinetic data:

(2)
Ce

qe
=

1

qmaxkL
+

1

qmax

Ce

(3)RL =
1

1 + kLC0

(4)log qe = log kf +
1

n
logCe

(5)log
(

qe − qt
)

= logqe −
kpL

t
t
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where qe = adsorption capacities at equilibrium (mg/g); 
qt = adsorption capacities at time t (mg/g); kpL = pseudo-
first-order rate constant (min−1).

The pseudo-second-order rate constant is k2 (g/mg min), and 
the other symbols have the same meaning as describe in the 
above equation. A plot of t

q
 versus t gives a linear line for this 

order-compliant kinetics. The slope from the given linear 
equation is 1

qe
 , and the intercept is 1

k2q
2
e

.

The intra-particle diffusion rate constant is kint (mg/g min0.5), 
and B is the initial adsorption (mg/g). A plot of qt and t1∕2 
gives a linear line to an adsorption process that is compliant 
with it, which its slope is kint.

Effect of the adsorbent dosage and pH

In order to investigate the suitable dosage of adsorbent, dif-
ferent amounts of adsorbent (0.5, 0.75, 1, and 1.5 g/L) were 
introduced to 50 mL solution containing 5 mg/L of phos-
phate with the reaction time of 24 h for equilibrium. The 
residue of phosphate was filtered and measured.

In a similar procedure, the adsorbent value of 0.05 g was 
applied to 50 mL of 5 mg P/L solution with different initial 
pH using NaOH and H2SO4 solution to achieve a pH value 
ranging from 2 to 12 to investigate the effect of pH toward 
phosphate removal efficiency.

Effect of different compete anions

The effect of different compete for anions on the amount of 
phosphate adsorbed was investigated by adding 5 mg P/L 
in 50 mL solution, and another 5 mg/L of Cl−, SO4

2− and 
HCO3 in the form of sodium salt was added to the phosphate 
solution in a separate container. The combined solution was 
placed on an orbital shaker at 190 rpm for 24 h to ensure 
its equilibrium. Then residue phosphate concentration was 
measured to evaluate MFC@La(OH)3 adsorbent’s affinity 
toward phosphate.

Effect of temperature

The effect of different temperatures on its adsorption behav-
ior was carried out. In this experiment, 23 and 37 °C are two 
temperature parameters chosen for these studies. Langmuir 
and Freundlich models were also applied for these studies 
to check for any alternation to its actual result, which was 
carried out at typical room temperature.

(6)
t

q
=

1

k2q
2
e

+
t

qe

(7)qt = kint t
1∕2 + B

The reusability of MFC@La(OH)3 adsorbent

The reusability test was carried out by applying 0.025 g 
of adsorbent to 50 mL of 1 mg P/L solution at room tem-
perature for 1 h, followed by the desorption process using 
50 mL 1 M NaOH for 2 h. The residue of phosphate con-
centration from each cycle was measured to determine the 
adsorbent's removal efficiency after continuous recycling.

Adsorbent characterization

The Brunauer–Emmett–Teller (BET) method was used to 
measure the specific surface areas via N2 adsorption stud-
ies on TriStar 3000 V6.07 A. In addition, the Fourier trans-
form infrared (FTIR) spectrometer (Jasco FT/IR-6500) was 
used to analyze the surface functional groups’ composition 
and structure. The result will be depicted in wavenumber 
ranging from 400 to 2000 cm−1.

Phosphate measurement

After each batch study test, the residue of phosphate con-
centration was measured via the UV–Vis spectrophotom-
eter Genesys™ 10S (Thermo Scientific, USA) at a wave-
length equal to 880 nm. The method used in this research 
is the ascorbic blue method.

Results and discussion

Adsorption isotherm

In order to understand the adsorption process, adsorption 
isotherm models are used. Langmuir and Freundlich iso-
therm models were used to analyze the adsorption equi-
librium experimental data obtained for phosphate adsorp-
tion. Figures 1 and 2 present the plots of Langmuir and 
Freundlich isotherm models for phosphate adsorption onto 
MFC@La(OH)3. The correlation coefficient (R2) values 
are presented in Table 1, and the adsorption process of 
phosphate onto the adsorbent was found to follow the 
Freundlich isotherm model. All of the adsorbents were 
well suited with the Freundlich model, which indicated 
that MFC@La(OH)3 had heterogeneous surface and mul-
tilayer adsorption mechanism processes (Wu et al. 2017a, 
b). In the Freundlich model, n is a factor to explain the 
mechanism of adsorption. The value of n was between 1 
and 10 in this research, indicating that the adsorption of 
phosphate anions on the adsorbent surface was favorable 
(Ahmed et al. 2017). The Freundlich maximum adsorption 
capacity was 30.85 mg P/g. The adsorption capacity of the 
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novel adsorbent compared with other research is presented 
in Table 2.

Adsorption kinetic

Adsorption kinetics models were used to understand adsorp-
tion pathways. Three different kinetic models were used to 
fit the experimental data: the pseudo-first-order, pseudo-sec-
ond-order, and intra-particle diffusion models. Figures 3, 4, 
5 and Table 3 denote that MFC@La(OH)3 complied greatly 
with the pseudo-second-order kinetic model (R2 = 0.99) than 
the pseudo-first-order kinetic model (R2 > 0.4) or intra-parti-
cle diffusion (R2 > 0.55). Theoretically, the pseudo-second-
order model assumes that the adsorption rate of phosphate 
uptake is proportional to the square of the difference between 
the amount of phosphate absorbed with time and phosphate 
absorbed at equilibrium. The pseudo-second-order kinetic 

implies phosphate’s adsorption on the novel adsorbent mixed 
physical and chemical adsorption (Ahmed et al. 2017; Li 
et al. 2019).

Effect of MFC@La(OH)3 adsorbent composition

The effect of MFC@La(OH)3 adsorbent composition from 
1:1, 1:1.5, 1:2, and 1:3 were investigated. The results are 
presented in Fig. 6. MFC@La(OH)3 1:2 denoted superior 
removal capacity to other compositions with more than 50% 
efficiency, while the second-highest, MFC@La(OH)3 1:1.5 
could effectively remove nearly 40% of phosphate in the 
solution. Moreover, all the adsorbent compositions adsorbed 
phosphate in a considerable fast peace, at around 30 min 
after contact, followed by a stable adsorb rate throughout the 
length of the experiment and gradually reached its maximum 
capacity.
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Fig. 1   Langmuir isotherm models for the adsorption of phosphate onto MFC@La(OH)3 of a MFC 1:1, b MFC 1:1.5, c MFC 1:2, d MFC 1:3
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In the first 30 min, all compositions denoted a rapid 
adsorption process due to the physical sorption. The 
adsorption of adsorbent toward phosphate was either fast 
migration to the adsorbent's external surface and surface 
charge interaction. In addition, iron and lanthanum attract 
negatively charged phosphate as an active phosphate-
binding site (Ahmed et al. 2019). Finally, the adsorption 
process reached an equilibrium stage over the adsorbent’s 

small pores’ diffusion and the adsorbate’s chemical bind-
ing reaction (Li et al. 2019).

Effect of the initial concentration of phosphate

The effect of the initial concentration of phosphate from 1, 5, 
10, 15 to 20 mg/L was investigated. The results are presented 
in Fig. 7. The MFC@La(OH)3 1:2 adsorbent composition 
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Fig. 2   Freundlich isotherm models for the adsorption of phosphate onto MFC@La(OH)3 of a MFC 1:1, b MFC 1:1.5, c MFC 1:2, d MFC 1:3

Table 1   Langmuir and 
Freundlich isotherm models for 
the adsorption of phosphate on 
MFC@La(OH)3

Adsorbents composition Langmuir Freundlich

Qm (mg/g) KL (L/mg) RL R2 1/n Kf (L/g) R2

MFC@La(OH)3 1:1 13.62 0.16 0.24 0.514 0.56 2.20 0.979
MFC@La(OH)3 1:1.5 10.99 0.35 0.13 0.728 0.41 3.24 0.866
MFC@La(OH)3 1:2 18.28 0.22 0.18 0.060 0.47 4.04 0.833
MFC@La(OH)3 1:3 15.53 0.15 0.25 0.458 0.43 3.09 0.962
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Table 2   The adsorption capacity of adsorbents compared with other research

Type of adsorbent Dosage (g/L) Phosphate concentra-
tion (mg P/L)

Efficiency (%) Adsorption capacity 
(mg P/g)

References

Fe3O4@Sio2 @La2O3 1 2 95 27.8 Lai et al. (2016)
La-SBA-15 1 50 95 24.6 Yang et al. (2011)
Phoslock 0.92 1 n/a 10.5 Haghseresht et al. (2009)
NT-25La (La-modified 

Bentonite)
0.375 5 90 14 Kuroki et al. (2014)

MFC@La(OH)3 0.5 5 54 30.85 This study
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performed well when applied to 1 mg P/L solution, with 
up to a near-complete phosphate removal of 100% MFC@
La(OH)3 1:1.5 and 1:3 could remove around 80% of phos-
phate. However, there was a decrease in all material, nearly 
twofold, when introduced to a 5 mg P/L solution. As a result, 
the efficiency of MFC@La(OH)3 1:2 dropped to around 54% 
removal efficiency, which was significantly higher than the 
other ratio. This trend was identical throughout all other 
phosphate concentrations, proving the ratio between Fe and 
La of 1:2 was the most suitable ratio during the synthesis 
procedure. This adsorbent is effective in removing low-con-
centration phosphate in water bodies.

Effect of the adsorbent dosage

The effect of adsorbent dosage on phosphate adsorption 
was investigated. The effect of adsorbent dosage during the 
adsorption process is denoted in Fig. 8. It depicted that the 
amount of phosphate adsorbed onto adsorbent increases with 
increasing adsorbent dosage. The amount, pore volume, and 
pore size of adsorbents highly influence the adsorption rate, 
and phosphate adsorbed onto the adsorbent surface. The first 
dosage of adsorbent, 0.5 g/L, reached a removal of nearly 
53%. A dosage of 1 and 1.5 g/L expressed its superior per-
formance within the same condition, with a maximum of 
nearly 70 and 89% phosphate being removed, respectively.
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Fig. 4   Pseudo-second-order kinetic model for the adsorption of phosphate onto MFC@La(OH)3 of a MFC 1:1, b MFC 1:1.5, c MFC 1:2, d 
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Fig. 5   Intra-particle diffusion models for the adsorption of phosphate onto MFC@La(OH)3 of a MFC 1:1, b MFC 1:1.5, c MFC 1:2, d MFC 1:3

Table 3   Kinetic model parameters for the adsorption of phosphate on MFC@La(OH)3

Model Parameter Unit MFC@La(OH)3 1:1 MFC@
La(OH)3 1:1.5

MFC@
La(OH)3 1:2

MFC@
La(OH)3 
1:3

Pseudo-first-order kinetic qe mg/g 5.382 5.809 5.021 5.843
K min−1  − 0.272 1.424 0.347 0.571
R2 0.890 0.334 0.916 0.534

Pseudo-second-order kinetic qe mg/g 3.926 4.272 5.328 5.328
K g/mg min 0.013 0.133 0.029 0.029
R2 0.994 0.999 0.999 0.998

Intra-particle diffusion K mg/g min0.5 0.0616 0.0165 0.0357 0.0332
B mg/g 2.590 3.975 4.5902 2.8975
R2 0.913 0.474 0.900 0.611
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Effect of pH

The effect of pH on phosphate adsorption was investigated. 
Figure 9 depicts that the removal of MFC@La(OH)3 1:2 
is significantly affected by the pH. With a high pH range, 
adsorb phosphate's ability was severely inhibited, drop sig-
nificantly from above 50% to around 30%. The explanation 
for this phenomenon was that the La(OH)3 functional group 
was deprotonated (anionic). As a result, it became negatively 
charged, thus provoking an electrostatic repulsive reaction 
with the also negatively charged monovalent H2PO4

−, the 
main phosphate species in this pH range (Liu and Zhang 
2015; Wu et al. 2017a, b; Liu et al. 2018). This result firmly 
concluded that MFC@La(OH)3 1:2 was a greatly pH-
dependent material.

Effect of different compete for anions

In a real application, such as domestic or industrial waste-
water, phosphate usually co-exists with numerous anions 
and cations. Therefore, the effect of competing anions like 
chloride, sulfate, and bicarbonate on the adsorption process 
was investigated. The results are depicted in Fig. 10. The 
MFC@La(OH)3 1:1.5 and MFC@La(OH)3 1:2 adsorbents 
had slight interference. However, each test’s differences were 
negligible, only around 3–5%, apart from the control test 
result at around 53%.

In conclusion, the effect of different competitive anions in 
the same solution did not impact the adsorbent’s phosphate 
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adsorption. This test pointed out that the material had an 
excellent phosphate affinity to other anions, thus proved a 
great candidate for any phosphate scenarios, either domesti-
cally or industrially, and recovery or removal.

Effect of temperature

The adsorption capacities at two temperatures were deter-
mined to analyze the effect of temperature on the adsorption 
process. Temperatures of 23 °C represented room tempera-
ture. A temperature of 37 °C was chosen because it might 
still be economically feasible for the actual application of 
the adsorbent at a higher temperature. Figure 11 and Table 4 
denote that the adsorption was facilitated at higher temper-
atures. The rate constant (Kf) of MFC@La(OH)3 1:2 and 
MFC@La(OH)3 1:1.5 had increased from 2.2 to 3.77 and 
from 3.24 to a staggering 5.71, respectively. This feature 
had concluded that the novel adsorbent had an endothermic 
process, which contributed to the increase in the adsorption 
capability by increasing the adsorption temperature (Wu 
et al. 2014).

The reusability of MFC@La(OH)3 adsorbent

Five continuous adsorption and desorption cycles were per-
formed to evaluate the reusability MFC@La(OH)3 1:1.5 and 
1:2 adsorbent. Figure 12 points out that adsorbent expressed 
a gradual but slow decline in phosphate removal efficiency, 
with nearly 5% loss for each cycle. This result had denoted 
that practical application for continuous use and reuse was 
highly possible due to facile and economical synthesis pro-
cedures and a slow decline in its removal capacity.

Characterization of MFC@La(OH)3 adsorbent

MFC@La(OH)3 1:2 adsorbent as the best composition was 
characterized using FTIR and BET techniques. The FTIR 
result of MFC@La(OH)3 1:2 is presented in Fig. 13. A new 
I.R. bond at 573 cm−1 could be observed in the MFC loaded 
with La(OH)3, which was the characteristic of La-OH vibra-
tion bond. Moreover, a new peak of the MFC@La(OH)3 1:2 
at 1381 cm−1 represented the residual NO3

− anion. These 
additional peaks confirmed the Lanthanum functional 
group’s successful formation on the surface of the outer 
carbon shell of the magnetite core.

Furthermore, a new I.R. bond of 1043 cm−1 represented 
the asymmetric stretch vibration of the P-O group within 
the HPO4

2− and H2PO4
− species of phosphate confirmed the 

adsorption phosphate on the surface layer of the adsorbent. 
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Table 4   Adsorption isotherm 
model parameters for the 
adsorption of phosphate on 
MFC@La(OH)3

Adsorbent composition Langmuir Freundlich

Qm KL RL R2 1/n Kf R2

MFC@La(OH)3 1:1.5@23 °C 13.28 0.192 0.2 58.85 0.56 2.20 98.45
MFC@La(OH)3 1:1.5@37 °C 18.15 0.17 0.23 65.22 0.43 3.77 91.4
MFC@La(OH)3 1:2@23 °C 14.04 0.22 0.18 76.24 0.41 3.24 87.48
MFC@La(OH)3 1:2@37 °C 15.50 0.34 0.13 80.84 0.29 5.71 93.74
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Moreover, HPO4
2− and H2PO4

− phosphate species were 
expected in the research's pH range, providing valuable 
information for the phosphate removal potential of the 
MFC@La(OH)3 adsorbent.

The surface area and pore size distributions of MFC@
La(OH)3 1:1.5, MFC@La(OH)3 1:2 and MFC@La(OH)3 1:3 
were characterized using BET (Brunauer–Emmett–Teller) 
and BJH (Barrett–Joiner–Helenda) pore size distribution 
methods, shown in Table 5. The MFC@La(OH)3 1:2 has 
the highest BET surface area among the other nanocom-
posites and is selected as the highest adsorbent for phos-
phate removal experiments. Table 5 denotes the BET, pore 
size, and pore volume results among the nanocomposite 
adsorbents.

Conclusion

The adsorbent had been successfully synthesized through 
two stages of the quick and facile procedure. The adsorp-
tion data were well suited with the Freundlich model, and 
the adsorption behavior complied greatly with the pseudo-
second-order kinetic model. It had a high adsorption capac-
ity of 30.85 mg P/g. MFC@La(OH)3 1:2 ensured superior 
removal capacity to others with more than 50% efficiency. 
Moreover, its kinetic behavior depended on pH, where the 
performance was excellent at a pH range from 4 to 6. Dif-
ferent competing anions in the same solution did not carry 
much impact on phosphate adsorption. In addition, the novel 
adsorbent had an endothermic process. Finally, it could be 
used and regenerated continuously for at least five cycles 
while retains its acceptable removal efficiency higher. Thus, 
the novel adsorbent has high adsorption capacity, easy to 
separate and recover, and promising to be applied in the 
water and wastewater field.
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Table 5   BET surface area, pore size, and pore volume of the novel 
adsorbents

Adsorbents composition BET surface 
area (m2/g)

Pore size (nm) Pore 
volume 
(cm3/g)

MFC@La(OH)3 1:1.5 8.3350 11.6767 0.0252
MFC@La(OH)3 1:2 18.8145 14.1676 0.0689
MFC@La(OH)3 1:3 11.1232 13.8887 0.0399
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