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Abstract
Studies on the measurement of 222Rn, 220Rn and their decay product’s concentration level are important as they are the 
significant contributor to background radiation dose. This study presents results of measurements conducted in 80 houses 
situated in Nainital District of Kumaun Himalayan region, Uttarakhand, India. Single entry-based pin hole dosimeters and 
direct 222Rn progeny sensors/direct 220Rn progeny sensors were used to measure the concentrations of 222Rn and 220Rn, and 
their decay products. Estimation of yearly averaged summary parameters and the effect of different types of building materi-
als (mud, stone and cement) and seasonal variations (winter, summer and rainy) have been done. The role of ventilation and 
source term towards the observed variations has been interpreted. It was seen that in most of the mud houses of the study 
region, gases and their decay product’s concentration remained significantly higher than their respective global average in 
the winter season. Annual inhalation dose due to 222Rn, 220Rn and their progeny was found to be 0.85–3.93 mSv with GM 
(GSD) as 1.71 (1.76) mSv. The present study showed that a significant contribution to annual inhalation dose comes from 
220Rn and its decay products. The findings in-line to the recent studies conducted in Indian Himalayan region and add strength 
to the existing database.

Keywords  Seasonal variation · Building materials · Inhalation dose · Radon · Thoron · Decay products

Introduction

It is well known that the radionuclides 222Rn (radon) and 
220Rn (thoron), and their decay products contribute ~ 50% 
of natural background dose to humans (UNSEAR 2000; 
UNSCEAR 2010). This fraction further increases in 
radium/thorium handling facilities and poorly ventilated 
buildings (IAEA 2005; WHO 2009). Being particulates in 
nature, decay products deposit into the lungs resulting in an 

increase in inhalation radiation exposure. This may lead to 
DNA damage resulting in induction of cancer for prolonged 
exposure scenarios (ICRP 2014; UNSCEAR 2000; WHO 
2009). The enhanced lung cancer risk came out to be 8% 
(3–16%) per 100 Bq/m3 of radon concentration (Darby et al. 
2005) in case–control studies conducted in Europe. Studies 
estimated in cold weather region relation to socio-economic 
factors including fuel poverty, and the role of thermally inef-
ficient housing such inhalation risk in terms of lung cancer 
incidences and/or frequency of deaths. For example, Milner 
et al. 2014 estimated approximately 1100 deaths per year 
due to the exposure of 222Rn and 220Rn in the UK. Radon 
was also attributed to 300 instances of lung cancer in the 
dwellings of Ireland every year (Dowdall et al. 2017). Sev-
eral such studies conducted in different regions worldwide 
have established the link between the indoor 222Rn and 
220Rn exposure to the detrimental effects on human health 
(Krewski et al. 2005; Wang and Ward 2002).

Profiling of 222Rn, 220Rn and their decay concentration 
via short-term and continual measurements for both resi-
dential areas and occupational buildings has been an active 
research domain in last few decades. This has increased 
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the level of understanding of research community and has 
futuristic implications in terms of reformed building designs 
for the policy makers. Ambient factors such as the effect 
of environmental characteristics, viz. seasons, ventilation, 
source-term, etc. affect the levels of 222Rn, 220Rn and their 
decay products considerably (Agarwal et al., 2019; Joshi 
et al. 2011; Hu et al. 2018; Kumar et al. 2020a, b; Kumara 
et al. 2017; Mishra et al. 2014; Omori et al. 2020; Semwal 
et al. 2019). This becomes more crucial for a country like 
India where the diverse conditions of climate, geology and 
socio-economy tend to intensify the role of studies in dif-
ferent regions culminating towards a meaningful scientific 
interpretation. This led to perform several studies and efforts 
to form a statistically sound database useful for the future 
applications (Bangotra et al. 2016; Karunakara et al. 2014, 
2020; Prasad et al. 2018b; Meisenberg et al. 2016; Ramola 
and Prasad 2020; Sahoo et al. 2011). Geological conditions 
(Ramola et al. 2013), dwelling types (Sharma et al. 2018; 
Semwal et al. 2019) and seasonal variations (Bangotra et al. 
2019; Prasad et al. 2016a) have been shown to be affect-
ing the concentration levels of 222Rn/220Rn gases and decay 
products. In addition to the measurements, the efforts in 
terms of development of various numerical and analytical 
models (Sahoo et al. 2011; Shetty et al. 2020; Trilochana 
et al. 2020; Agarwal et al. 2014, 2015, 2020) has helped to 
enhance the knowledge relatable to different issues/contexts.

The Indian Himalayan belt has unique features regard-
ing the geology, climate, neo-tectonic, faults and geophysi-
cal activities (Singh et al. 2016; Semwal et al. 2018, 2019; 
Prasad et al. 2016b; Ramola et al. 2013, 2016). Few recent 
studies on the measurements of indoor 222Rn/220Rn and 
decay products in Indian Himalayan belt highlighted the 
higher levels and associated the contributing factors with 
the observed data (Kandari et al. 2018; Prasad et al. 2018a; 
Prasad et al. 2008; Semwal et al. 2018, 2019). This work 
discusses the experimental measurements of indoor 222Rn, 
220Rn and their decay product activity levels performed in 
Nainital District of Uttarakhand, India. Closeness to the 
seismic fault layer, unique rock and soil characteristics and 
cold climatic conditions necessitated the formulation of this 
campaign. Measurements were taken in 80 houses selected 
from the study region on defined pre-campaign basis. The 
results have been presented and the estimations of yearly 
averaged parameters have been made in this work.

Topography of the studied area

The Nainital District selected for the present study is situated 
in Kumaon region of Indian Himalayan belt, located between 
coordinates 80° 14'–78° 80' E and 29° 00'–29° 05' N with 
an elevation of 424–2084 m from the sea level (shown in 
Fig. 1). Due to its locations and pleasant climate conditions, 

Nainital remains an attractive place for tourists throughout 
the year. The Nainital hills represent the south eastern part of 
a strip of enechelon basins of the Krol belt, which stretches 
south eastward from Solan (Himachal) to Nainital (Uttara-
khand). The rock mainly comprises of garnet-ferous mica-
schits, which contains layers of quartzites, lenses of graph-
ite schists and band of gneissic rocks (Sinha 1977). The 
southern limit of the Krol belt is delineated by the highly 
tectonized rocks of the Amritpur granites (Valdiya 1980), 
which have been brought up along Main Boundary Thrust 
(MBT). Quartzites, graphite, etc. are the prime sources of 
Uranium and Thorium.

Details of the selected dwellings

A pre-survey for outdoor gamma radiation level (using 
ATOMTEX Gamma radiation survey meter) was conducted 
in the Nainital District. As a result, the studied region was 
segregated into two different zones as shown in Table 1. 
There were prominently three types of construction of the 
houses in the studied region. Type A represents the mud 
houses (mud and wood), type B stands for the stone houses 
(stone with cement plaster) and type C is cement houses 
(bricks and coated with cement). In this way, total 80 houses 
are selected for carrying out elaborative indoor measure-
ments. The respective distribution of number of houses is 
shown in Table 1. A satellite-based GARMIN GPS; ETREX-
10 monitor was used to determine the topography (latitude, 
longitude and altitude) of the selected houses.

Materials and methods

Measurement of gas concentration

The 222Rn and 220Rn concentration was measured using “sin-
gle entry face Pin-hole dosimeter” aboriginal designed by 
Bhabha Atomic Research Centre (BARC), Mumbai (Sahoo 
et al. 2013). Figure 2 shows a schematic illustration of the 
dosimeter used for the measurement. Two chambers of the 
dosimeter are detached by a central pinhole disc, which seg-
regates 220Rn from 222Rn. Both cylindrical chamber meas-
ures 4.1 cm in length and 3.1 cm in radius. The foremost 
chamber determines 222Rn + 220Rn while the second chamber 
determines the 222Rn only. The gas accesses 222Rn + 220Rn 
chamber through a filter paper made of glass fiber (to cut-
off the entry of their decay products), which is placed at the 
entry face and subsequently diffuses to 222Rn chamber. The 
LR-115 Type-II detector films of 3 cm × 3 cm are pre-fixed 
in these chambers to register the alpha tracks generated by 
222Rn, 220Rn and their decay products. The unbiased elec-
tric field is maintained inside the chamber by metal powder 
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coating for facilitating the uniform deposition of decay 
products. The comprehensive study of the measurement 
technique and its determination and validation of pin-hole 
dosimeter are reported by Sahoo et al. (2013).

Determination of the concentration of decay 
products

The decay product of 222Rn and 220Rn was measured using 
Direct 222Rn Progeny Sensor (DRPS) and Direct 220Rn Prog-
eny Sensor (DTPS), aboriginal made by BARC, Mumbai 
(Mishra et al. 2009a; b). The schematic diagram of the direct 

Fig. 1   Nainital District Map for measurements

Table 1   Distribution of houses with respect to the type of construc-
tion and gamma zone

S. No Gamma level (μSv/y) Type of houses

A B C

1 0.11–0.20 16 14 40
2 0.21–0.30 3 3 4

Fig. 2   Schematic diagram of single entry pin-hole dosimeter
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progeny sensing system is shown in Fig. 3. DRPS and DTPS 
are composed of LR115 detector foil and aluminized polyes-
ter film, arranged in a cassette. Selected polyester film thick-
ness of 37 microns and 50 microns is used to record tracks 
in DRPS and DTPS due to the alpha particles emission from 
214Po (α energy 7.69 MeV) and 212Po (α energy 8.78 MeV) 
for the detection of 222Rn decay products. Whereas the tracks 
generated by the 212Po (α energy 8.78 MeV) are registered 
to detect the 222Rn decay products. The recorded tracks are 
used to estimate the equilibrium equivalent concentration of 
the 222Rn and 220Rn decay products present in the surround-
ing air. A detailed description of the measurement technique, 
calibration and validation is found elsewhere (Mishra et al. 
2010, 2009a, b; Mishra and Mayya 2008a, b). The dosim-
eter and DTPS/DRPS are commonly used in the numerous 
studies at various locations worldwide. (Bajwa et al. 2016; 
Singh et al. 2016; Mishra et al. 2014; Ramola et al. 2016).

Evaluation of equilibrium factors

Equilibrium equivalent concentration (EEC) of 222Rn/220Rn 
is equal to that quantity of 222Rn/220Rn which is in secular 
equilibrium with its decay products giving equivalent poten-
tial alpha energy concentration (PAEC) for the decay prod-
ucts present in the environment. Thus, the equilibrium factor 
is defined as the ratio of EERC/EETC to the 222Rn/220Rn 
concentration in the atmosphere. The equilibrium factors 
for 222Rn (FRn) and 220Rn (FTn) can be calculated using Eqs. 
(1 and 2).

where CR and CT are the concentrations of 222Rn and 220Rn, 
respectively.

(1)FR =
EERC

CR

(2)FT =
EETC

CT

Assessment of total annual inhalation and annual 
effective dose

The total annual inhalation dose (D) and the annual effec-
tive dose (AED) due to exposure of indoor 222Rn, 220Rn 
and their decay products have been calculated using Eqs. 
(3–5) as given by UNSCEAR (2000).

The dose conversion coefficients for the concentration 
of 222Rn and its decay products are 0.17 and 9, respec-
tively; whereas 0.11 and 40 are the dose conversion 
factors for 220Rn and its decay products concentrations 
(UNSCEAR 2000). 0.8 is the indoor occupancy factor 
for 1 year exposure period (UNSCEAR 1993). 10–6 is the 
multiplication factor for unit conversion from nSv to mSv.

Results and discussion

Effect of seasonal variation on dose estimation

To observe the seasonal effects, dosimeters were deployed 
in the dwellings for a block period of four months (i.e. 
November–February, March–June and July–October), 
representing the three successive seasons (winter, sum-
mer, rainy) in a year. Seasonal classification has been done 

(3)
D(mSv∕y) = {(0.17 + 9 × FR)xCR

+ (0.11 + 40 × FT ) × CT}

× 8760 × 0.8 × 10
−6

(4)
AEDR(mSv∕y) = EERC(Bq∕m3) × 8760h

× 0.8 × 9nSv(Bq ⋅ h∕m3)−1 × 10
−6

(5)
AEDT(mSv∕y) = EETC(Bq∕m3) × 8760h

× 0.8 × 40nSv(Bq ⋅ h∕m3)−1 × 10
−6

Fig. 3   The schematic diagram of direct 222Rn/220Rn progeny sensors (DRPS/DTPS)
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based on environmental parameters (temperature and rela-
tive humidity) and houses features (e.g. ventilation rate) 
which vary with the seasons.

The Q–Q plots (probability plots) are used to show the 
statistical distribution of data around their mean. If the data 
in the Q–Q plot lie on a straight diagonal line with minimal 
deviations, it indicates the normal distribution. Figure 4 gives 
Q–Q plots of 222Rn and 220Rn concentration during winter, 
summer and rainy seasons. In statistics, skewness is a meas-
ure of symmetry, or more precisely, degree of asymmetry. A 
distribution/data set is symmetric(mean = mode = median) if 
it looks the same to the left and right of the center point and 
Kurtosis is a measure of the combined weight of a distribu-
tion's tails relative to the center of the distribution. Posi-
tively Skewed Distribution is a type of distribution where 
the mean, median, and mode of the distribution are positive 
rather than negative or zero. As can be observed, data for 
222Rn and 220Rn is showing a rightly skewed pattern for all 
seasons, e.g. winter (Sk = 0.52 and 0.86), summer (Sk = 0.35, 
Sk = 0.92) and rainy (Sk = 0.86; Sk = 0.48) season; indicat-
ing a log-normal distribution with right tail. EERC and 
EETC also followed the same pattern in all three seasons 
as observed for their parent gases. As 222Rn, 220Rn and their 
decay products concentration pattern follow a log-normal 
distribution, it is therefore recommended to representing the 

data with a geometric mean (GM, GSD) rather than arithme-
tic mean (AM ± SD). It is to avoid the biasing or inclination 
of the results towards a larger or smaller data value in the 
distribution.

The statistical parameters such as range, geometric 
mean (GM), geometric standard deviation (GSD), relative 
standard deviation (RSD), skewness (Sk) and kurtosis (K) 
explaining the effect of seasonal variation on 222Rn, 220Rn 
and EERC-EETC concentration are tabulated in Table 2. 
GM for 222Rn were found to be varying in order of win-
ter > summer > rainy. While the dispersion parameters (RSD 
and GSD) are seen to be comparable for different seasons. A 
similar distribution pattern can be noticed for EERC also. On 
the other hand, 220Rn and EETC profiles are quite dissimilar 
to each other as expected. This is because of 220Rn concen-
tration profile is not observed to be affected by the exist-
ing ventilation rate in the region due to its short half-life. 
However, seasonal effect can be clearly seen on EETC due 
to the longer half-life of decay products. It is also evident 
from Table 2 that mean values in winter season for 222Rn, 
220Rn and EERC-EETC concentration can be observed mar-
ginally higher than that of summer and rainy season. This 
indicates ‘offset ventilation effect’, i.e. smaller difference 
for winter and summer season because of ventilation pat-
terns of cold regions, doors and windows, are opened during 

Fig. 4   Q–Q probability plots for 222Rn, 220Rn
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daytime in winters to allow warm sunlight inside dwellings 
and makes ventilation rates for summers (where air mixing 
is higher) and winters comparatively similar, which is a com-
mon occurrence in most Indian studies conducted in cold 
climates (Semwal et al. 2019). As water fills the pores of 
the soil, the exhalation potential decreases, influencing the 
emission from building materials in damp conditions; result-
ing lower concentration of 222Rn, 220Rn and their respective 
decay products in the rainy season than compared to winter 
and summer (Bangotra et al. 2019; Kaur et al. 2018; Semwal 
et al. 2019).

To further investigate the seasonal effect, pie charts for 
222Rn and 220Rn are presented in Fig. 5. Figure 5 indicates 
that ~ 68% of the houses in the winter season showed the 
indoor 222Rn concentration higher than the global average 
(40 Bq/m3). While, this fraction reduces to ~ 41% and 17.5% 
in summer and rainy season, respectively, as expected. It can 
also be noticed that 222Rn concentration reach greater than 
100 Bq/m3 (reference value, WHO) in 8.75% of the houses 
in winter season (only). For EERC, 63%, 36% and 20% the 
houses in the winter, summer and rainy season, respectively, 
were reported to have a concentration higher than its yearly 
average of 21 Bq/m3 (discussed in Implication from yearly 
data section).

On the other hand, 220Rn and EETC concentrations were 
found to be significantly higher than their global average 
of 10 Bq/m3 and 0.02 Bq/m3, respectively, in the studied 
region. For the case of 220Rn, 56% and 56% and 47% of the 
houses in winter, summer and rainy season, respectively, 
showed 220Rn concentration higher than its annual average 
of 34 Bq/m3 (discussed in Implication from yearly data sec-
tion). While 2.5%, 1.25% of the houses were observed hav-
ing 220Rn concentration higher than 100 Bq/m3 (arbitrary 
reference) in winter and summer season. EETC concentra-
tion was observed higher than its yearly average of 0.58 Bq/
m3 (discussed in Implication from yearly data section) in 
63%, 40%, 41% the houses in winter, summer and rainy sea-
sons, respectively.

Influence of building material

The effects of construction material qualities (radioactivity 
content, grain size, porosity, etc.) on indoor concentration 
levels are well documented (Prajith et al. 2019). The effect 
of building material on the distribution pattern of 222Rn and 
220Rn has also been studied and the annual data has been 
segregated based on the building types (Mud, Stone and 
Cement). Detectors were exposed in each of these homes 
during all three seasons, resulting in three readings for each 
dwelling over the course of a year. The distribution of 222Rn, 
220Rn, EERC and EETC for this case has been illustrated in 
Fig. 6a, b and statistical parameters are given in Table 3.
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It can be seen from Table 3, the GM for 222Rn, 220Rn and 
their decay products (EETC, EERC) can be observed to be 
varying in order of mud > stone > cement. Relatively high 
exhalation rates and radium/ thorium content (source term) 
for the soil (especially mud construction) can be attributed 
to higher values of 222Rn, 220Rn, EERC, and EETC. Lower 
concentration values in the cemented house can be related 

to the fact that the surfaces are coated with cement, result-
ing in decreased radiation inward flux, which affects interior 
concentration (Singh et al. 2016; Semwal et al. 2018, 2019). 
Besides, bare flooring (especially in stone houses) contrib-
utes towards higher flux/concentration in the dwellings.

Pie charts for 222Rn and 220Rn are also shown in Fig. 7 
to dwell the effect of building material further. As can 

Fig. 5   The seasonal variation Pie chart of 222Rn and 220Rn

Fig. 6   a Box-Whisker plot of 
222Rn and 220Rn variations. b 
Box-Whisker plot of EERC and 
EETC variations
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be observed, ~ 63%, 36% and 32% of the mud, stone and 
cemented houses, respectively, showed 222Rn concentration 
higher than global average (40 Bq/m3). For EERC, 63%, 36% 
and 20% of the mud, stone and cemented houses, respec-
tively, were reported having a concentration higher than its 
yearly average. For 220Rn, 84% and 61% and 48% of the 
mud, stone and cemented houses, respectively, showed con-
centration values higher than its annual average of 34 Bq/m3. 
Besides, 5% of the mud houses were observed with 220Rn 
concentration higher than 100 Bq/m3 (arbitrary reference). 
While EETC concentration was observed higher than its 
yearly average of 0.58 Bq/m3 in 90%, 62% of the mud and 
stone houses, respectively. For cemented houses, 20% of 
houses were reported to have EETC higher than 0.58 Bq/m3.

Implication from yearly data

After examining the effects of seasons and construction 
materials on observed concentration values, the complete 
year’s data were aggregated for further analysis. Therefore, 
available 240 data points (three readings for each dwelling) 
were clustered for annual analysis. Figure 8 corresponds 
to the frequency distribution curve for 222Rn and 220Rn 
concentrations calculated annually. Table 4 lists statistical 
parameters such as concentration range, mean values, and 
standard deviation. Table 4 shows the values of annual con-
centration of 222Rn lies in the range of 6 to 99 Bq/m3 with 
GM (GSD) as 34 (1.65) Bq/m3 which is relatively lesser 
to global average value of 40 Bq/m3 (UNSCEAR 2000) 
while for 220Rn lies in the range of 6–120 Bq/m3 with GM 
(GSD) as 34 (1.78) Bq/m3 which is significantly higher than 
the world average value of 10 Bq/m3 (UNSCEAR 2000) 
and comparable to 222Rn concentration value in the study 
region. EERC and EETC lie within the range of 3–56 Bq/
m3 with GM (GSD) as 21 (1.57) Bq/m3 and 0.03 to 4.43 Bq/
m3 with GM (GSD) as 0.58 (3.41) Bq/m3, respectively. The 
EERC and EETC values are reported bit higher than the 
worldwide average value of 10 and 0.02 Bq/m3, respectively 
(UNSCEAR 2008, 2009).

A comparison of the current study’s findings with those 
of other research conducted in different Indian regions was 
also carried out. Table 5 shows that the average concentra-
tions of 222Rn, 220Rn, EERC and EETC observed in the study 
region are comparable to those found in other recent inves-
tigations (Bangotra et al. 2019; Kumar et al. 2020a; Ramola 
et al. 2016; Semwal et al. 2019).

Estimation of equilibrium factor (EF) and dose 
assessment

The estimation of equilibrium factor for 222Rn, 220Rn and 
their decay product is essential for dose assessment. With 
the invention of new techniques (DTPS/DRPS) to measure Ta
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222Rn and 220Rn progeny, it is easier to calculate the EF for 
222Rn and 220Rn. Hence EF and annual effective doses (due 
to 222Rn, 220Rn and their decay products) are predicted for 
the study region using Eqs. 1–5 and tabulated in the form 
of Table 6.

EF for 222Rn and its decay products was found to be 
varying from 0.28 to 0.77, yearly averaged value (i.e. 0.52) 
which is higher to the global reference value (0.4) (ICRP 
1991; UNSCEAR 2000). On the other hand, EF for 220Rn 
and its decay products was estimated (0.02) is comparable 
to the reference value (0.02) (UNSCEAR 2000) but with 
significant uncertainty.

The average effective dose attributed to 222Rn and 220Rn 
was 1.33 (1.34) and 0.20 (2.7) mSv/y, respectively. Annual 
inhalation dose (AID) due to 222Rn, 220Rn and their progeny 
was found to be 0.85–3.93 mSv/y with GM (GSD) as 1.71 
(1.76) mSv/y. Data from Table 6 indicate the significant con-
tribution of 220Rn and its progeny to the annual inhalation 
dose.

Conclusion

This study presented the results of measurements of indoor 
222Rn, 220Rn and their decay product activity levels in 
Nainital District of Uttarakhand, India. Measurements 

Fig. 7   The seasonal variation Pie chart of 222Rn and 220Rn concentration

Fig. 8   Frequency Distribution curve for annual 222Rn and 220Rn con-
centration

Table 4   Annual statistical data of 222Rn, 220Rn and their progeny

Statistical parameters 222Rn 220Rn EERC EETC

Range 9–99 6–120 3–56 0.03–4.42
GM, GSD 34, 1.65 34, 1.78 21, 1.57 0.58, 3.41
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were taken in selected 80 houses situated at different alti-
tudes. Single entry-based pin hole dosimeter and progeny 
sensors have been employed for the measurement of gases 
and decay products, respectively. The results have been 
interpreted on the basis of difference in building materials 
(mud, stone and cement) and seasonal variations (winter, 
summer and rainy). These were further utilized for deduc-
ing yearly averaged parameters and for performing dose 
calculations. Q–Q plots made for seasonal interpretations 
implied that 222Rn and 220Rn and their decay products fol-
low a positive skewness towards the right tail. Wintertime 
values for 222Rn, 220Rn and EERC-EETC concentration 
were found to be higher than the corresponding values for 
summer and rainy season. These levels varied in the order 
of mud > stone > cement when the data were segregated 
on the basis of difference in building materials. Estimated 
yearly averaged equilibrium factor for the study region 
came out to be 0.52 and 0.02 for 222Rn and its decay prod-
ucts and 220Rn and its decay products, respectively. How-
ever large dispersion for the factor has been seen in the 
study region. Annual inhalation dose (AID) due to 222Rn, 
220Rn and their progeny was found to be 0.85–3.93 mSv 
with GM (GSD) as 1.71 (1.76) mSv. The present study 
showed the significant contribution of 220Rn and its prog-
eny to the annual inhalation dose. It was also seen that in 
most of the mud houses, gases and their decay product’s 
concentration remained significantly higher than their 
respective global average in the winter season. The con-
centration range, mean values were also compared with the 
other studies conducted in nearby regions. The results of 

this study follow the general conclusions of similar studies 
conducted in nearby region.
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