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Abstract
A long-term structured-bed reactor subjected to recirculation and intermittent aeration (SBRRIA) was operated to remove 
chemical oxygen demand (COD) and total nitrogen (TN) from sanitary sewage using different operational strategies. Upflow 
anaerobic sludge blanket (UASB) effluent has a low carbon to nitrogen (C/N) ratio, which is unfavorable for nitrogen removal. 
Consequently, to attempt to solve this problem, the SBRRIA was fed with raw sewage (S1) combined with UASB efflu-
ent (S2) in the following proportions (v/v): 100:0; 75:25; 50:50; 25:75 and 0:100. The effects of hydraulic retention times 
(HRT), of 12 and 8 h; internal recirculation of 300, 200 and 100%; and aeration periods of 180, 90 and 60 min in 180-min 
cycles, were also evaluated. The influent COD in the SBRRIA ranged from 83 ± 10 to 200 ± 74 mg L –1, and the total Kjel-
dahl nitrogen (TKN) content ranged from 35 ± 7 to 60 ± 18 mg L –1. In Phase 2, with 8 h HRT and internal recirculation of 
200%, the efficiencies in COD and TN removal were up to 91 and 78%, respectively. This study demonstrates the viability 
of a SBRRIA to remove COD and TN from influent composed of raw sewage and/or UASB effluent, enabling an increase 
in capacity of existing wastewater treatment plants (WWTP) or an adaption of the characteristics of effluent from anaerobic 
reactors to the release standards required by Brazilian legislation.

Keywords  Denitrification · Long-term operation · Low C/N · Nitrification · Polyurethane foam · Simultaneous nitrification 
and denitrification

Introduction

Because of problems caused by excessive amounts of nutri-
ents discharged into water bodies, wastewater treatment 
plants (WWTPs) have been remodeled to remove nitro-
gen from effluent. The majority of Brazilian WWTPs were 
designed to remove COD but not nutrients, and Brazilian 

WWTPs that only have anaerobic processes are an example 
of this. Chernicharo et al. (2018) carried out a survey of the 
most used technologies for sewage treatment in the south, 
southeast and central-west regions of Brazil. They found 
that UASB reactors were used in approximately 40% of the 
studied WWTPs. In the southern Brazilian state of Paraná, 
UASB reactors are operated in 89% of WWTPs (258 units), 
which can be considered the largest UASB reactors park in 
Brazil and probably the world (Chernicharo et al. 2018).

In conventional WWTPs that involve TN and COD 
removal, the nitrification and denitrification phases take 
place in separate units, which makes system implementation 
and monitoring more expensive (Seifi and Fazaelipoor 2012; 
Li et al. 2015; Iannacone et al. 2021; Souza et al. 2021).

Simultaneous nitrification and denitrification (SND) sys-
tems can simplify operations because they combine nitrifica-
tion and denitrification in a single reactor (Liu et al. 2010; 
Guo et al. 2013; Moura et al. 2018b). Other advantages of 
SND include: a low carbon and alkalinizing requirement; 
reduced costs for the treatment and final disposal of sludge 
due to a decrease in the generation of solids; and less energy 
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consumption for aeration because part of the oxygen used to 
stabilize organic matter is in the form of nitrite and nitrate 
(Yoo et al. 1999; Chiu et al. 2007; Canto et al. 2008; He et al. 
2009; Iannacone et al. 2019).

Studies of SBRRIA show that this technology is capable 
of promoting the removal of COD and TN in a single unit 
(Moura et al. 2012, 2018a, 2018b; Barana et al. 2013; Wosi-
ack et al. 2015; Santos et al. 2016; Leick et al. 2017; Silva 
et al. 2018). SND occurs in this type of reactor due to the 
oxygen concentration gradient in the support medium, which 
is made of foam. This favors the formation of aerobic com-
munities on the outer layers, where the oxygen concentration 
is high, and facultative communities in the inner layers, with 
the absence of oxygen. Aerobic autotrophic bacteria, which 
oxidize ammonium nitrogen, predominate on the biofilm 
surface, and denitrifying heterotrophic facultative bacteria, 
which use NO3

− or NO2
− as final electron acceptors and con-

vert them into N2, predominate in the deeper layers (Munch 
et al. 1996; Zeng et al. 2003; Seifi and Fazaelipoor 2012).

Some researchers have studied the use of SBRRIA for 
sewage treatment. Silva et al. (2018) evaluated COD and 
TN removal from UASB effluent, and Moura et al. (2018b) 
studied the effect of aeration time and HRT on COD and 
TN removal from raw sewage. Jenzura et al. (2018) evalu-
ated COD and TN removal from an influent composed of 
a mixture of UASB effluent and raw sewage in the same 
proportion.

As far as we are aware, there are no literature reports that 
discuss the use of SBRRIA for treating a mixture of different 
proportions of real untreated sewage and real UASB effluent. 
Also, there are no literature reports that studied long-term 
operation SBRRIA. The benefits of this combination are (a) 
the availability of electron donors for denitrification from 
raw sewage; and (b) the possibility of taking advantage of 
the anaerobic process such as the reduction of energy con-
sumption and of sludge generation.

Considering the adaptation of existing WWTPs, which 
use UASB as one of the treatment steps and the methane 
generated as an energy source, this 453-day study aimed to 
evaluate the effect of aeration, HRT, recirculation and differ-
ent proportions of UASB effluent and untreated sewage on 
the efficiency of COD and TN removal. The data obtained 
will be useful for WWTP managers to design strategies to 
improve systems, aiming to remove nutrients and polishing 
of effluent to comply with legislation.

Materials and methods

Influent

The SBRRIA was fed with a mixture of different proportions 
of two substrates: raw sewage and UASB effluent. Both of 

these were collected from a WWTP located in the state of 
Paraná in southern Brazil that serves about 100,000 inhabit-
ants and has an average flow of 100L s−1 on dry days and 
200L s−1 in the rainy season. The HRT of the WWTP UASB 
is 8 h.

The raw sewage was collected after preliminary treat-
ment, bar screen and grift chamber and the UASB effluent 
was collected at the exit of the reactor.

Prior to feeding, the alkalinity of the influent was cor-
rected with sodium bicarbonate in the proportion of 7.14 mg 
CaCO3 to 1 mg TKN, to offer the necessary alkalinity for 
nitrification to occur.

Start‑up and bacteria adaptation

Before this experiment, the reactor had been successfully 
operated without interruption for more than 300 days with 
an HRT of 12 h, and intermittent aeration cycle to treat raw 
sewage by the SND process by Leick et al. (2017), that inoc-
ulated the reactor following the methodology described by 
Zaiat et al (1994), immersing the support material in a 1:1 
mixture of aerobic sludge from an activated sludge reac-
tor rich in nitrifying bacteria, and anaerobic sludge from 
a UASB; both of the reactors treated domestic sewage. To 
adapt the existing bacteria to the new condition, the reactor 
was operated with 12 h HRT, continuous aeration, and a 
substrate composed of a mixture of 50% raw sewage and 
50% UASB effluent. After 28 days in this condition, SND 
occurred, with NH4

+ consumption, and NO3
- generation and 

consumption.

Experimental setup and operation

This study used a cylindrical, acrylic SBRRIA reactor that 
was 80.0 cm high, with an internal diameter of 14.5 cm and 
a useful volume of 8.4 L. The reactor was filled with 13 cyl-
inders made of polyurethane (PU) foam, 2.0 cm in diameter 
and 70.0 cm high, which were used as support for adherence 
and biomass growth. The support material was arranged ver-
tically and fixed inside the reactor (Fig. 1).

This experiment was performed in two phases, which 
differed in relation to operational conditions (Table 1). In 
Phase 1, operated for 256 days, the operational variables of 
aeration periods and recirculation rates were studied, main-
taining the HRT fixed at 12 hours, a 1:1 ratio of raw sewage 
(S1), and UASB effluent (S2) for the influent. In Phase 2, 
operated for 183 days, less aeration time was used, aiming 
to save energy; the HRT was reduced to 8 h and recircula-
tion was fixed at 200%. Different proportions of S1 and S2 
were also used to evaluate the different quantities of electron 
donors in the denitrification process. The operational con-
ditions of each experimental phase were defined using the 
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results from Moura et al. (2012), Leick et al. (2017), Moura 
et al. (2018a), Moura et al. (2018b) and Silva et al. (2018).

The aeration system was formed of 3 aquarium air com-
pressors (AcquaFlux), with a flow rate of 35 L h-1, connected 

to a timer that allowed intermittent aeration. Porous stones 
were connected to the ends of the aeration hoses to allow air 
to diffuse into the liquid in the form of small bubbles. Dur-
ing aerobic periods, the concentration of dissolved oxygen in 
the reactor was maintained between 2.9 and 3.5 mg L –1

, and 
close to 0 when the aerators were turned off. The reactor was 
fed continuously, and the system was maintained at 30±1 °C.

The influent was pumped into the reactor from the bottom 
(A) using a peristaltic pump (Ismatec brand, Ecoline model). 
The recirculation was performed using a Prominent Dosi-
ertechnik, GmbH model, membrane pump. The effluent left 
at the top of the reactor (C) and its recirculation entered at the 
bottom (B), favoring the mixing and dilution of the influent 
with the effluent. The recirculation input (B) was 5 cm above 
the inflow (A) to allow the sedimentation of solids. The out-
put of the treated effluent was located at the top of the reactor 
(Fig. 1).

Table 1 shows the conditions of the tests that were per-
formed. E1 was defined as the concentration of raw sewage 
(after preliminary treatment) and E2 was defined as the efflu-
ent from the UASB.

Physicochemical analysis

In order to analyze the reactor efficiency, the pH, alkalinity, 
TKN, ammoniacal nitrogen (NH4

+-N), nitrite (NO2
−-N), 

nitrate (NO3
−-N) and COD parameters were monitored accord-

ing to the methods described in the APHA (2017). Alkalinity 
was determined according to the method proposed by Ripley 
et al. (1986).

All the analyses were performed in duplicate. In order to 
analyze the efficiency of each test, samples were taken in a 
steady state period. The reactor was considered to be in steady 
state when the results of removing nitrite and nitrate effluent 
did not differ by 10% from the average.

Balance of total alkalinity and nitrogen

Considering the conventional SND process as the main path-
way of each test, the balance of the theoretical and measured 
alkalinity of the effluent was calculated based on the balance 
of the influent and effluent nitrogen concentrations. Knowing 
that for nitrification, 1 mg of NH4-N consumes 7.14 mg of 
CaCO3, and for denitrification, 3.57 mg of CaCO3 is generated 
for 1 mg of NO3-N, the theoretical alkalinity was calculated 
using the results presented in Table 4 and the equations shown 
below Table 4.

Fig. 1   Schematic diagram of the SBRRIA (A: Inlet; B: Inlet recircu-
lation; C: Recirculation exit; D: Effluent discharge)

Table 1   Operational conditions and influent composition

E1: untreated sewage; E2: UASB effluent

Test Infl. composi-
tion (%)

Internal recir-
culation (%)

Aeration (ON/
OFF) (min)

Time (day)

E1 E2

Phase 1–HRT = 12 h
 1 50 50 300 180/0 0–21
 2 50 50 300 90/90 21–46
 3 50 50 300 60/120 46–97
 4 50 50 200 180/0 97–125
 5 50 50 200 90/90 125–160
 6 50 50 200 60/120 160–182
 7 50 50 100 180/0 182–202
 8 50 50 100 90/90 202–225
 9 50 50 100 60/120 225–256

Phase 2–HRT = 8 h
 10 0 100 200 60/120 256–287
 11 25 75 200 60/120 287–332
 12 50 50 200 60/120 332–350
 13 75 25 200 60/120 350–394
 14 100 0 200 60/120 394–439
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Results and discussion

The concentrations of all the parameters were expressed as 
averages for all the tests. The presented results refer to the 
continuous operation of the reactor over 439 days.

Long‑term performance of the SBRRIA

The influent COD concentration varied from 83 ± 10 to 
237 ± 123 mg L −1, depending on the variation of the char-
acteristics of the sewage influent to the WWTP and the E1/
E2 proportions. The TKN influent concentration did not vary 
much because there was no removal of TN during anaerobic 
treatment (Table 2).

In Phase 1, operated with 12-h HRT and influent com-
posed of a S1:S2 mixture of 1:1, independently of the recir-
culation and aeration conditions it was possible to meet 
the COD and NH4-N discharge standards in all of the con-
ditions. The effluent COD values ranged from 27 ± 30 to 
68 ± 22 mg L −1, and the local regulation is 150 mg L −1 
(Grant Ordinance 488/2018-Paraná Water and Soil Institute). 
The NH4

+-N concentration reached a maximum value of 
7.1 ± 3 mg L −1, which is less than the value permitted by 
Brazilian federal legislation, i.e., 20 mg NH4

+-N L −1 (Bra-
sil 2011). Effluent NO2-N concentrations were also found 
in low concentrations in Phase 1, up to 3.2 ± 0.7 in all the 
tests. Nitrification efficiency varied from 68 ± 13 to 98 ± 3% 
(Table 3), which explains the low effluent nitrite concen-
trations. The lowest effluent NO3-N concentrations were 

observed in tests 4, 5 and 6, with 200% internal recircula-
tion, and they varied from 4.9 ± 2.6 to 13.3 ± 0.4 (Table 2). 
In addition, these tests presented the highest denitrification 
rates, from 62 ± 3 to 87 ± 1%, in Phase 1 (Table 3).

After studying the aeration and internal recirculation 
parameters, the lowest aeration time and 200% of internal 
recirculation were chosen for Phase 2, where different influ-
ent proportions of S1 and S2 were evaluated (Tests 10 to 14).

It can be observed that the nitrification efficiency in Phase 
2 decreased from 85 ± 11 to 69 ± 13%, tests 10 to 14, when 
the influent concentration COD increased from 83 ± 10 to 
200 ± 74 mg L −1 (Tables 2 and 3). The highest TN removal 
(78%) took place in test 10, while the lowest (50%) occurred 
in test 14, whose removal of influent COD was the high-
est. The same behavior was observed by Fu et al. (2009), 
Santos et al. (2016) and Moura et al. (2018b). In the pres-
ence of oxygen and the availability of excess organic matter, 
aerobic heterotrophic bacteria compete with aerobic auto-
trophic nitrifiers for the electron acceptor, O2. As aerobic 
heterotrophic bacteria are more energy efficient than nitrify-
ing autotrophic bacteria, they prevail, occupying space and 
consuming oxygen (Schmidt et al. 2003; Kulikowska et al. 
2010; Ding et al. 2012; Wu et al. 2012; Santos et al. 2016; 
He et al. 2018; Iannacone et al. 2019; Iannacone et al. 2020). 
Although the COD/TKN ratios in most of the tests evalu-
ated in Phase 2 were below 4.0, a value considered as the 
minimum adequate for the occurrence of heterotrophic deni-
trification, the denitrification efficiency ranged from 74 ± 18 
to 86 ± 14% (Table 3), resulting in low levels of nitrite and 
nitrate in the reactor effluent (Table 2).

Table 2   Average 
characterization of the influent 
and effluent of each test of the 
two evaluated phases

E1: untreated sewage; E2: UASB effluent
Values represent the mean ± standard deviation

Test Influent (mg L−1) Effluent (mg L−1)

TKN NH4-N COD COD/TKN TKN NH4
+-N NO2

−-N NO3
−-N COD

Phase 1–HRT = 12 h
 1 52 ± 4 46 ± 4 134 ± 21 2.6 0.9 ± 0.8 0.7 ± 1 1.0 ± 0.8 14.0 ± 0.8 34 ± 19
 2 47 ± 5 47 ± 3 203 ± 128 4.3 1.8 ± 1.1 1.5 ± 2 3.2 ± 0.7 16.7 ± 3.2 43 ± 35
 3 47 ± 3 47 ± 3 237 ± 123 5.0 1.7 ± 1.4 1.1 ± 1 0.7 ± 0.6 13.5 ± 2.7 27 ± 30
 4 46 ± 4 30 ± 10 148 ± 26 3.2 4.6 ± 2.6 7.1 ± 3 0.3 ± 0.4 4.9 ± 2.6 39 ± 10
 5 47 ± 4 39 ± 5 143 ± 26 3.0 8.9 ± 9.6 4.1 ± 10 0.9 ± 0.2 9.5 ± 4.3 40 ± 18
 6 40 ± 0 32 ± 4 147 ± 20 3.7 3.4 ± 0.3 2.8 ± 0.4 0.8 ± 0.3 13.3 ± 0.4 41 ± 16
 7 45 ± 3 28 ± 7 155 ± 30 3.4 5.3 ± 2.5 4.6 ± 5 2.5 ± 0.8 15.3 ± 1.1 33 ± 20
 8 45 ± 11 26 ± 7 148 ± 29 3.3 4.5 ± 1.6 4.2 ± 2 2.4 ± 0.5 13.8 ± 1.5 60 ± 15
 9 42 ± 5 27 ± 5 175 ± 45 4.2 5.0 ± 1.1 4.6 ± 1 2.6 ± 1.6 13.5 ± 1.4 68 ± 22

Phase 2–HRT = 8 h
 10 37 ± 8 32 ± 5 83 ± 10 2.3 6 ± 6 3 ± 1 3 ± 1 2 ± 0.12 14 ± 5
 11 35 ± 7 27 ± 4 147 ± 17 4.2 8 ± 6 6 ± 4 5 ± 3 2 ± 0.10 36 ± 27
 12 36 ± 2 32 ± 3 134 ± 52 3.7 12 ± 1 10 ± 2 4 ± 1 2 ± 0.04 18 ± 9
 13 41 ± 11 27 ± 8 168 ± 12 4.2 13 ± 2 4 ± 4 2 ± 1 2 ± 0.06 16 ± 8
 14 60 ± 18 46 ± 8 200 ± 74 3.3 19 ± 9 22 ± 2 5 ± 2 2 ± 0.13 25 ± 13
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Systems with immobilized biomass can produce 
increased efficiency in terms of nitrogen removal. This is 
because they ensure the retention of nitrifying bacteria, 
whose growth is slow due to low energy usage, so that the 
cell retention time does not depend on the HRT, increas-
ing the stability and performance of the system (Wijffels 
and Tramper 1995; Rostron et al. 2001; Almeida et al. 
2018; Chen et al. 2018). Iannacone et al. (2019) operated a 
moving-bed biofilm reactor (MBBR) with micro-aeration; 
after a long operation period (227 days) they evaluated the 
nitrification and denitrification activities on the biofilm. 

The nitrifying and denitrifying activities for the C/N ratio 
of 5.6 were 81 and 66 mg N g VSS−1 d−1, respectively, 
while for a C/N ratio of 2.7 these activities were, respec-
tively, 3.9 and 2.3 times larger. In the present study, it can 
be assumed that in test 10, with a lower concentration of 
influent COD, the development of heterotrophic aerobic 
bacteria was lower, which resulted in a better balance of 
oxygen and space for the growth of nitrifying autotrophs, 
justifying the higher nitrification rate. It is noteworthy that 
the influent of test 10 consisted only of the UASB efflu-
ent, since it had already undergone a treatment process. 

Table 3   Efficiencies in 
COD removal, nitrification, 
denitrification and TN removal, 
TN loading rate (NLR)

Values represent the mean ± standard deviation. E1: raw sewage; E2: UASB effluent

Test E1/E2 COD Nitrif. (%) Denitrif TNrem NLR (kg N 
m−3 d−1)

Phase 1 HRT = 12 h
 1 50/50 74 98 ± 3 71 ± 11 70 ± 4 0.103
 2 50/50 78 96 ± 2 56 ± 9 54 ± 3 0.090
 3 50/50 88 95 ± 10 54 ± 6 52 ± 10 0.090
 4 50/50 73 89 ± 11 87 ± 1 78 ± 3 0.091
 5 50/50 71 81 ± 8 73 ± 2 59 ± 8 0.090
 6 50/50 70 91 ± 10 62 ± 3 56 ± 11 0.080
 7 50/50 78 89 ± 12 56 ± 12 50 ± 10 0.090
 8 50/50 59 90 ± 6 60 ± 3 54 ± 9 0.090
 9 50/50 60 88 ± 6 56 ± 8 50 ± 7 0.083

Phase 2–HRT = 8 h
 10 0/100 83 85 ± 11 86 ± 5 78 ± 11 0.097
 11 25/75 76 79 ± 11 74 ± 18 63 ± 16 0.082
 12 50/50 86 68 ± 3 76 ± 4 56 ± 4 0.095
 13 75/25 91 70 ± 17 86 ± 14 64 ± 18 0.081
 14 100/0 84 68 ± 13 83 ± 11 50 ± 15 0.139

Table 4   Balance of total alkalinity consumed and generated in each test

Values represent the mean ± standard deviation 
A = TKNinfluent-TKNeffluent

B = (TKNinfluent-NH4-Ninfluent)-(TKNeffluent-NH4-Neffluent)
C = (TKNinfluent-TKNeffluent)-NO3-Neffluent-NO2-Neffluent

E = A × 7.14 mgCaCO3 L−1

F = C × 3.57 mgCaCO3 L−1 + B × 3.57 mgCaCO3 L−1

G = D + F-E

Test Oxidized 
nitrogen A

Ammonified 
nitrogen B

Denitrated 
nitrogen C

Alkalinity influ-
ent measured D

Theoretical alka-
linity consumed E

Total theoretical 
alkalinity gener-
ated F

Theoretical efflu-
ent alkalinity G

Measured 
effluent alka-
linity

(mgN.L−1) (mgCaCO3.L−1)

10 31 2 29 264 ± 57 221 110 153 86 ± 39
11 27 6 25 249 ± 49 192 110 188 109 ± 53
12 24 2 22 257 ± 14 171 85 171 168 ± 82
13 28 5 26 292 ± 78 199 110 203 84 ± 59
14 37 13 35 428 ± 129 264 171 335 221 ± 114
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The remaining organic matter was difficult to degrade, 
which probably reduced the speed of its use by aerobic 
heterotrophic bacteria, making it available for denitrify-
ing organisms.

The fact that this reactor had been operated for a long 
time, more than 400 days, promoted the stability of the sys-
tem due to the adaptation of the bacteria to the operational 
conditions. Iannacone et al. (2019) operated a MBBR for 
more than 200 days and observed that changes in operational 
conditions produced both short- and long-term effects. They 
concluded that the longer the operation, the more efficient 
the nitrification and denitrification process at C/N ratio 4.2

In the present study, the rate of TN removal was also 
explained by the high retention of solids in the reac-
tor. This was due to the characteristics of the foam used 
as support, which allowed the retention of solids. In this 
experiment, the average retention of total solids was 59% 
(data not shown). The retained solids may have been used 
as a source of organic matter for denitrifying heterotrophic 
bacteria. Almeida et al. (2018) and Silva et al. (2018) have 
highlighted the fact that when there is little COD availa-
bility part of the biomass can also be used as a source of 
endogenous carbon for heterotrophic denitrification. After 
having studied SND in a reactor with a long cell retention 
time to treat sewage with a C/N ratio between 2.5 and 4.0, 
Gong et al. (2012) observed high efficiency in TN removal, 
which they attributed to endogenous denitrification. After 
analyzing SND with a low DO concentration and a C/N ratio 
below 3.5, Wang et al. (2015) achieved good rates for TN 
removal, which was also attributed to endogenous denitrifi-
cation. After operating the same type of reactor used in the 
present study (SBRRIA) to treat different effluents with a 
C/N ratio below 3, Barana et al. (2013), Santos et al. (2016) 
and Almeida et al. (2018) observed the occurrence of the 
anammox process in all the experiments. The anammox pro-
cess takes place in this type of reactor because the biomass 
immobilizes in the foam due to the oxygen gradient. This 
allows the development of communities in aerobic, anoxic 
and anaerobic conditions, enabling the removal of various 
forms of nitrogen by different metabolic pathways.

To confirm the occurrence of the SND process (nitrifica-
tion from ammonium to nitrate, and heterotrophic denitrifi-
cation) in Phase 2, the mass balance of the measured influent 
alkalinity and theoretical and measured effluent alkalinity 
was performed (Table 4). Lower values for measured efflu-
ent alkalinity when compared with theoretical values, Test 
10, 11, 13 and 14, suggest the presence of anammox bacte-
ria that consume alkalinity (Moura et al., 2018a), but more 
investigations must be doing to confirm this occurrence. 
Moura et al. (2018a) evaluated raw sewage treatment in a 
SBRRIA and also found real effluent alkalinity value lower 
than the theoretical one, but they did not find bacterial genus 
related to anammox.

Conclusion

The operation of the SBRRIA for a long period of time 
(more than 400 days) showed it was efficient regarding 
COD and TN removal without the need for an external car-
bon source. The SBRRIA was operated with 8 h HRT, 60 
aerated minutes followed by 120 min of no aeration (180-
min cycles) and was fed with a mixture of raw sewage and 
UASB effluent (proportions of 0:100, 25:75, 50:50, 75:25 
and 100:0). It reached effluent concentrations of COD in 
a range from 14 ± 5 to 68 ± 22 mg L −1; of NH4-N from 
3 ± 1 to 12 ± 2 mg L −1

; and maximum concentrations of 
NO2-N and NO3-N of 5 ± 3 mg L −1 and 2 ± 0.13 mg L −1, 
respectively.

Thus, it can be concluded that using a SBRRIA repre-
sents an alternative for the treatment of raw sewage, and 
for the polishing of UASB effluent or of a mixture of this 
effluent with raw sewage, which will also allow WWTPs to 
increase levels of treated flow. In addition, the use of a SBR-
RIA should ensure that effluent reaches legal requirements 
for effluent discharge standards.
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