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Abstract
The two-stage anaerobic digestion (AD) is gaining popularity because of the process stability and possibility of recovering 
multiple-resources such as biohydrogen and organic acids from the first stage dark fermentation (DF) and methane in the 
AD as the second stage while treating the organic waste. As the performance of two-stage processes is influenced by the type 
of substrate and operational conditions, there have been several experiments at laboratory and pilot scales to determine the 
optimum conditions. The main objective of this review is to provide an updated overview of advancements in biohythane 
and organic acids production from food waste (FW) in the two-stage DF-AD process. Likewise, this work also provides an 
insight into the economic and future prospective of utilizing organic acids for different biochemicals such as polyhydroxyal-
kanoates, polylactate, and microalgal biomass production. The integration of optimum operational parameters, pretreatment 
methods, types of bioreactors is essential in combined DF-AD processes. The parameters and reactor configuration have to 
be optimized depending upon the targeted end-products. More research into the techno-economic analysis of different bio-
reactor configurations for long-term operations in an integrated DF-AD process with FW as a feedstock is needed to realize 
its viability for commercial application.
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CSTR  Continuous stirred tank reactor
DF  Dark fermentation
EGSB  Expanded granular sludge bed
FW  Food waste
HRT  Hydraulic retention time
HCl  Hydrochloric acid
H2  Hydrogen
HPP  Hydrogen partial pressure
LA  Lactic acid
LBR  Leachate bed reactor
LCA  Life cycle assessment
LCFA  Long-chain fatty acid
CH4  Methane
NPV  Net present value
OFMSW  Organic fraction of municipal solid waste
OLR  Organic loading rate
PBR  Packed bed reactor
PHB  Polyhydroxy butyrate
PHA  Polyhydroxyalkanoates
PLA  Polylactic acid
KOH  Potassium hydroxide
RR  Recirculation ratio
SBR  Sequence batch reactor
SCFA  Short chain fatty acid
SRT  Solids retention time
NaOH  Sodium hydroxide
SCBL  Sugarcane bagasse and leaves
TS  Total solid
USD  United state dollars
UAPB  Up-flow anaerobic packed bed
UASB  Up-flow anaerobic sludge blanket
VFA  Volatile fatty acid
WAS  Waste-activated sludge

Introduction

With the increase in energy demand, depletion of fossil fuel, 
and growing concern over global warming, the interest in 
green technologies for resource recovery is increasing. The 
current global energy demand is expected to double by 2050. 
More than 80% of the current energy demand is fulfilled by 
fossil fuels which are limited resources. Moreover, the by-
products from burning fossil fuels are the major source of 
greenhouse gas emissions. The need for renewable sources 
to produce bioenergy and biochemicals that have positive 
environmental impacts is driving the bio-based economy 
(Cherubini et al. 2009; Bastidas-Oyanedel et al. 2019). The 
bio-based economy promotes the technologies that recover 
energy and chemicals from biomass through the biological 
degradation process.

Anaerobic digestion (AD) is one of the widely used bio-
logical processes for the production of renewable energy as 

biogas and nutrients from organic waste (Jain 2019). The 
benefits of converting the combustible methane  (CH4) gas to 
heat and electricity through combined heat and power (CHP) 
plant and the use of digestate as fertilizer has made AD a 
popular technology. However, these factors may not upgrade 
both material recovery efficiency and the economic viability 
of commercial biogas facilities (Kaparaju et al. 2009; Sawat-
deenarunat et al. 2015).

The pursuit of optimization of the AD process for mul-
tiple-resource recovery has led to realizing a two-stage AD 
process. The two-stage AD process differs from the single-
stage AD in terms of microbial pathways, growth kinetics, 
and environmental condition for acidogens and methanogens 
which is carried out in two separate bioreactors. Besides, 
several studies show that the two-stage process is much more 
beneficial than single-stage processes in terms of perfor-
mance, efficiency, and stability (Liu et al. 2006; Park et al. 
2010; Luo et al. 2011; Ghimire et al. 2021). Moreover, the 
fermentation time and reactor volume are also reduced in 
a two-stage AD process with possibilities for multiple-
resource recovery. As reported by Roy and Das (2016), the 
total gaseous energy recovery from the starchy wastewater 
for the two-stage process was 53.6% whereas only 28% of 
gaseous energy was recovered from the single-stage bio-
hydrogen  (H2) production. The two-stage AD process also 
shows stability in the long run which opens up possibilities 
for upscaling (Cavinato et al. 2012; Massanet-Nicolau et al. 
2015).

The two-stage AD process simultaneously produces  H2 
in the first stage and  CH4 in the second stage. The combina-
tion of  H2 (10–25% v/v) and  CH4 (75–90% v/v) is termed 
biohythane which has been considered a high-grade fuel, 
better than methane in terms of flammability, flame speed, 
and easier ignition with less energy input (Bolzonella et al., 
2019). In addition, the by-products from the two-stage AD 
process such as Volatile Fatty Acid (VFA), Lactic Acid 
(LA), and alcohol are useful biochemicals (O-Thong et al. 
2018). The two-stage AD has a good potential to become 
a sustainable biorefinery approach for multiple fuels and 
biochemicals production. Various processes such as dark 
fermentation (DF), photo-fermentation (PF) within the two-
stage biorefinery process are available for  H2 production. In 
particular, DF is the most studied and promising technol-
ogy because it has the potential to produce  H2 along with 
biochemicals from a wide variety of feedstock (Nasr et al. 
2012; Alibardi and Cossu 2016). Furthermore, combining 
DF with AD can be an appropriate option to create  H2 and 
 CH4, thus, biohythane (Meena et al. 2020).

Current research interests in “biorefinery” are grow-
ing as shown by an increasing number of publications of 
2,153 scientific articles and book chapters in the last dec-
ade (2010–2020) compared to 402 numbers (before the 
decade) in Scopus. The research and commercial interest 
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in anaerobic biorefinery is increasing due to the versatil-
ity of the process for the production of multiple fuels and 
chemicals (K. C. et al. 2015; Agler et al. 2011; Tedesco and 
Stokes 2017). As such DF-based biochemical process can be 
a promising route for achieving the bio-based products and 
energy (Clomburg and Gonzalez, 2013; Bastidas-Oyanedel 
et al. 2015; Motte et al. 2015; Sarma et al. 2015; Luongo 
et al. 2017; Nizami et al. 2017; Moscoviz et al. 2018).

Conversion of Food waste (FW) to produce bioenergy 
(biofuels) and by-products (fertilizers, chemicals) has been 
considered as one of the efficient approaches for not only 
energy production but also solid waste management (Dahiya 
et al. 2018; Paritosh et al. 2017; Strazzera et al. 2018). About 
57% and 53% of the waste composition is organic waste in 
low and middle-income countries, respectively (Kaza et al. 
2018). The major portion of organic waste is FW. Globally, 
FW amounts to 1.6 billion tonnes and much of it ends up 
in landfill sites leading to the emission of greenhouse gases 
(GHGs). FW is estimated to produce 3.3 billion tonnes of 
carbon dioxide  (CO2) emissions per year (FAO 2013). The 
theoretical  CH4 yield and electricity production potential of 
FW is 0.300  m3/kg VS and 473.8 kWh, respectively (Suhar-
tini et al. 2019). Therefore, tapping the energy potential of 
FW via a biorefinery framework could be a sustainable 
approach for organic waste management and the production 
of multiple-resources for commercial use.

This paper aims to provide an extended overview of the 
DF and AD process for biohythane and biochemical pro-
duction (particularly VFA) from FW within the biorefinery 
approach. This paper discusses how pretreatment, different 
operational parameters, and the choice of bioreactors in 
the DF-AD affect the substrate degradation and metabolic 
pathways for  H2,  CH4 and organic acids production from 
FW. Likewise, the optimum conditions for biohythane and 
VFA production, economic and future prospective of utiliz-
ing the VFA for different biochemical such as polyhydroxy-
alkanoates, polylactate, and microalgal biomass has been 
discussed.

FW as a feedstock for biohythane 
and biochemical production

The FW which is generally rich in carbohydrates has been 
widely used for  H2 and biochemical production. FW com-
prises mostly carbon chains and has a high energy content 
(Fatima et al. 2020). The average energy content in the 
mixed food sample (meat, fruits, and vegetables) was found 
to be 14.31 MJ/kg (Tanai 2016). Every year, approximately 
one-third of the food produced for human consumption gets 
wasted which is likely to increase with the global popula-
tion (Gustavsson et al. 2011). However, the characteris-
tics of FW vary depending upon the consumption pattern 

of different countries (Paritosh et al. 2017). Globally, the 
highest FW constituent is cereal (more than 80,000 million 
tonnes) whereas considering only Asia, vegetable (60,000-
kilo tonnes) contributes to the maximum FW (Paritosh et al. 
2017). Thus, this abundant FW can be extensively used in 
two-step DF-AD (Bolzonella et al. 2019; Dahiya et al. 2018).

Generally, carbohydrate-rich FW is regarded as the most 
ideal substrate for  H2 and  CH4 production in a two-stage 
process, whereas lipids and protein-rich foods are the least 
preferred (Alibardi and Cossu 2016). A 20 fold increase in 
biological  H2 production was observed when using carbo-
hydrate-rich substances compared to lipid and protein-rich 
substances (Fatima et al. 2020).

Cieciura-Włoch & Borowski (Cieciura-Włoch and 
Borowski 2019) found out that plant-based waste such as 
fruit and vegetable waste is most suitable for hydrogen pro-
duction with the highest yield of 280 L  H2/kg VS. They 
also found out that slaughter house and kitchen waste have 
high methane yield but unfavorable for hydrogen production 
because of high protein and fat. The protein-rich substrate 
with a low C: N ratio increases ammonia concentration dur-
ing the AD process leading to inhibition of methanogenic 
microorganisms (Bolzonella et al. 2019). Similarly, the lipid 
is degraded into long-chain fatty acids (LCFA) which have 
an inhibitory effect on acetogens and methanogens (Dasa 
et al. 2016).

Besides the nutrients, the high total solid (TS) content 
of around 20–30% in FW makes it favorable for operating 
the first stage reactor under dry conditions (Capson-Tojo 
et al. 2017). According to the TS content of the FW was 
also found to be adjusted to 4.3% and 10% in tests carried 
out by Algapani et al. (2018) and Akhlaghi et al. (2019), 
respectively. The TS content greater than 15% can result in 
a decrease in substrate conversion and lactate is produced as 
a major fermentation product (Ghimire et al. 2017). Simi-
larly, methane yield was found to be higher in the FW of TS 
15–20% than in the TS of 5–10% (Chen et al. 2014). FW has 
a high VS content (21 to 27% VS) and is particularly suit-
able for the co-production of biohydrogen and platform mol-
ecules such as short organic acids and/or alcohols (Uçkun 
Kıran et al. 2015).

FW can be co-digested with substrates such as anaerobic 
sludge (can function as inoculum), waste activated sludge, 
wheat straw, chicken manure, and grass to enhance bio-
hythane and VFA production (Ghimire et al. 2017; Show 
et al. 2018; Wang et al. 2014; Esteban-Gutiérrez et al. 2018). 
According to Wang et al. (2014), the VFA production from 
FW with the addition of aerobic and anaerobic activated 
sludge was recorded to be 0.482 g/g  VSSremoval and 0.918 g/g 
 VSSremoval, respectively. Similarly, the co-digestion of FW 
with brown water (feces without urine) formed acetic and 
butyric acids as major metabolites which are the most 
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appropriate for methe and useable by-products production 
(Rajagopal et al. 2014).

FW is rich in organic content due to which there is a 
possibility of hydrolysis inhibition by the accumulation 
of ammonia, rapid acidification, and formation of LCFA 
(Menzel et al. 2020). This inhibits the optimum energy 
recovery from FW in single-stage AD. Therefore, besides 
co-digestion, two-stage AD, and pretreatment have also 
been considered as the efficient approach for enhancing the 
solubilization and hydrolysis of FW (Uçkun Kiran et al. 
2015; Rodríguez-Valderrama et al. 2020; Menzel et al. 
2020).

Two‑stage AD process as a pathway 
for biohythane and biochemicals

Generally, the conversion of organic waste during AD 
consists of four steps: (i) hydrolysis (ii) acidogenesis (iii) 
acetogenesis, and iv) methanogenesis. In the two-stage AD 

process, these processes are physically separated by two 
reactors under controlled operating conditions (Fig. 1).

Stage I: dark fermentation (DF) process

Hydrolysis and acidogenesis phases are carried out in the 
first stage reactor. In this reactor, the complex organic com-
pounds are hydrolyzed and further degraded by acidogenic 
microorganisms to produce C2-C5-based VFA,  H2,  CO2, 
and alcohols in the DF process (Camacho et al. 2019). Even 
though FW is readily biodegradable, hydrolysis is the rate-
limiting step during the AD process (Zhang et al. 2014). 
However, for the two-stage AD process of organic waste, 
methanogenesis is the rate-limiting step (Meena et al. 2020) 
because of the slower methanogenic kinetics and longer lag 
phase in the second-stage reactor (De Gioannis et al. 2014).

During the DF process, most of the energy contained 
in the organic substrate is converted into VFAs whereas 
only 7.5–15% of the total energy is converted to  H2 (Bol-
zonella et al. 2019). The possible pathways for  H2 produc-
tion are presented in Table 1 Eqs. (1) to (4), which shows 

Fig. 1  Schematic diagram of the 
two-stage AD process

VFA Recovery
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Table 1  Equation representing metabolic pathway for  H2 production

a  ΔG’
0 values are adapted from (Thauer et al. 1977; S.-H. Kim et al. 2006a, b)

Possible  H2 producing pathways Metabolic pathway ΔG’
0
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that the maximum theoretical yield from the DF process 
can be 4 mol  H2/mol glucose (Saratale et al. 2019). How-
ever, this cannot be achieved due to the complex nature 
of the FW which may contain a different fraction of car-
bohydrates, proteins, and fat.

Stage II‑anaerobic digestion (AD) process

The DF effluent from the first stage can be fed into the 
second stage in which acetogenesis and methanogenesis 
occur. The VFAs with higher molecular weight and other 
intermediates are further oxidized by  H2-producing ace-
togens as shown in Eqs. 5–7 (Van et al. 2020).

Approximately, 25% of acetate and 11% of  H2 are 
formed in acetogenesis (Anukam et al. 2019). Though  H2 
is produced during acetogenesis, it is not recommended to 
extract  H2 from this stage (Van et al. 2020). Because ace-
togenic microorganisms are compatible with methanogens 
(Roy and Das 2016). And, this acid phase product (acetate 
and  H2 and  CO2) is consumed by methanogenic microor-
ganisms for  CH4 production (Meegoda et al. 2018). The 
undigested or unhydrolyzed food residues can also be 
converted to  CH4 in the second-stage reactor. In the two-
stage AD process, AD is mostly used for the recovery of 
 CH4 rather than organic acids.

In acetoclastic methanogenesis, acetate is converted 
into  CH4 and  CO2 which is accountable for two-thrid of 
 CH4 production (Eq. 8). Alternatively, reduction or  CO2 
to  CH4 can also take place, which is termed as hydrog-
enotrophic methanogenesis which is accountable for the 
remaining one-third  CH4 (Eq. 9) (Fenchel et al. 2012).

The physical separation benefits the growth of required 
microorganisms within that particular process. For exam-
ple, hydrolysis is limited by fermentative bacteria whose 
optimum pH is 5.5, whereas the pH of 7.5–8.5 is needed 
for methanogenic microorganisms (Sivagurunathan et al. 
2018). In DF, the hydrolysis and acidogenesis process 
is maintained by lowering the hydraulic loading rate 
(HRT), controlling the pH around 5.5—6.5, and inoculum 
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pretreatment to enrich  H2 producers (Chu et al. 2008; Xia 
et al. 2016; Rafieenia et al. 2017).

Operational parameters affecting 
the two‑stage AD process producing 
biohythane.

The optimization of operational parameters such as pH, tem-
perature, hydraulic retention time (HRT), substrate loading 
rates, pretreatment methods, recirculation of effluent from 
the second stage to the first stage (recirculation ratio), types 
of bioreactor is essential in the integrated two-stage DF-AD 
process. The operational parameters affecting the biohythane 
production in the two-stage AD process are shown in Fig. 2. 
The effect of varying operating parameters in a two-stage 
AD process has been summarized and presented in Table 2.

pH

The pH is one of the most important parameters in bio-
hythane production because it determines the subsistence 
of acidogenic or methanogenic microorganisms. It directly 
affects the metabolic pathways involved in the process of 
anaerobic fermentation and digestion. The formation of 
undissociated organic acids when pH is lower than 4 ceases 
 H2 production in DF (Bolzonella et al. 2019).

While operating a two-stage process for biohythane pro-
duction from FW, Cavinato et al. (2011) reported 15% of  H2 
production in the first phase and 65% of  CH4 in the second 
phase at pH of 4.32 and 7.68, respectively. Moreover, around 
35% of  H2 production was observed at pH 3.51. Maintaining 
pH at acidic and neutral alkaline conditions is suitable for 
DF and AD reactors, respectively. This creates a favorable 
growth environment for  H2 producing microorganisms in DF 
and methanogens in AD (Meena et al. 2020).

Fig. 2  Operating parameters affecting the biohythane production
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Anaerobic fermentation (AF) or DF process have been 
used by the different researchers for VFA production under 
controlled pH varying from pH of 6 to 8 (Table 3). However, 
the VFA production was improved in alkaline conditions 
(pH 9) in comparison to acidic conditions (pH 6) for FW in 
batch tests (Cheah et al. 2019). The certain value of pH also 
affects the concentration of targeted VFAs. The culture pH 
of 6 was found to be suitable for the production of acetate 
whereas, pH 7 facilitated the production of butyrate from 
FW (Hussain et al. 2017).

The pH inside the first stage keeps on fluctuating due 
to the formation of VFAs. This inhibits the  H2 production 
pathway as  H2 and  CO2 is consumed by acetogens to pro-
duce acetate (Cavinato et al. 2011). Therefore, the pH of 
the first stage reactor can be controlled by external chemi-
cal addition (Micolucci et al. 2014), the use of co-substrate 
with high alkalinity or buffering capacity (Yeshanew et al. 
2016; Ghimire et al. 2016), and continuous operation for 
 CH4 production could also avoid pH drop as high VFA con-
centration is buffered by high total ammonia concentration 
(Capson-Tojo et al. 2016). However, these external methods 
and continuous processes result in high costs and instability 
of operation. Therefore, a cost-effective solution in two-stage 
AD could be recirculating the digestate of the  CH4 reactor 
to the  H2 reactor (Cavinato et al. 2012, 2011; Micolucci 
et al. 2014).

Temperature

An optimum temperature plays a vital role in the growth of 
microorganisms as it influences biochemical reactions and 
their metabolism. Microorganisms that are responsible for 
 H2 production in the first stage and the  CH4 production in 
the second stage are often found to be grown at mesophilic 
(30–35 °C) to, thermophilic (55–60 °C) to higher thermo-
philic condition (70–90 °C) (O-Thong et al. 2018).

Most of the researchers have kept the optimum tempera-
ture at 55 °C for biohythane production as evident in Table 2. 
According to O-Thong et al. (2018), higher thermophilic 
temperatures are more favorable for  H2 production during 
DF than thermophilic and mesophilic conditions. Microor-
ganisms such as Caldicellulosiruptor sp. survive in extreme 
temperatures and have hydrolytic enzymes which can utilize 
various substrates such as cellulose for more  H2 production. 
Moreover, higher temperature accelerates their metabolism 
and degradation efficiency that reduces the retention time 
for biohythane production. Furthermore, thermophilic con-
dition decreases the solubility of  CH4 and  CO2 along with 
the destruction of pathogens (O-Thong et al. 2018). How-
ever, Ghimire et al. (2021) recorded the highest  H2 (53.5 mL 
 H2/g  VSadded) and  CH4 (307.5 L  CH4/kg  VSadded) production 
from FW in the DF-AD process at mesophilic and thermo-
philic temperature, respectively. The probable reason for this 

distinction is the quicker adaptation of heat-treated inoculum 
at the mesophilic condition as it is sourced from the meso-
philic digester (Ghimire et al. 2021).

The most commonly used process temperature for VFA 
production from the AF process is 35℃ (Table 3). Accord-
ing to Cho et al. (2015), the VFA concentration from AF 
increases with the increase in temperature. VFA produced at 
55 °C was 3.2 times greater than the VFA produced at 35 °C. 
Similarly, the concentration of propionic acid increased by 
15% but acetic acid decreased to 65.8% with the increase in 
temperature. However, Jiang et al. (2013) found 45℃ as the 
most favorable temperature for the highest VFA production 
(47.89 g/L). The value was only slightly higher than the 
VFA (41.34 g/l) produced at 35 ℃. According to Jiang et al. 
(2013), the higher temperature leads to higher solubilization 
but lower acidogenesis of FW thus, leading to lower VFA 
production.

Hydrogen partial pressure (HPP)

The hydrogen partial pressure (HPP) in the liquid phase is 
an essential parameter for the DF (Ding and Zhao 2018; 
Beckers et al. 2012). Because high HPP (> 60 Pa) shifts the 
equilibrium reaction to the  H2 producing reaction (Ding and 
Zhao 2018) by deactivating the enzymes such as hydroge-
nase and NADH (Ramírez-Morales et al. 2015). However, 
no correlation was reported between HPP, liquid, and the 
NADH/NAD+ ratio (De Kok et al. 2013). But, lowering HPP 
affected pH and microbial growth rate in DF (Ding and Zhao 
2018). The  H2 and VFA production in DF decreases with the 
increase in HPP (Ramírez-Morales et al. 2013). Besides the 
concentration, HPP also influences the composition of VFAs 
though propionic acid concentration is not directly affected 
by  ppH2 (Ding and Zhao 2018).

A study conducted by Beckers et al. (2012) presented an 
increase of 7% of biohydrogen yields on the decrease total 
pressure 0.11 bar and a decrease of 19.5% yield on the low-
ering of pressure by 0.18 bar. The researchers experimented 
on an anaerobic biodisc reactor (ABR) that fixes the biomass 
and favors liquid to gas transfer leading to efficient  H2 pro-
duction (Beckers et al. 2012). An identical study by Cazier 
et al. (2015) altered HPP from 0 to 1.557 bar which led to a 
substantial decrease in  CH4 yield and substrate degradation. 
It was seen that high HPP led to a decrease in degradation of 
the substrate as well as accumulation of metabolites.

The HPP can be controlled by venting out excess  H2 gas. 
Another solution could be introducing different gases such 
as  N2,  CO2,  CH4, or even biogas and creating a vacuum on 
the headspace of the reactor (De Kok et al. 2013; Dionisi 
et al. 2019). However, this leads to diluted  H2 production. 
Ramírez-Morales et al. (Ramírez-Morales et al. 2015) sug-
gested integrating membrane technology to remove excess 
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 H2 during a continuous fermentation process. The most suit-
able option would be to vent out the  H2 produced at regular 
intervals or continuously.

Hydraulic retention time (HRT)

In bioreactor systems without sludge recirculation, HRT can 
refer to the time length that the biomass remains in the biore-
actor (Strazzera et al. 2018) which depends upon the volume 
of the reactor and the flow rate of the feed. Therefore, it is 
also associated with capital cost. The optimum HRT for the 
first reactor is 1–3 days whereas for the second reactor is 
10–15 days (O-Thong et al. 2018). This is because the  H2 
producing bacteria have a faster growth rate compared to 
methanogenic bacteria.

Similarly, the longer HRT for the second reactor allows 
enough time for substrate degradation. The highest methane 
production rate of 2041.7 L  CH4/m3/day from an anaerobic 
fixed bed reactor (AFBR) was possible even at the shortest 
HRT of 1.5 days given the maximum organic loading rate 
(OLR) of 6.1 kg COD/m3.day (Yeshanew et al. 2016). This 
implies that the use of different biofilm reactor technolo-
gies such as AFBR that prevent washing out methanogenic 
organisms. It helps in the reduction of HRT without com-
promising the reactors ‘performance. Though methano-
gens such as Clostridiaceae are highly reduced at low HRT 
(4–8 h), other homoacetogens like Clostridium ljungdahlii, 
were difficult to remove due to the granular structure of Up-
flow Anaerobic Sludge Blanket (UASB) and packed bed 
reactor (PBR) (Si et al. 2015).

Vo et  al. (2019) found out that the optimum  H2 
(714 mL/L.d) and  CH4 (254 mL/L.d) were produced at an 
HRT of 2 days. The study experimented with a single-stage 
AF reactor which consists of two compartments each for  H2 
and  CH4 production. The effect of HRT and OLR along with 
pH on VFA production from biowaste has been explored. 
Lim et al. (2008) studied the effect of 3 different HRTs (4, 
8, and 12 days) at controlled pH 5.5 and OLR of 5 g TS/ L.d. 
There was an increase in the VFAs concentration (5.5 g/L at 
4 days, 13 g/L at 8 days, 22 g/L at 12 days) with an increase 
in HRT. At shorter HRTs, acetate was the dominant product 
while at longer HRT (12 days) propionic acid was higher.

Han and Shin (2002) also studied the effect of HRT (0.25, 
0.33, 0.50, and 1 d) on VFA production from FW on Lea-
chate bed reactor (LBR) under controlled temperature (35℃) 
and pH. At an HRT of 1 day, the maximum VFAs concentra-
tion of 202 and 181 mmol/L was determined with rumen and 
anaerobic bacteria, respectively. However, at 0.25 days of 
HRT, the least VFAs concentration was detected. According 
to Strazzera et al. (2018), lower HRT (< 10 days) favors VFA 
production because the longer HRT facilitates methanogenic 
microorganisms to convert VFA to  CH4.
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Organic loading rate (OLR)

Organic loading rate (OLR) refers to the amount of substrate 
fed into the reactor in a day per unit of working volume. It 
is a deterministic parameter for the failure of the system 
due to bulking and acidifications. For  CH4 production from 
vegetable waste, the optimum OLR for a  CH4 production 
rate of 0.26m3  CH4/kg VS was 1.4 kg VS/m3.d, and as the 
OLR increased VS degradation and biogas yield decreased 
(Jalil et al. 2019). High OLR reduces the hydrolysis and aci-
dogenesis process due to imbalanced osmotic pressure and 
increased viscosity that limits mass transfer and metabolic 
activities (Tang et al. 2016).

However, some experiments have also proved better bio-
hythane production even at high OLR under the condition 
of low HRT (Cavinato et al. 2011; O-Thong et al. 2018; 
Yeshanew et al. 2016). A stable  H2 (56.6 mL  H2/g VS) and 
 CH4 (248 mL  CH4/g VS) production were observed under 
high OLR (> 10 g VS/ L.d) for a two-phase thermophilic 
continuous stirred tank reactor (CSTR). But under similar 
OLR the one-phase thermophilic CSTR failed because of 
acetate and propionate accumulation in the methane reac-
tor (Luo et al. 2010). Another example from the pilot-scale 
(50L) two-stage AD process, the gas production from FW 
increased up to 13,000–15,000 L/d due to an increase in 
OLR at a low HRT of 3.9 days (Lee and Chung 2010).

Jiang et al. (2013) studied the VFA production from FW 
at 3 different OLR (5, 11, and 16 g TS/L) and constant tem-
perature (35 °C), pH (6.0), and HRT (5 days). The researcher 
found that the VFA production increased sharply at the ini-
tial days (7–14 days) then remained stable for OLR of 5 and 
16 g TS/L. However, at OLR of 16 g TS/L, the VFA produc-
tion increased by 12 days then decreased sharply. Acetate 
and Butyrate were the dominant (60%) VFA produced at 
all OLR. Though there is an insignificant change in VFA 
fraction at high OLR (Paudel et al. 2016; Cheah et al. 2019), 
Amha et al. (2019) also recorded an increase in VFA pro-
duction while increasing OLR. Because increasing OLR is 
attributed to the diverse microbial community (Srisowmeya 
et al. 2020).

Nevertheless, the two-stage AD process for FW can oper-
ate at high OLR but within controlled HRT and pH (Lim 
et al. 2008; Srisowmeya et al. 2020). High OLR provides 
excess carbon for degradation inducing acidic conditions in 
the reactor in the long-term. Maintaining the pH (5–6.5) for 
DF and low HRT (2–3 days) that helps to wash-out metha-
nogenic microorganisms provides an optimum condition for 
biohythane and VFA production at high OLR in a two-stage 
AD process (Cavinato et al. 2016; Paudel et al. 2016).

Recirculation ratio (RR) of second stage‑effluents

The recirculation ratio (RR) refers to the ratio of the returned 
volume of the second-stage reactor effluent to the volume of 
the first stage reactor influent. The digestate from the metha-
nogenic stage is recirculated to maintain the pH of the first 
phase reactor (Algapani et al. 2019). This innovative strategy 
utilizes the residual buffer capacity of digestate to supply 
nutrients in the first stage reactor, i.e., DF reactor. This has 
proved to enhance the biohythane production for two-stage 
reactors and improves its cost-effectiveness (Micolucci et al. 
2014; Cavinato et al. 2011).

In a study conducted by Yeshanew et al. (2016), the 
supernatant effluent from AFBR was fed to CSTR at a RR 
ranging from 0.24–0.48, 0.5–0.8, and 0.6–1 for three dif-
ferent periods, respectively. An improved and stable hydro-
gen production rate of 178.2, 253.5, and 391.7 L  H2/m3.d in 
periods I, II, and III, respectively was obtained (Yeshanew 
et al. 2016). Similarly, Algapani et al. (Algapani et al. 2019) 
stated that the RR reduces the need for external chemicals to 
maintain the pH in the  H2 reactor by 54%. It also increased 
the  H2 by 8% and decreased the  CH4 production by 3%. 
However, there was no difference in the total energy produc-
tion (Algapani et al. 2019).

According to Chinellato et al. (2013), the first stage reac-
tor produced  CH4 at a high OLR of 20 kg TVS/m3/d instead 
of  H2. However, with the RR of 2.9, the highest  H2 produc-
tion from FW was obtained at 20 kg TVS/m3/day. Similarly, 
for the VFA production from LBR, improving the leachate 
recirculation rate improved the hydrolysis performance by 
10–16% and the acidification yield increased to 340 g COD/
kg TVS added (Hussain et al. 2017).

Although many such experiments have proved to enhance 
the efficiency of biohythane production (Chu et al. 2008; 
Chinellato et al. 2013; Cavinato et al. 2016), the increased 
ammonia concentration in the first reactor could confine 
the performance of anaerobic microorganisms known for 
both  H2 and  CH4 production (Cavinato et al. 2012; Algapani 
et al. 2019). Therefore, it is recommended to daily observe 
the ammonia concentration and remove the recirculation of 
the second reactor effluent once the ammonia concentration 
reaches its maximum stable value (Cavinato et al. 2012).

Based on the literature, the optimum conditions in the 
two-stage AD process for  H2, VFA, and  CH4 production 
from the FW are summarized in Table 4.  H2 production 
from DF was found to be suitable within the acidic range 
unlike for VFA and  CH4 production. The selection of pH 
value for VFA also depends upon the targeted organic acid. 
Similarly, the temperature range is within the mesophilic to 
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thermophilic conditions. From the limited available studies, 
a low range of HPP (below atmospheric pressure) is suitable 
for the DF-AD process. The OLR and RR vary depending 
upon the HRT and the reactor size.

DF‑AD process integration

The coupling of DF and AD as two-staged biorefinery is 
observed to be more productive in terms of energy recovery 
not only because of the production of biohydrogen but also 
because of higher yields of  CH4 compared to an uncoupled 
system (Ruggeri et al. 2015; Ghimire et al. 2021). This is 
seen as a result of biological pretreatment offered by DF 
by breaking the nutrients in the substrate down to VFAs 
(Malave’ et al. 2015; Malavè et al. 2018). The reactor type 
and configuration strongly influence the coupled system, 
especially through biomass retention (Show et al. 2011).

It is seen that the DF-AD system is integrated widely 
in CSTRs connected in series with a batch, continuous or 
semi-continuous feeding, and effluent extraction mecha-
nism (Table 2). In batch mode, the substrate is added to the 
digester and inoculated for complete digestion, whereas, in 
continuous feeding mode, the substrate is fed continuously 
or semi-continuously, and biogas is collected continuously 
(Stalin and Prabhu 2007). The CSTR is suitable for FW with 
a TS of 2–12% (Liu et al. 2013). Moreover, two CSTRs have 
been combined vertically that produced maximum  H2 and 
 CH4 content of 8.6% and 48%, respectively, from the FW at 
HRT of 2 days (Vo et al. 2019). The popularity of CSTR is 
attributed to its simplicity, uniform mixing, and suitability 
with any kind of substrate (Saratale et al. 2019). However, 
at HRTs lower than 2.5 days, CSTR enabled mass cell wash-
out from the reactor (Kongjan and Angelidaki 2010).

For the two-stage process stability and better perfor-
mance, CSTR has also been combined with high state reac-
tors like AFBR, UASB, Up-flow Anaerobic Packed Bed 
(UAPB), and Expanded Granular Sludge Bed (EGSB) (Lay 
et al. 2010; Liu et al. 2013; Cisneros-Pérez et al. 2017). 
These wet reactors are suitable for liquid substrate (TS < 2%) 
and facilitate biomass retention for a longer time which is 
appropriate for slow-growing methanogenic organisms; 
hence, mostly used as the second-stage reactors in the two-
stage AD process. (Liu et al. 2013; Nualsri et al. 2016; Van 
et al. 2020).

A study by Ren et al. (2010) has concluded that attached 
sludge CSTR is more stable than suspended sludge CSTR. 
A study comparing CSTR and AFBR in immobilized and 
suspended cell systems concluded that DF is enhanced in 
reactors that aid biofilms (Qureshi et al. 2005). The recir-
culation strategy in these reactors' configurations allows 
maximum  H2 production from DF even at HRT of less than 
2 days (Yeshanew et al. 2016).

A settler tank can also be added in between CSTR and 
UASB, or similar reactors for solid–liquid separation. Lee 
and Chung (2010) developed the first pilot-scale system 
consisting of CSTR (500 L) as DF, UASB (2300 L) as AD 
fed with FW liquid using anaerobic sludge as the inocu-
lum, and a fuel cell fed with the purified biohydrogen. 
However, CSTR and UASB have been successfully inte-
grated for biohythane recovery from sugarcane without the 
need for a separation tank in between (Nualsri et al. 2016).

Another novel two-stage AD process has been an 
integration of dry reactors like LBR with UASB for 
biohythane (Han and Shin 2004) and VFA production 
(Browne et al. 2013; Yan et al. 2019) from FW. The dry 
reactor is suitable for FW with TS ≥ 15%(Liu et al. 2013; 
Van et al. 2020). Han and Shin (2004) used BIOCELL 
(LBR-UASB) which has VS conversion efficiency to  H2 
was 28.2% and  CH4 69.9%, respectively, from FW. The 
BIOCELL demonstrated stability through the resource 
recovery process. LBR has several advantages to CSTR 
as LBR doesn’t require substrate dilution reducing pro-
cess water, no stirrer for mixing that saves energy and the 
leachate can be recycled without passing it through the 
solid–liquid separation unit (Browne et al. 2013; Hussain 
et al. 2017). Similarly, the bacterial dynamics in LBR can 
degrade even the resistant dietary fibers present in FW 
(Xiong et al. 2019).

Various types of membrane filtration reactors (MFR) 
such as microfiltration, nanofiltration, evaporation, electro-
dialysis, and ultrafiltration have been used to separate the 
VFAs (Zacharof and Lovitt 2014; Sasiradee et al. 2017). 
Short Chain Fatty Acids (SCFA) yield of 7453 mg COD/ 
L was recorded from the integration of alkaline sludge fer-
menter and membrane separation unit (Longo et al. 2015). 
The combination of anaerobic membrane filtration technolo-
gies is more efficient than the single step in recovering the 
high quality of targeted organic acid (Sasiradee et al. 2017; 
Sikder et al. 2012). Besides, the appropriate selection of 
adsorption media is essential in membrane filtration technol-
ogy as it affects the removal efficiency (Uslu 2009). Out of 
the four different ion exchange resins (IRA-900, IRA-400, 
IRA-96, and IRA-67), Luongo et al. (2019) recorded IRA-
67 recovered 97% of LA in batch test whereas the desorp-
tion efficiency in fixed bed reactor was only 68%. Similarly, 
Amha et al. (2019)found ceramic membrane favorable for 
FW treatment in long-term without irreversible fouling.

The working volume and flow rates of DF and AD sys-
tems vary according to the operating mechanism and the 
speed of reactions. The difference between the equivalent 
working volumes of the different stages of anaerobic is sym-
bolized by the coupling ratio. Contorted coupling ratio could 
result in reactor failure or inefficient operation (Srisowmeya 
et al. 2020). From Table 2, it can be observed that the size 
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of the second reactor is either equal to or greater than that 
of the first reactor in all the cases. As DF has the potential 
to process higher OLR than AD, the reactor size for AD 
is correspondingly seen to be higher than that of DF (Ren 
et al. 2011).

The DF-AD reactor configurations for FW experimented 
at laboratory or pilot scale have been shown in Fig. 3. The 
second-stage reactor configuration depends upon the char-
acteristics of effluent from the first stage reactor (Liu et al. 
2013). Similarly, the performance of each reactor along with 
its drawback is summarized in Table 5.

Overall, the selection of DF-AD reactor configuration 
depends upon the TS content of the feedstock, targeted VFA, 
and process stability required. In addition to a combination 
of two-stage reactors, an additional unit like aerobic deni-
trification tank  (Lee et al. 2010) and zeolite adsorption unit 
(Petracchini et al. 2018) for further treatment of leachate 
before recycling to the first reactor. This is done to avoid 
the inhibition by ammonia in the first reactor and ensure 
long-term stability.

Pretreatment of FW and inoculum

FW composition is heterogeneous which may cause tech-
nical instability in the two-stage AD process (Cesaro and 
Belgiorno, 2014), especially during the start-up phase. The 
carbohydrate-rich FW is favorable for DF whereas, protein 
and lipid are difficult to degrade. To catalyze the decompo-
sition process in DF, the inoculum is added. The inoculum 
obtained from the sludge of other waste treatment plants 
and breweries contains mixed culture (Alibardi and Cossu 
2015; Cappai et al. 2018; Algapani et al. 2019). The mixed 
culture induces ecological interactions and competition 
between various  H2 consuming and  H2 producing micro-
organisms for the same organic substrate which ultimately 
reduces the performance of the reactor. The  H2 producing 
microorganisms have a better chance to survive the harsh 
conditions during the pretreatment of inoculum than the 
non-spore-forming bacteria such as methanogens and can 
germinate when favorable conditions are provided to them 
(Li and Fang 2007).

The pretreatment of FW is usually done to improve 
the hydrolysis of hardly biodegradable compounds, while 

inoculum pretreatment is done to enrich  H2 producing 
microorganisms and inactivate the consumers like metha-
nogens during the start-up of the DF process (Wang and Yin 
2017) and improve  H2-CH4 yield in two-stage AD process 
(Lee and Chung 2010; Yin et al. 2014). The inoculum pre-
treatment may be only necessary for the start-up phase while 
the FW pretreatment is a continuous process. The common 
pretreatment measures adopted by the researchers for the 
FW and the enrichment of  H2 producers are explained in 
the following sections.

Heat treatment

Heat treatment of inoculum for the enrichment appears to 
be common, simple, inexpensive, and effective (Li and Fang 
2007; Wang and Wan 2008). During the heat-shock treat-
ments, the inoculum is heated at 100° C for 30 min under 
atmospheric pressure (Jariyaboon et al. 2015; Akhlaghi et al. 
2019; Sun et al. 2019). The acidogenic bacteria can form 
spores and ensure their survival whereas methanogens are 
deactivated in those conditions (Li and Fang 2007). The 
results after heat treatment did not show any traces of  CH4 
in the gas composition obtained after DF. Wang and Wan 
(2008) found out that heat-shock treated digested sludge 
increased the substrate degradation efficiency by 97.2%. It 
further improved  H2 yield (221.5 mL/g glucose) and biomass 
concentration (2739 mg/L). In DF, Ghimire et al. (2016) 
reported that  H2 yield from heat-shock treated activated 
sludge increased by two folds than the anaerobic sludge.

The substrates can be pretreated to enhance the conver-
sion of substrates to intended products. During the heat 
pretreatment such as steam explosion, the substrate is 
heated under high temperature (160–260 °C) and pressure 
(7–50 bar) for a short duration (30 s–20 min) (Keskin et al. 
2019). Then, the pressure is quickly released which causes an 
explosive effect. This pretreatment is suitable for substrates 
with high lignocellulose (Eg: wheat straw, corn starch) that 
is commonly found in food industry waste. The explosion 
improves its digestibility by 90% than steam pretreatment 
without explosion (Pielhop et al. 2016). This method has 
been commonly used in the solubilization of sewage sludge 
(Donoso-Bravo et al. 2015; Dereix et al. 2006) but can be 
also utilized for the FW pretreatment. However, the steam 

Table 4  Optimum range of 
operational parameters for  H2, 
VFA, and  CH4 production from 
FW using DF-AD process

Reactor Products Operational 
parameters

pH Temp (℃) HRT (days) HPP (bar) OLR (kg 
VS/
m3/d)

RR

DF (first stage) H2 5–6.5 33–55 1.3–5 0.11–1 16–18 0.3–2.9
VFA 5–8 30–50 3–12 0–0.104 - 0.3–1

AD (second stage) CH4 5–7.8 35–55 5–15 4–6 -
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explosion pretreatment of FW makes it more dilute decreas-
ing the acetic acid and lactic acid concentration (Svensson 
et al. 2018).

Another similar heat pretreatment method under high 
temperature and pressure is known as hydrothermal pretreat-
ment. In this method, at high temperature and pressure, the 
ionized products of water are increased which hydrolyze the 
macromolecules resulting in a noticeable improvement in 
FW fermentation (Yin et al. 2014). The suitable tempera-
ture was reported to be 160 °C, which gave a VFA yield of 
0.908 g/g  VSremoval, 47.6% higher than the control. However, 
higher temperatures can result in the production of toxic 
compounds that inhibit microbial activities. Similarly, Ding 
et al. (2017) recorded 140 °C as the optimum temperature for 
hydrothermal heat pretreatment of FW as it favored efficient 
solubilization of carbohydrates and protein. The  H2 and  CH4 
yield from two-stage AD was recorded to be 43.0 mL/g VS 
and 511.6 mL/g VS. The energy conversion efficiency of 
pretreated FW increased by 31.7% than the untreated FW.

Chemical treatment

Methanogens are strict anaerobes and are very sensitive 
to many chemicals. It has been found that  CH4 production 
drops sharply at a pH of below 6.3 or above 7.8 (Li and Fang 
2007). The chemical treatment involves the introduction of 
acidic/alkali compounds to maintain the desired pH of the 
reactor. Acid pretreatment is efficient in solubilizing carbo-
hydrates whereas alkali treatment is suitable for solubilizing 
protein, lipids, and lignin (Parthiba Karthikeyan et al. 2018).

Jang et al. (2015) also recorded the highest  H2 produc-
tion by alkali-shock treatment of FW with 6 N KOH at pH 
11 and 12 and without using any co-substrate. Vavouraki 
et al. (2013) also recorded that pretreatment of a kitchen 
waste under 1.12% HCl for 94 min or 1.17% HCl for 86 min 
(at 100 °C) increased the soluble sugar concentration by 
120% compared to the untreated kitchen waste. According 
to Lamaison et al. (2015), acid treatment of the anaerobically 
digested sludge from sugarcane vinasse treatment plant is 
better than the heat-treated sludge in long-term. Because the 
acid pretreated sludge favored the growth of Clostridiaceae 
microbes which consumes the lactate concentration that is 
known for  H2 inhibition. Likewise, the alkaline pretreat-
ment of raw rice straw using 4% and 8% NaOH at 55 °C for 
24 h, increased the  H2 yield by 26 and 57-fold, respectively 
(Ghimire et al. 2016).

The chemicals like sodium 2-bromoethasulfonic acid 
(BESA), iodopropane, chloroform, and acetylene are com-
monly used as methanogenic chemical inhibitors (Wang 
et al. 2011; Li and Fang 2007; Zhu and Beland 2006; Ven-
kata et al. 2008; O-Thong et al. 2009). BESA inhibits the 
activity of the co-enzyme M reductase complex which is a 
chief component for methanogenesis (Venkata et al. 2008; 

Zhu and Beland 2006). According to Zhu and Beland (2006), 
BESA is the most cost-effective pretreatment method for 
inhibiting methanogens without impacting the  H2 producing 
microorganism in digested sludge.

Another chemical pretreatment with ozone is quite popu-
lar for waste-activated sludge (Carrère et al. 2010) but it is 
least explored with FW. Ariunbaatar et al. (2014) obtained 
a negligible increase in  CH4 production from the ozone-
treated FW. This could be mainly because a high amount of 
fermentable sugar lost at a high ozone dose.

The chemical pretreatment has been combined with heat 
and ultrasonic treatment for the effective conversion of FW 
to  H2 and  CH4. Monlau et al. (2012) compared seven dif-
ferent types of thermo-chemical pretreatment of sunflower 
stalk. Chemicals (NaOH,  H2O2, Ca (OH)2, HCl, and  FeCl3) 
were used to vary the pH from 2.3 to 12.2, and the tem-
perature was maintained at 55 °C and 170 °C. Alkaline pre-
treatment (4% NaOH) at 55℃ for 24 h is recommended for 
the lignocellulose substrate (Monlau et al. 2012). Similarly, 
Elbeshbishy et al. (2011) found that the combination of 
ultrasonic sound and acid produced the highest  H2 yield 
of 118 mL/g  VSinitial and VFA concentration 16,900 mg 
COD/L.

The addition of chemicals is found to be quite an expen-
sive pretreatment method and hence, least preferred. Moreo-
ver, concentrated acid pretreatment is required for the effi-
cient hydrolysis of biomass with high cellulose content. As 
acids are highly corrosive, specific materials are needed to 
construct the reactor. This adds up to the capital cost making 
it an expensive option (Keskin et al. 2019). Similarly, the 
FW or inoculum needs to be neutralized after the chemical 
treatment which makes it complicated (Banu et al. 2020).

Fig. 3  Available DF-AD reactor configuration for FW in literatures
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Other pretreatment methods

In the AD process, oxygen is avoided as it inhibits the activ-
ity of anaerobic fermentation microorganisms. However, 
aeration pretreatment of FW in single-stage AD process 
has been proven to enhance microbial diversity leading to 
improved hydrolysis and acidogenesis process (Lim and 
Wang 2013; Girotto et al. 2016). Even in a two-stage pro-
cess, pre-aeration of FW has increased VFA production 
(Xu et al. 2014). According to Rafieenia et al. (2017), the 
pre-aerated FW produced less  H2 than the non-aerated FW. 
But the  CH4 production increased in the second reactor, 
especially the protein-rich FW produced the highest  CH4 
(351 ml/gV). The effect of aeration pretreatment depends 
upon the FW composition, aeration time, intensity, and air 
introduction method (Girotto et al. 2016; Rafieenia et al. 
2017).

Moreover, researchers have also studied the effect of 
aeration pretreatment of inoculum on  H2 production (Wang 
and Wan 2008; Zhu and Beland 2006). The comparison of 
the results of pretreatment methods (i.e., acid, base treat-
ment, heat shock, aeration, and chloroform) showed that the 
inoculum pretreated with aeration has higher cumulative  H2 
production than the inoculum treated with chloroform and 
untreated inoculum (Wang and Wan 2008).

Load shock as a pretreatment was also carried out to 
obtain high glucose loading of 50 g/L at the beginning of 
fermentation (Jariyaboon et al. 2015). Different pretreatment 
methods of inocula for optimizing hydrogen production con-
ducted by (Chang et al. 2011) consisted of acid, base, heat-
shock, aeration, chloroform, and 2-bromoethanesulfonate 
treatment. Acid pretreatment at pH 3 yielded the best result 
with maximum hydrogen production of 22.81  mmolH2/
gVSS from activated waste sludge.

Cisneros-Pérez et al. (2017) compared a cell wash-out 
treatment and heat pretreatment of the inoculum in an 
anaerobic fluid bed reactor (AFBR). This study showed that 
cell wash-out treatment had higher  H2 volumetric produc-
tion rates (7 L  H2/L-d) and yields than thermal treatment 
(3.5 mol  H2/mol hexose). The effect of pretreatment on  H2 
production is different based on different sources of inoc-
ulum. However, the selection of the pretreatment method 
should be based on the use of effluent from dark fermenta-
tion. For example, the selection of chemical treatment meth-
ods such as using BESA could create a problem when the 
effluents from dark fermentation are meant to be used for 
methane production in the second stage.

For FW with a high TS loading rate, ultrasonic pretreat-
ment could be a good option (Gadhe et al. 2014). Ultrasonic 
pretreatment mechanically disrupts the physical, biologi-
cal, and chemical properties of a substrate/ inoculum under 
varying frequency (Pilli et al. 2011). Gadhe et al. (2014) 
recorded 75% enhanced  H2 production by ultrasonically Ta

bl
e 

5 
 (c

on
tin

ue
d)

Re
ac

to
rs

Pe
rfo

rm
an

ce
M

ic
ro

bi
al

 C
ha

ra
ct

er
ist

ic
s

D
ra

w
ba

ck
s

Re
du

ce
s V

FA
 a

nd
 a

m
m

on
ia

 in
hi

bi
tio

n 
in

 th
e 

fir
st 

re
ac

to
r

Re
qu

ire
s h

ig
h 

up
-fl

ow
 v

el
oc

iti
es

Pr
ov

id
es

 su
ffi

ci
en

t b
uff

er
in

g 
ca

pa
ci

ty
A

na
er

ob
ic

 m
em

br
an

e 
fil

tra
tio

n 
re

ac
to

r 
(A

M
FR

)
C

om
bi

na
tio

n 
of

 a
na

er
ob

ic
 a

nd
 m

em
br

an
e 

pr
o-

ce
ss

es
 u

se
d 

fo
r p

ur
ifi

ca
tio

n 
of

  H
2 a

nd
  C

H
4 o

r 
se

pa
ra

tio
n 

of
 ta

rg
et

ed
 V

FA

A
t l

ow
 H

RT
, t

he
 m

ic
ro

bi
al

 m
ac

ro
m

ol
ec

ul
es

 
an

d 
un

tre
at

ed
 su

bs
tra

te
 in

cr
ea

se
. T

hi
s f

or
m

s 
a 

se
co

nd
 la

ye
r t

ha
t c

an
 c

on
tri

bu
te

 to
 h

ig
h 

or
ga

ni
c 

re
m

ov
al

 e
ffi

ci
en

cy

Th
e 

pe
rfo

rm
an

ce
 o

f M
FR

 fl
uc

tu
at

es
 u

nd
er

 lo
w

 
H

RT
 a

nd
 m

em
br

an
e 

fo
ul

in
g 

m
ay

 o
cc

ur

Th
e 

ty
pe

 o
f m

em
br

an
e 

an
d 

m
ic

ro
bi

al
 p

op
ul

a-
tio

n 
aff

ec
ts

 b
io

hy
th

an
e 

an
d 

or
ga

ni
c 

ac
id

s 
pr

od
uc

tiv
ity

En
er

gy
 in

te
ns

iv
e



12815International Journal of Environmental Science and Technology (2022) 19:12791–12824 

1 3

treating the FW of TS content72,500 mg/L at 1200 W for 5, 
10, and 15 min depending upon the specific energy input. 
Elbeshbishy and Nakhla (2011) also recorded increased 
efficiency in FW degradation along with an increase in  H2 
and  CH4 production rates. But, ultrasonic pretreatment is 
energy-intensive and expensive hence, requires optimization 
of operational parameters to set up a full-scale plant (Pilli 
et al. 2011).

Moreover, commercial enzymes (glucoamylase, pro-
teases, viscozyme, and lipases) have also been used to 
enhance hydrolysis (Moon and Song 2011; Uçkun Kiran 
et al. 2015; Donoso-Bravo et al. 2015). According to a study, 
a mixture of enzymes resulted in higher VFA production 
than the use of a single enzyme (Kim et al. 2006a). But, the 
cost of treating 1 ton of FW using glucoamylase is around 
USD 120 which is expensive (Uçkun Kiran et al. 2015). 
Therefore, microorganisms such as fungal biomass that is 
rich in glucoamylase and protease have been used for the 
efficient production of biomethane from FW (Uçkun Kiran 
et al. 2015).

Several researchers have reviewed and compared various 
pretreatment technologies for substrate and inoculum within 
the biorefinery framework (Galbe and Wallberg 2019; Bha-
tia et al. 2020; Karthikeyan et al. 2018; Banu et al. 2020). 
Although thermal pretreatment of FW has been commonly 
practiced because of its simplicity and cost-effectiveness, 
not a single pretreatment method could be termed as the 
“best”(Galbe and Wallberg 2019). The choice of pretreat-
ment technologies depends upon the desired end product 
and the FW composition (Banu et al. 2020). Some of the 
researchers have also integrated more than two pretreatment 
methods (such as acid-thermal) to optimize the performance 
of the two-stage AD process.

Utilization of VFAs 
for polyhydroxyalkanoates (PHAs), 
polylactate, and microalgal biomass 
production.

With the increasing concern for sustainability and the 
environment, bio-plastics are becoming popular. By 2025, 
global demand for bio-based plastics will increase to 2.87 
million tonnes from 2.11 million tonnes in 2020 (European 
Bioplastics 2018). One of the precursor chemicals used for 
biodegradable plastic production is polyhydroxyalkanoates 
(PHAs). PHAs are a type of bio-polyesters accumulated by 
different bacterial cells in the form of granules inside the 
cytoplasm. The unique thermal and mechanical behavior 
makes it a completely biodegradable and suitable alternative 

to plastics (Reis et al. 2011). Producing PHAs from VFA 
under low temperature, HRT conditions to prevent metha-
nogenic activity has been known to be an affordable process 
(Beccari et al. 2009). Besides, using mixed microbial cul-
ture and VFA rich substrates like FW from AF and sewage 
sludge reduces the PHA production cost while optimizing 
PHA yield at the industrial level (Van Aarle et al. 2015; 
Serafim et al. 2004). Perez-Zabaleta et al. (2021) obtained 
the highest PHA concentration (3.3 g/L) and content (43.5% 
w/w) from VFA effluent rich in caprionic and acetic acid, 
respectively.

Within VFA, butyrate was recorded to produce 57% 
of polyhydroxybutyrate (PHB) which is higher than with 
acetate at 54% in sequence batch reactor (SBR), making 
it the desirable substrate for PHBs (Marang et al. 2013). 
The production of PHA from organic acid derived from the 
OFMSW has also been studied for a pilot-scale anaerobic 
percolation bio cell reactor (100 L). The study showed a 
PHA production of 223 ± 28 g/kg with a hydroxybutyrate/
hydroxyvalerate (%) ratio of 53/47 under optimized acido-
genic fermentation (Colombo et al. 2017). Though FW is a 
potential source to produce PHA, it could be an expensive 
method considering the pretreatment of FW, transportation 
cost, and microbial strain selection (Nielsen et al. 2017).

The DF effluents containing VFA can be also used for the 
production of microalgal biomass (Fei et al. 2015; Turon 
et al. 2015; Ren et al. 2014). Microalgae are unicellular 
microorganisms that can be a rich source of carbon com-
pounds. The use of microalgae is increasing especially in 
the industrial sector as biofuels, by-products, health sup-
plements, pharmaceuticals, and cosmetics (Chalima et al. 
2017). They have also been applied for wastewater treatment 
and  CO2 sequestration (Krishna et al. 2012). According to 
Lacroux et al. (2020), the growth of a mixed group of micro-
algae depends upon the concentration of VFA determined 
in the ranges of 71–207 mg/L and 13–25 mg/L as thresh-
old concentrations for microalgae growth in acetic acid and 
butyric acid, respectively.

VFA is a byproduct derived from the fermentation of 
FW and thus, is known to be a cost-effective carbon source. 
This could be a possible alternative to expensive refined glu-
cose for large-scale microalgal production. Fei et al. (2011) 
carried out a preliminary cost analysis on using VFA for 
cultivating C. albidus for biodiesel production. The study 
showed that VFAs-based biodiesel production was afford-
able compared to the use of agricultural products for lipid 
accumulation. In another study, Fei et al. (2015) used VFA 
as a carbon source to yield 0.187 g/g lipid coefficient and 
48.7% lipid content of Chlorella protothecoides.
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Moreover, the microalgae can directly convert the VFA 
into acetyl-CoA by acetyl coenzyme-A synthetase which 
could be used for fatty acid biosynthesis and lipid accu-
mulation. Therefore, the use of VFA for microbial mass 
production could be favorable in terms of time and money. 
However, limited researches are available on the use of 
VFA derived from organic waste for microbial cell growth 
and especially lipid production. Most of the researches has 
focused on VFA production from microalgae. Therefore, 
there is a huge scope for further process development on 
using VFA for microbial-derived protein production for ani-
mal feed and energy biomass.

Economic prospects of biohythane and biochemicals

Besides the optimization of the two-stage AD process, some 
studies covered the economic viability for the production 
of biohythane and biochemical (Urbaniec and Grabarczyk 
2014; Han, et al. 2016a, b; Bastidas-Oyanedel and Schmidt 
2018). Bastidas-Oyanedel and Schmidt (2018) compared the 
economic advantage of combining DF with LA fermenta-
tion technologies for the conversion of 50 tonnes/day of FW 
into  CH4, power generation, LA, PLA,  H2, acetic acid, and 
butyric acid. Besides the power generation, all other alterna-
tives were profitable. The highest profit of 296 $/tonne VS 
was obtained from DF with the separation and purification 
of butyric acid.

Similarly, the novel biohythane process (pretreatment, DF 
with Caldicellulosiruptor saccharolyticus and AD) resulted 
in high  H2 productivity with 6.1 L/L/d of pure biohythane 
and 69% of energy recovery from the sugar fraction of 
the wheat straw. But, the sparging of DF has high energy 
demand leading to the increased operational cost. Moreover, 
the addition of nutrients for high  H2 productivity also added 
to the total production cost of 160 Euro/GJ biofuel (Willquist 
et al. 2012). A two-stage AD of sugarcane (vinnase) showed 

20–30% better economic performance than single-stage 
AD (Fuess et al. 2018). The net present value (NPV) was 
found to be $208.58–219.86 million. Besides, optimizing 
the alkalization of methanogenic systems improves both 
the economic and environmental performance of AD plants 
by reducing operating costs and the risks associated with 
human toxicity and freshwater eutrophication (Fuess et al. 
2018).

Another large scale (50  m3) DF was found to be economi-
cally feasible as its return on investment was higher than 

Table 6  H2 production cost within food industry based on different processes and pretreatment

Industry Feedstock Pretreatment Processes H2 production cost References

Food Barley straw Acid-catalyzed steam DF + PF 51.0 Euro/kg Ljunggren et al. (2011)
Food Food waste Enzymatic SSF + DF 25.45 USD / kg Han, et al. (2016a, b)
Food Wheat straw Steam explosion DF + AD 160 Euro/GJ biofuel Willquist et al. (2012)
Food Food waste - DF + AD 60 USD/t_VS Bastidas-Oyanedel and Schmidt (2018)
Food Waste bread - CSTR 14.89 USD /kg H2 Han, et al. (2016a, b)
Food Sugar beet molasses - DF + PF 31.8 Euro/kg (base) Urbaniec and Grabarczyk (2014)

31.92 Euro/kg (update)
9.30 Euro/kg (optimistic)

Table 7  Bulk prices and market size of major DF products (Adapted 
and modified from (Bastidas-Oyanedel et al. 2019))

a Zacharof and Lovitt (Zacharof and Lovitt 2013)
b Alibaba as cited in (Bastidas-Oyanedel et al. 2019)
c Bastidas-Oyandel and Schmidt (Bastidas-Oyanedel and Schmidt 
2018)
e Alibaba (Alibaba 2020)
e REN21 (REN21 2019)
f IEA Bioenergy (IEA Bioenergy 2020)

Compound Price (USD/tonne) Market size 
(tonne/year)

Acetic acid 400-800a,b 3,500,000a

Butyric acid 2000-2500a,b 30,000a

Propionic acid 1500-1700a,b 180,000a

Caproic acid 2000-2500a,b 25,000a

Lactic acid 1000-2100a,b 120,000a

Formic acid 950–1200a,b 30,000a

Hydrogen 600-1800c -
Ethanol 800-1500d 87,931,200e

Derivative products
Polyhydroxyalkanoates (PHA) 1000 –  5200d 29,540f

Polylactic acid (PLA) 2000 –  4500d 217,330f

FAME biodiesel 500 –  850d 29,920,000e
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the DF of 10  m3. The net present value, payback period, 
and internal rate of return with a scale of 50  m3 were USD 
526,551, 6.9 years, and 9.25%, respectively. However, the 
major drawback of DF was the low hydrolysis rate and nutri-
ent conversion efficiency (Han, et al. 2016a, b). Besides AD, 
DF has been integrated with solid-state fermentation (SSF) 
reactor to produce  H2 from FW at a large scale. Considering 
the waste from the food industry, the  H2 production cost is 
comparatively low (Table 6). The unit cost of an  H2 produc-
tion plant with a capacity of 10 tonnes/day and a lifetime of 
10 years was USD 2.29/m3 (25.45 USD/kg) which was less 
than the market price of USD 2.7/m3 (30.0 USD/kg) (Han, 
et al. 2016a, b).

Similarly, Urbaniec and Grabarczyk (2014) compared 
the  H2 production cost under three different scenarios: base, 
update, and optimistic whose values are based on knowl-
edge, research, and considering two-stage will be fully 
developed in future, respectively. The  H2 production cost 
(9.3 Euro/kg) was found lowest in the optimistic case.

According to Ljunggren and Zacchi (2010), the main 
contributors to the  H2 production cost are the capital costs 
and the nutrients added. However, with cheap FW as sub-
strate and effluent recirculation in two-stage AD can remove 
these hurdles. Recently, Li et al. (2020) demonstrated that a 
large-scale two-stage AD process that treats 216 tons of FW 
daily is technically and economically feasible. The research 
team estimated the total investment cost of large scale to 
be 24.34 million Yuan (1 Yuan is equivalent to 0.15 USD). 
And, with the selling price of biogas as 0.46 USD/m3, the 
total investment can be paid back in 1.5 years. Similarly, 
the advantage of the biorefinery system converting waste 
to multiple products (energy, biochemical, & nutrients) 
and its environmental benefit, trade-off the cost in long run 
(Krishnan et al. 2019). Nevertheless, more research on the 
techno-economic study of the two-stage conversion of FW 
has to be realized in future.

Currently, the industrial production of VFAs is mainly con-
ducted using chemical processes like the oxidation or carboxy-
lation of precursors such as aldehyde and alkenes. However, 
the continual use of energy-intensive processes contributes to 
 CO2 emissions and ecological imbalances (Sivagurunathan 
et al. 2018). The feasibility study of DF conducted in Abu Dhabi 
showed DF as a promising biorefinery technology not only for 
the treatment of OFMSW but also for VFA production. The 
VFA is a versatile chemical as it can be further developed into 

biofuel or bioplastic in the downstream process. Given a waste 
tipping fee of 22 USD/tonnes of  OFMSW, VFA could be used 
in downstream processes without any charge. This could make 
advancement and investment in technology a viable option. The 
maximum cost of VFA production from DF was calculated to 
be 15 USD/m3 effluent (Bonk et al. 2015).

The market size of organic acids in 2013 was reported to be 
2.9 million tonnes with a market size of 3.5 billion USD. The 
market annual growth rate (AAGR) until 2020 is 8.8% (Sun 
et al. 2019). Table 7 shows the bulk market price and size of 
the direct DF products and value-added products that can be 
produced utilizing the DF effluents. Likewise, the bio-polymers 
(polylactic acid/PLA, PHA) are showing moderate market 
growth of 9–30% per annum with good future demand for the 
year 2023 (Sun et al. 2019).

The microbial pathway for biochemical production also influ-
ences the cost and yield (Manandhar and Shah 2020; Francois 
et al. 2020). A study for large-scale (10,000 metric tons per 
annum) production of lactic acid (LA) from corn determined 
the production cost of $1181, $1251, and $844 through bacteria, 
fungi, and yeast pathways were, respectively. The lowest produc-
tion cost from yeast was due to the lower requirement of chemi-
cals, equipment, and utilities for neutralization and recovery of 
LA. Moreover, the influencing factors for LA production cost 
are sugar-to-lactic-acid conversion rates, grain price, plant size, 
annual operation hours, and gypsum use (Manandhar and Shah 
2020). Similarly, the chemical structure of feedstock is another 
factor affecting the production cost. Based on the study by Daful 
and Görgens (2017), the cellulose fraction of sugarcane bagasse 
and brown leaves (SCBL) is economically and environmentally 
more viable than the hemicellulose fraction of SCBL.

Although FW is a potential source to produce organic acids 
and biohydrogen, it could be an expensive method considering 
the pretreatment of food waste, transportation cost, and micro-
bial strain selection (Nielsen et al. 2017; Yun et al. 2018). How-
ever, Monlau et al. (2015)suggested that alkaline pretreatment 
could be economically sustainable if it is applied at a high sub-
strate concentration and/or maximum heat is recovered during 
pretreatment. Similarly, Colombo et al. (2017) recommended 
that optimizing the acidic fermentation process (Eg: recircu-
lating the digestate) could support the organic acid formation 
from OFMSW at a large scale. Also, DF consumes less energy 
than other conventional technologies for  H2 and VFA produc-
tion (Bonk et al. 2015). Therefore, the two-stage AD biorefin-
ery process from FW can be a sustainable route to achieving 
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economic benefits with the least environmental impact (Dahiya 
et al. 2018).

Conclusion

Biorefinery framework considering two-stage AD process 
is a promising technology especially DF for  H2 production 
along with biochemicals that have economic values. The 
selection of operational parameters depends upon the tar-
geted VFA. Acetate and butyrate are the most abundant VFA 
produced from FW. Other parameters, OLR and RR also 
affect the stability of the reactor, biohythane and biochemi-
cal production. Generally, OLR and HRT are relative which 
means low HRT and high OLR enhance the biohythane and 
VFA production. To enhance the performance of two-stage 
AD, FW can be pretreated. However, the choice of pretreat-
ment methods and optimum operational conditions depend 
upon the desired product. The DF-AD process integration 
also depends upon the TS content of the substrate, type of 
bioreactors, and coupling ratio.

Despite the high capital investment in two separate bio-
reactors systems, the DF-AD process can be economically 
viable if multiple fuels and biochemicals are recovered. 
Moreover, the market size for VFA production is expanding 
with an 8.8% growth rate. The two-step process can be a sus-
tainable route to produce biohythane and biochemicals such 
as butyrate and PHA that have high economic values trades 
off the cost. Besides the use of biohythane in the industrial 
sector, the VFA can also be used to produce bioplastic and 
cultivate microalgae for further energy recovery. Further-
more, various bioreactors configuration within the DF-AD 
process for FW that can withstand the fluctuation in opera-
tional parameters for a longer-term needs to be explored. 
Similarly, a techno-economic analysis of biohythane and 
biochemicals recovery from the different FW compositions 
while optimizing the two-stage AD process needs to be con-
ducted. This would help to determine the viability of a two-
stage AD process with FW as a feedstock at a commercial 
scale.
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