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Abstract
The ability of yttrium oxide-doped zinc oxide nanoparticles (YZnO) to eliminate Basic Fuchsin dye (BF) from wastewater 
was investigated. YZnO was obtained by a mechanical ball milling approach. The X-ray diffraction pattern revealed a wurtzite 
ZnO structure with the appearance of the Y2O3 phase and a crystallite size reduction from 20 to 16 nm. The morphology of 
the fabricated nanoparticles exhibited increasingly agglomerated particles. The specific surface area increases with doping 
from 10.13 to 20.62 m2 g−1, leading to enhance the adsorption capacity of the Yttrium-doped ZnO as opposed to pure ones. 
The initial BF concentration and pH influenced the removal efficiency resulting in 75.53 mg/g of YZnO adsorption capacity 
at pH = 11 and 180 min of equilibrium time. These results register that YZnO is an effective sorbent for the elimination of 
BF from wastewater. The pseudo-second-order model ideally suited the kinetic data, and the adsorption equilibrium was 
established to conform with the Freundlich isotherm. The BF adsorption mechanism is associated with the electrostatic 
interaction and hydrogen bond, as indicated by the pH, the coexisting ions, and the FTIR studies.
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Introduction

The need for potable water is immensely expanding with 
the increasing human population. The inevitable textile, 
pigment and paint release substantial amounts of hazardous 

dyes to the aquatic system (Tan et al. 2015). Dyes represent 
a large portion of these pollutants, as about 15% of the 70 
million tons of annual production of dyes run into water-
courses (Yuan et al. 2020a, b). Consequently, the discharge 
of these unsafe wastes into the environment jeopardizes 
human health, causing respiratory problems, skin irritation, 
and cancer risk (de Lima Barizão et al. 2020; Lou et al. 
2020). Moreover, dyes prompt a great chemical oxidation 
demand causing a nasty odor in wastewater (Midha and Dey 
2008). The basic fuchsin (BF), also known as Rosaniline 
chloride or Basic Violet (Lee and Ong 2017), belongs to the 
triarylmethane class and possesses a great planar conjugated 
π-system (Soneta et al. 2006). It is a cationic dye used in 
various fields such as coloring agents in textile industries, 
biological stains, paper. (Hunger 2007; Ong et al. 2012). 
Nonetheless, the basic fuchsin (BF) dye possesses inflamma-
ble, anesthetic, and bacterial characteristics (Pathrose et al. 
2016; Yamil et al. 2020). Also, due to its weak biodegrada-
tion, carcinogenicity, and toxicity (Huang et al. 2012), it has 
been considered a suspected carcinogen in many countries 
(Yang et al. 2015). Hence, great attention has been drawn to 
the elimination of BF from wastewater.

Conventional strategies such as filtration membrane (Aziz 
et al. 2020), electrochemical processing (Gökkuş 2016; de 
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Almeida et al. 2019), coagulation-flocculation (Gökkuș and 
Yıldız 2014; Iloamaeke et al. 2021), and aerobic (Castro 
et al. 2020) are adopted to get rid of these dye contami-
nants. However, these standard procedures have quite a lot 
of disadvantages, such as ineffectiveness and a high cost. 
Instead. Adsorption is an inexpensive and remarkably effec-
tive method for eliminating pollutants (Çelebi 2019; Yuan 
et al. 2020a, b). Natural adsorbents, agricultural wastes, and 
palm oil waste are utilized for contaminant adsorption and 
removal (Ai et al. 2011; Ali 2018; Mehr et al. 2020). The 
efficacy of the adsorption method on the dye’s elimination 
count upon serval factors such as the dyes concentration, pH, 
coexisting ions, stirring speed, sorbent dose, contact time, 
and temperature. For example, Bessashia et al. investigated 
the influence of the eggshell membrane dose, BF initial con-
centration, temperature, pH, stirring speed, and contact time 
on the BF elimination from water (Bessashia et al. 2020). 
Recently, nanomaterials are employed to discard these haz-
ardous materials from water and wastewater systems (Ash-
ouri et al. 2019). Researchers are seriously charmed with 
the ZnO for its outstanding characteristics, including the 
raised binding energy (60 m eV) and sweeping band gap 
(≈ 3.4 eV) (Sangeetha et al. 2015). ZnO nanoparticles have 
exhibited an important adsorption affinity toward divers 
dyes (Chaudhary et al. 2016; Zhang et al. 2016; Palai et al. 
2021). Several searches have been carried to explore doped 
nanomaterials as efficient sorbents for removing dyes from 
used water. However, doping modifies the proprieties of 
doped material compared to pure ones, such as the porosity 
and the surface area, driving to improve adsorption capac-
ity (AC) (Klett et al. 2014; Guan et al. 2019). For instance, 
it has used several dopants such as chitosan ZnO NPs to 
remove Direct Blue 78, and Acid Black 26 (Salehi et al. 
2010), Mg-doped ZnO (Rath et al. 2019) for the elimination 
of Congo red, and Pb-doped ZnO as a good adsorbent for 
Reactive Black 5 (Dassi et al. 2020). However, the utiliza-
tion of yttrium-doped ZnO NPs, as a potential sorbent for 
the BF elimination from wastewater, has not yet been pub-
lished. Therefore, this project aims for the first time to use 
synthesized Y2O3-doped ZnO (YZnO) for the elimination 
of BF from aqueous media and investigate the adsorption 
mechanism of BF.

In this work, YZnO nanoparticles were obtained using a 
mechanical ball milling approach and were characterized by 
different techniques (SEM, XRD, BET, and FTIR). The syn-
thesized YZnO was used to eliminate BF dye from aqueous 
media. For this aim, the influences of the efficient param-
eters such as pH, initial BF concentration, and coexisting 
ions will be optimized. The adsorption kinetics will be mod-
eled using four equations: pseudo-first-order, pseudo-sec-
ond-order, intra-particle diffusion and Elovich. Meanwhile, 
Temkin, Dubinin–Radushkevich, Elovich, Freundlich, and 
Langmuir models were utilized to assess the experimental 

equilibrium. The mechanism of BF sorption on YZnO will 
also be examined.

Materials and methods

Preparation of YZnO and ZnO

ZnO NPs were obtained via the sol–gel method. First, zinc 
acetate (39.9 mmoles) was dissolved in a methanol–water 
mixture (3:1) and agitated for 15 min. Hereafter, a saturated 
starch solution (30 mL) was appended dropwise, and the 
blending was stirred until the sol was made. Afterward, 
60 ml of the aqueous tartaric acid (66 mmoles) was supple-
mented dropwise up to gel formation. The collected gel was 
dried at 105 °C for 10 h. Afterward, the obtained powder 
was crushed and annealed for 3 h at 500 °C.

YZnO NPs were prepared through a solid-state reaction 
with stoichiometric amounts of Y2O3 and ZnO by milling in 
a high-energy planetary mill. The milling process was real-
ized in Fritsch Pulverisette P5 at room temperature for 24 h. 
The ball-to-powder weight ratio was appointed to 20:1, and 
the rotational speed was maintained at 450 rpm.

Adsorption experiments details

Experimental Kinetic and equilibrium studies were detailed 
in the supplementary information. The kinetic study is car-
ried out using the different models, such as pseudo-first-
order, pseudo-second-order, intra-particle diffusion, and 
Elovich. Detailed equations of the used models are listed 
in Table S1. Temkin, Dubinin–Radushkevich, Elovich, Fre-
undlich, and Langmuir models were employed to assess the 
experimental equilibrium, and its detailed equations are 
given in Table S2.

Results and discussion

Structural description of nanomaterials

XRD characterization

The XRD patterns of YZnO and ZnO NPs divulge sharp 
diffraction peaks, indicating the obtaining of highly crystal-
line nanostructures. The peaks emerging at 2θ ≈ 69, 68, 66, 
62, 56, 47, 36, 34 and 31 ͦ can be, respectively, designated 
to the (201), (112), (200), (102), (103), (110), (101), (002), 
and (100) characteristics planes of wurtzite hexagonal ZnO 
(Swarthmore 1972). Besides, the impurity peaks (indicated 
as * in Fig. 1 corresponding to the Y2O3 phase) developed 
due to doping process, connoting that Y was not fully incor-
porated into the host ZnO lattice, showing phase segregation 
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(Kumar et al. 2015). The appearance of the phase peak (≈ 29 
ͦ) indicates the formation of this separate phase. Moreover, 
the two XRD patterns comparing show diffraction peaks 
shift owing to the doping to lower values. Whenever the pos-
itive charge is higher, the repulsion increases, leading to dif-
fraction angle reduction and inter-planar spacing widening. 
(Ye et al. 2013). A similar shift of (002) peaks was assigned 
to the modification of lattice parameters (Yang et al. 2008). 
The crystallite sizes obtained from Scherrer’s equation were 
24.88 and 19.89 nm for YZnO and ZnO, respectively (Bar-
rett 1943). The larger crystallite size of YZnO NPs than 
the undoped ZnO (Table 1) is consistent with the substitu-
tion of the smaller size Zn2+ (0.074 nm) with a larger ionic 
radius Y3+ (0.090 nm) through the doping process (Zheng 
et al. 2012). The lattice parameters a a(= �∕

√

3.sin�(100) ) 
and c(= �∕sin�(002)) (Modwi et al. 2018) are larger for ZnO. 
The lattice imperfection and/or distortions � = �∕4cos� 
increased with Y doping lead to an increase in crystallite 
size (Mote et al. 2012). The microstrain (εz) follows the 
same tendency of the microstrain (Karthika and Ravichan-
dran 2015).

SEM, EDX and X‑ray elemental mapping of YZnO and ZnO

The SEM images of YZnO and pure ZnO (Fig. 2a, b) exhibit 
an irregular spherical shape with little crystallized dimen-
sion nanoparticles. On the other hand, the agglomeration 

increased for the YZnO with the growth of non-uniform par-
ticle configuration. EDX analysis (Fig. 2c, d) was applied to 
detect the elements existing in ZnO and YZnO nanomateri-
als. The spectra portrayed sharp signals at 0.5 and 1 keV 
related to (O) and (Zn) for ZnO (Modwi et al. 2019), and 2, 
1, and 0.5 keV for Y, Zn, and O, respectively. Besides, the 
small peak at 8.5 keV was due to the Zn surface plasmon 
resonance.

The element’s weight proportions attained from the 
EDX results are presented in Table 2, and the findings were 
affirmed to be in suitable accordance with the composition.

The X-ray elemental results of YZnO (Y, Zn, and O) were 
determined by EDX area scanning (Fig. 3a–c). The spectra 
were visibly confirmed by homogeneously distributed Y2O3 
on the ZnO nanoparticles. Additionally, the X-ray elemental 
mapping of Zn, O, and Y was well defined with sharp con-
trast, indicating the successful mixing of Y2O3 with ZnO 
surface and the formation of YZnO composite construction.

Surface area analysis of YZnO and ZnO

The surface and porosity properties of prepared nanomateri-
als were recorded employed BET along with that BJH graph. 
The isotherms correspond to Langmuir type II (Fig. 4a–b) 
with relative pressure (P/Po = 0.025–0.1), as displayed from 
obtained N2 sorption isotherms. Besides, the hysteresis loop 
is type H3 (Fig. 4a–b inset pore distribution) that confirms 
the mesoporous characteristic of material with slit-shape 
pores (Lippens and De Boer 1965). All graphs are positioned 
in the range of 25–160 nm, which is in accordance with the 
type II adsorption isotherm following IUPAC classification 
(Sotomayor et al. 2018). The effect of Y2O3 loaded into the 
ZnO nanomaterials has increased the specific surface area 
from 10.12 to 20.62 m2 g−1. Additionally, the pore distri-
bution and the pore volume of the two samples equal to 
23.46 and 29.75 nm, as well as 0.066 and 0.1641 cm3g−1, 
respectively. It can be shown that the YZnO structure has 
an evident influence on the pore size distribution and the 
surface area, leading to enhanced AC of the yttrium-doped 
ZnO as opposed to pure ones.

Fig. 1   XRD patterns for YZnO and ZnO

Table 1   The 2θ (101), β, IY, 
D, c, a and v values of the 
nanoparticles

Samples 2θ (101) Intensity FWHM D (nm) Lattice parameters c/a Unit cell (ν)

a c

ZnO 36.550 740 0.447 19.54 3.257 5.222 1.6033 47.972
YZnO 36.534 323 0.528 15.85 3.209 5.152 1.6055 45.944
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Adsorption of BF

Influence of BF concentration

Experiments are preceded at a temperature of 25 °C and 
pH = 7 with different concentrations and a constant amount 
of adsorbent (15 mg of YZnO in 25 mL of dye solution). The 
BF concentration varied from 5 to 100 ppm. The obtained 

results (Fig. 5a) show that the adsorbed quantity of BF 
increases from 7.83 to 75.70 mg g−1 if the dye concentra-
tion increased. Herein, the effective driving force produced 
by increasing the initial BF concentration surmounts any 
resistance to BF molecules migration from the solution. The 
resulting fractional adsorption becomes reliant to the initial 
concentration (Elkady et al. 2011; Bessashia et al. 2020).

Influence of pH on BF adsorption

The pH’s influence on BF adsorption onto YZnO is given 
in Fig. 5b. As shown, the upmost adsorption efficiency 
was obtained at higher pH values, and when the pH value 
decreased, the uptake decreased rapidly. The optimal pH 
for the BF elimination from an aqueous solution was 11. 
The pHZPC value of YZnO was ≈ 6.3 (pHZPC presents the 

Fig. 2   SEM images and EDX of ZnO (a), (c) and YZnO nanopowders (b), (d)

Table 2   Percentage elements weight

Nanomaterials Percentage weight (%)

O Zn Y

ZnO 21.70 78.30 0
YZnO 20.33 66.06 13.61
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pH when the surface charge on the YZnO is zero (Fig. 5c)). 
Accordingly, there develops an electrostatic repulsion 
between the sorbent and the BF dye at lower pH values lead-
ing to low adsorption efficiency (Futamata et al. 2011). The 
electrostatic attraction between YZnO and BF dye enhances 
the dye’s adsorption at higher pH (Moawed and Alqarni 
2013). Therefore, the positive charge on the cationic dye 
makes them prone to the attraction by the negatively charged 
surface at pH above the pHZPC (Tahir and Rauf 2006). Anal-
ogous trends on the elimination of cationic dyes were previ-
ously reported for MB (Hameed and Ahmad 2009; Mittal 
et al. 2014) and methyl orange (Shen et al. 2015).

Influence of coexisting ions

Wastewater always included, along with dye, a broad cat-
egory of coexisting ions that can influence the adsorption 
process of dyes. Therefore, to investigate the impact of 
coexisting cations on BF adsorption onto YZnO, NaCl and 
MgCO3 were chosen as commonly coexisting salts, and the 
experiments were carried out using two concentrations of 
cations (25 and 50 ppm). From Fig. 5d, it was established 
that the addition of Na+ and Mg2+ cations leads to a decrease 
in the BF elimination efficiency. Moreover, the elimination 
efficiency of BF decreased when concentration changed 
from 25 to 50 ppm from 89 to 80% with Na+ and from 70 to 
50% with Mg2+. The results moreover affirmed the electro-
static interaction of BF with YZnO, in accordance with the 
result obtained in the pH study.

Kinetic study

The contact time impact on the adsorption process onto 
YZnO was explored at BF concentration of 25 ppm and 
for shaking time from 0 to 1440 min. Figure 5e exhibits 
a continuous decrease in the population of BF monomers 
(λmax = 545 nm) and the BF dimers (λmax = 486 nm) as the 

Fig. 3   X-ray elemental mapping of (a) Y–La, (b) Zn–Ka, and (c) O–Ka

Fig. 4   N2 adsorption–desorption cures (inset BJH plots showing pore 
distribution) of ZnO (a) and YZnO (b)
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Fig. 5   Influence of initial b BF dye concentration on the adsorption 
on YZnO (a), influence of pH on % elimination of BF (b), plot for the 
determination of pHZPC of YZnO (c), influence of coexisting cati-

ons on BF elimination efficiency by YZnO (pH = 11 and BF concen-
tration = 25 ppm) (d),UV–Vis kinetic spectrum adsorption of BF on 
YZnO (e) and equilibrium time models comparison (f)
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adsorption progressed (Singha et al. 2017). As given from 
Fig. 5f, the AC increases quickly within the initial 150 min 
and achieves equilibrium at about 180 min.

The low correlation coefficient (R2 = 0.8851 (Table 3)) 
and the deviation of the AC from the experimental data 
conclude the inapplicability of pseudo-first-order kinet-
ics to the adsorption of BF onto YZnO. The great value 
of R2 (= 0.9991) and the nearness of the calculated qe 
(= 26.02 mg g−1) compared to the experimental qe value 
(25.20 mg g−1) indicate the agreement of the pseudo-second-
order kinetic with adsorption (Zamouche et al. 2020). The 
shorter half-sorption time (t1/2 = 1/( k2.qe) = 19.20 min) and 
the high initial rate of sorption (h0 = k2.qe

2 = 0.0523 mg g−

1 min−1) are evidence of favored high rate adsorption of the 
dye (Li et al. 2012).

Testing experimental data for fitting with the Elovich 
equation is done by plotting qt versus ln t. The great value 
of R2 (= 0.9904) for the linear plot indicates the correspond-
ence of the experimental data with the Elovich model (Ho 
and McKay 2004). The R2 values are more than 0.96, signi-
fying the pertinence of the data to the model. However, the 
linear plot does not pass per the origin, suggesting another 
sorption modes involvement (Okello et al. 2017).

The intra-particle diffusion graph (Fig. 6) is multi-linear 
reflected by the two sorption stages (Yazdani et al. 2016). 
The sharp first stage may have developed from the dye trans-
port from the BF solution to the external YZnO surface via 
limit layer, whereas the secondary stage can designate the 
ultimate equilibrium as the intra-particle diffusion begins 
to decrease owing to the reduced BF concentration gradi-
ent. Table 3 exhibits a lessening in diffusion rate at a long 
contact time owing to the small pores available for diffusion 
as the BF molecules formerly pass into the inside voids of 
YZnO, that proved through the lesser kdif2 value as opposed 
to kdif1. The higher C value in secondary stage conjectures 

a bigger limit layer influence. (Milosavljević et al. 2011). 
Thus, the surface and limit layer sorption or intra-particle 
diffusion contribute to dye elimination by adsorbent (Ali 
et al. 2018a, b).

Adsorption equilibrium

Adsorption isotherm parameters are presented in Table 4. 
The highest regression coefficient (R2 = 0.9957) and the 
good fitting of the line (Fig. 7) designate the accordance 
of the data with Freundlich isotherm (Vijayaraghavan et al. 
2006).

The large magnitude of the exponent n > 2 provides a 
clue on the favorability of adsorption as commonly asserted 
that n values in the gamut 2–10 signify excellent adsorption 
characteristics (Treybal 1980). The higher R2 (= 0.9957) for 
the Freundlich model than Langmuir model (R2 = 0.9611) 
advocates adsorption on the YZnO heterogeneous surface 
rather than monolayer adsorption (Ali et  al. 2018a, b). 
The adsorption process is attributed, whether it is primar-
ily physical or chemical, according to the value of E in the 
Dubinin–Radushkevich isothermal model (Demiral et al. 
2008). The physical adsorption happens when the E value 
is fewer than eight kJ mol−1 (Mondal and Basu 2019), while 
the process is chemisorption when the E value is among 8 
and 16 kJ mol−1 (Zhang et al. 2019). The calculated mean 
energy value (E) was 7.23 kJ mol−1, confirming that the 
process of BF adsorption on YZnO was defined as physical.

For the utilization in the field, it is beneficial to compare 
the AC of YZnO with various sorbents available for BF. 
Table 5 displays the AC of several sorbents for BF elimi-
nation confronted with the YZnO. It is noticeable that the 
AC of the YZnO is higher than reported sorbents, such as 
industrial sludges and Fe-MgO-coated kaolinite. This result 

Table 3   Used kinetics models 
for BF adsorption by YZnO

Kinetics model Parameters Values R2

Pseudo 1st order qe 9.22 mg g−1 0.8851
K1 1.7 × 10–3 min−1

Pseudo 2nd order qe 26.02 mg g−1 0.9991
K2 2.01 × 10–3 g mg−1 min−1

h0 5.23 × 10–2 mg g−1 min−1

t1/2 19.12 min
Elovich β 0.4414 g mg−1 0.9904

α 182.35 mg g−1 min−1

Intra-particle Diffusion Kdif1 0.851 mg g−1 min1/2 0.9578
C1 12.34
Kdif2 0.123 mg g−1 min1/2 0.9942
C2 21.32
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revealed that YZnO is an effective adsorbent for BF, giving 
a high potential for dye removal in wastewater.

Adsorption mechanism  The study of the pH’s influence 
implies that the electrostatic attraction could dominate (con-
trol) the mechanism adsorption of BF onto YZnO. The BF 
molecules and YZnO surface were identically charged at low 
pH values, impeding BF adsorption owing to the electrostatic 
repulsions. The adsorption efficiency noted at pH < pHZPC 
proves the existence of other interactions between BF and 
YZnO. Furthermore, the two primary amine in the molecu-
lar structure of BF can establish hydrogen bonds with OH 
groups of YZnO (Al-Ghouti et  al. 2003). Therefore, two 
reverse mechanisms (hydrogen bonding and electrostatic 
repulsions) can occur simultaneously at the YZnO sur-
face. However, it can be shown that the BF removal was 

Fig. 6   Kinetics data of BF adsorption onto YZnO

Table 4   Used isotherm model for BF adsorption onto YZnO

Equilibrium model Parameters Values R2

Langmuir qm 75.53 mg g−1 0.961
KL 0.0927 mg g−1

RL 0.125 L mg−1

Freundlich KF 9.96 L mg−1 0.996
n 2.12

Temkin B 190.1 J mol−1 0.914
KT 1.81 L mg−1

Elovich qm 26.73 mg g−1 0.892
KE 0.455 L mg−1

Dubinin- Radushkevich qm 71.0 mg g−1 0.953
β 9.56 × 10–9 (mol KJ−1)2

E 7.23 kJ mol−1
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Fig. 7   Adsorption of BF equilibrium models
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increased at a pH higher than 6.3; this can be due to hydro-
gen bonds and the electrostatic attractions between YZnO 
and BF molecules. FTIR spectra of YZnO, BF, and YZnO@
BF (Fig. 8a) were registered in the range of 200–4000 cm−1 
to additionally explain the adsorption mechanism. BF spec-
trum (Fig. 8a) shows many bands that can be distinguished 
as follow: aryl CH wagging (904–837 cm−1), C = N stretch-
ing (1630; 1328 cm−1), and NH2 bending (3296; 1567 cm−1) 
(Mohammed and Yahia 2018). The YZnO spectrum (dis-
played in Fig. 8a) presents an important band at 3485 cm−1 
attributed to the O–H stretching vibration of water in ZnO 
(Khezami et al. 2017). After BF adsorption, the stretching 

Table 5   BF adsorption 
capacities of several sorbents

Sorbents AC (mg/g) Reference

Industrial sludges 70.40 Seredych and Bandosz (2007)
Super absorbent polymer 11.70 Dhodapkar et al. (2007)
Deoiled soya 12.00 Gupta et al. (2008)
Bottom ash 6.40 Gupta et al. (2008)
Sodium sulfite modified cationexchange resin 127.00 Bayramoglu et al. (2009)
Graphite oxide 1.83 Qin et al. (2014)
Fe-MgO/kaolinite 10.36 Khan and Khan (2015)
Starch-capped zinc selenide nanoparticles 222.70 Sharifpour et al. (2020)
Al/MCM-41 54.44 Guan et al. (2018)
Fe/ZSM-5 251.87 Mohammed et al. (2020)
SBA-16 39.61 Guan et al. (2019)
Al/SBA-16 70.08 Guan et al. (2019)
ESM 47.85 Bessashia et al. (2020)
YZnO nanoparticles 75.53 This study

Fig. 8   FTIR spectra of YZnO, BF, and YZnO @BF (a) and proposed 
adsorption mechanism of BF onto YZnO NPs (b)
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Fig. 9   Reusability Efficiency of YZnO NPs
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O–H band slightly shifted to 3456 cm−1 owing to the pres-
ence of hydrogen bond interactions between the lone-pair 
electrons of amine groups of BF and OH groups of YZnO 
(Singha et al. 2017). In addition, several characteristic bands 
of the BF have appeared and changed positions compared to 
those of the free molecules indicating that interactions may 
exist between BF and YZnO. For example, the apparition of 
a novel band at 1641  cm−1 in YZnO@BF spectra implied 
the establishment of ionic interactions between the negative 
YZnO charged surface and amino groups of BF dyes (Sin-
gha et al. 2017). Liu et al. have proved that the cationic dyes 
are adsorbed via electrostatic attraction (Liu et  al. 2020). 
The recommended sorption mechanism of the BF onto the 
YZnO involves hydrogen bonds and the electrostatic attrac-
tions between OH groups on the YZnO surface and BF mol-
ecules. (Fig. 8b).

Regeneration/reusability experiments

Since cyclic availability is an important property, it is nec-
essary to testify the regeneration and the reusability of an 
adsorbent. The used YZnO composite was regenerated by 
calcination for one hour at 500 °C. After the adsorption 
experiment, the used YZnO was recuperated by filtration 
and then calcinated at 500 °C before it was reused. Fig-
ure 9 shows the reusability results. It is found that YZnO 
has effectively employed for the BF elimination, at least in 
four continual cycles.

Conclusion

In this work, the YZnO nanoparticle, as an effective sorbent 
for the BF elimination, was obtained using a mechanical 
ball milling and was characterized. The sorption experi-
ments were achieved to examine the influence of initial BF 
concentration, the coexisting ions, and pH. The effect of 
initial BF concentration had an important effect on BF sorp-
tion onto YZnO, and the % BF elimination was established 
to increase remarkably with pH. The equilibrium time of 
YZnO was 180 min, and the adsorption amount of YZnO 
was 75.53 mg g−1 at the optimum pH equal to 12. The great 
values of R2 indicate the compliance of adsorption to the 
pseudo-second-order kinetic and Freundlich isotherm mod-
els. The adsorption mechanism of BF is associated with the 
electrostatic interaction and hydrogen bond, as indicated 
by the pH, the coexisting ions, and the FTIR studies. BF 
adsorption capacities of YZnO compared to those detailed in 
the literature predicted that YZnO is an effective adsorbent 

for BF and has great potential application in BF dye elimina-
tion. Hence, YZnO could be an effective sorbent to eliminate 
other cationic dyes such as Crystal violet, Auramine O, and 
Malachite green.
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