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Abstract
Water management is becoming a critical issue for sustainable agriculture, especially in the semi-arid region, where prob-
lems with water scarcity are rising. More accurate water status recovery in crops is required for precise irrigation through 
remote sensing technologies. These technologies have a lot of potential in intelligent irrigation because they allow for real-
time environmental data collection. Nowadays, digital practices have been used, such as unmanned aerial vehicle (UAV), 
which plays an essential role in various applications related to crop management. Drones offer an exciting opportunity to 
track crop fields with high spatial and temporal resolution remote sensing to enhance water stress management in irrigation. 
Farmers have historically depended on soil moisture measurements and weather conditions to detect crop water status for 
irrigation scheduling. This review paper summarizes the use of UAV remote sensing data in crops for estimating the water 
status and gives a detailed summary of the potential capacity of UAV remote sensing for water stress application. The remote 
sensing techniques help modify agricultural practices to meet this significant challenge by providing repeated information 
on crop status at different scales and various performances during the season. UAVs successful implementation in water 
stress estimations depends on UAV features, such as flexibility of use in flight planning, low cost, reliability, autonomy, and 
capability of timely provision of high-resolution data. UAV with a thermal sensor is considered the most effective technique 
for detecting water stress using specific indices. Thermal imaging can identify water status variations and crop water stress 
index (CWSI). This CWSI acquired through UAV thermal sensors imagery can be acceptable for managing real-time irriga-
tion to achieve optimum crop water efficiency.

Keywords Unmanned aerial vehicle (UAV) · Crop water stress index · Precision agriculture · Vegetation index · Image 
processing · Intelligent irrigation
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Abbreviations
UAV  Unmanned Aerial Vehicle
PA  Precision Agriculture
DSS  Decision Support System
GIS  Geographic Information System
GPS  Global Positioning System
RS  Remote Sensing
CT  Canopy Temperature
VIT  Vegetation Index Temperature
CWSI  Crop Water Stress Index
SWIR  Shortwave Infrared
MWIR  Midwave Infrared
LWIR  Longwave Infrared
VI  Vegetation Indices
IR  Infrared Region
RGB  Red–Green–Blue
TIR  Thermal Infrared
EM  Electromagnetic Spectrum
IRR  Reflected Infrared Region
Tkin  Kinetic Temperature
Trad  Radiant Temperature
ε  Emissivity
NDVI  Normalize Difference Vegetation Index
DGPS  Differential Global Positioning System
RGRI  Red–Green Ration Index
DSM  Digital Surface Model
FFC  Flat Field Correction
VHR  Very High Resolution
WDI  Water Deficit Index
Rn  Net Radiation
SMC  Soil Moisture Content
MS  Multi-spectral
V  Visible
W  Water Vapor
LAI  Leaf Area Index
PRI  Photochemical Reflectance Index
RDN  Raw Data Number
Twet  Wet Reference Temperate
Tdry  Dry Reference Temperature
Tair  Air Temperature
ET  Evapotranspiration
ѰL  Leaf Water Potential
FIR  Finite Impulse Response
RM  Regional Maxima
VPD  Vapor Pressure Deficit
RWC   Relative Water Content
EWT  Equal Water Thickness
LWT  Leaf Water Thickness
GCP  Ground Control Points
SfM  Structure from Motion
SWC  Soil Water Content
gs  Stomatal Conductance
Tr  Transpiration Rate

RH  Relative Humidity
FVC  Fractional Vegetation Cover
TDR  Time-Domain Reflectometer
RTK  Real-Time Kinematic
DEM  Digital Elevation Model
Ѱ  Water Potential
VIS  Visible
ETc  Crop Evapotranspiration
RI  Red Edge Indices
3D  3 Dimensional

Introduction

Applications of water for sustainable farming have become 
a precarious problem worldwide because of water shortage 
and climate change, so specific water management strate-
gies for irrigation are needed (Zhang et al. 2016). Water 
scarcity is a critical factor that limits agricultural production. 
In general terms, much of the world water supplies are used 
by agriculture (Karakoçak et al. 2013). Over the last few 
decades, land and water management for agriculture has met 
rapidly rising demands. However, a lack of available water 
for sustainable crop production is a growing concern in the 
semi-arid region (Loka et al. 2011). Due to climate change 
and water shortage, water application in sustainable farming 
has become a significant problem in all developed coun-
tries, so effective water management strategies are the per-
fect solution. Precision agriculture (PA) generally seeks to 
improve the quantity and quality of agricultural production 
with different resources (e.g., fertilizer, energy, water, herbi-
cides, and pesticides). Throughout the world, civilization is 
formulating a growing population that will hit 10 billion in 
2050 (United Nations, 2017). China agricultural water use is 
still in a state of low efficiency and severe waste, which seri-
ously restricts China economic development. China is a vast 
country with a severe shortage of water. Mainly, agriculture 
(e.g., the arable land in the north part of China) takes 62.06% 
of fresh water (Becker 2015).

Drought is widely recognized as the world most expen-
sive and imminent natural disaster, resulting in substantial 
economic, ecological, and environmental losses (Nicholson 
et al. 1998; Mishra and Singh 2010). Since the late 1990s, 
central and eastern region of china has several severe 
droughts (Fig. 1). Unfortunately, the current irrigation effi-
ciency in China is only about 52%, which is well below 
advanced countries, achieving an efficiency of about 70–80% 
of water usage. It is therefore essential to control irrigation 
with optimum water use. Worldwide, farmers face various 
difficulties, especially in semi-arid areas of agricultural 
water supplies (Gonzalez-Dugo et al. 2010; Jin et al. 2018). 
Global food production has projected to increase by 70% 
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over the upcoming years to keep up with this development 
(Thornton et al. 2018; Sonnino et al. 2019; Amorim 2019).

Agriculture is under water stress

Agricultural water use is the primary variable for increased 
water scarcity, and irrigation accounts for about 70% of the 
world’s freshwater extractions (Tshwene and Oladele 2016). 
Crop water productivity (CWP) correlates with the water 
and crop production used for agricultural production. Moni-
toring crops at different development stages is essential for 
several applications, such as water stress, decisions on crop 
inputs (fertilizers, water, and pesticides), and modeling of 
crop yields (Sakamoto et al. 2005). With China rapid devel-
opment, agricultural water resources are becoming more 
and more critical. Intelligent irrigation is characterized to 
increased yield, water scarcity, and low agricultural practice 
results. Climate change on plant transpiration and soil water 
balance substantially impact crops quality and productivity 
under limited water resources (Sakamoto et al. 2005). The 
latest earth observation technologies (e.g., unmanned aerial 
vehicles) make it possible to monitor plant health (e.g., can-
opy temperature) in real time.

With the growth of the Internet of Things, a wide variety 
of data and knowledge about the world is becoming read-
ily available (Awais et al. 2021). In addition, there is also 
substantial improvement in the production of irrigation 
machines that conserve water (Li et al. 2020). Timely and 
effective irrigation decision making and the application of 
irrigation will increase the quality of water use. Imageries 
from satellites were previously occupied, processed, and 
analyzed for getting water status. This review reflects the 
modern remote sensing experience acquired from UAV-
based technology to achieve sustainable development and 
the potential ability to evaluate crop water stress induces and 
plant physiological parameters.

Precision farming and remote sensing

Precision agriculture (PA) aims to optimize and expand 
agricultural processes to certify final production and 
involves fast, consistent, and circulated measurements to 
farmers aware and gives a supplementary overview of their 
current situation in the cultivated land (Kacira et al. 2005; 
Körner and Straten 2008). The technology frequently used 
includes integrated electronic communication, wireless 
sensor network, precision positioning systems, machine 
learning methodology, variable rate technology, unmanned 
aerial vehicle (UAVs), and geographic information sys-
tems for well-timed crop management (Liaghat and Bal-
asundram 2010). The PA cycle is shown in (Fig. 2). The 
different specific remote sensing applications are (e.g., 
yield prediction, irrigation, weed detection, and precision 
farming) on the primary platform of remote sensing (e.g., 

Fig. 1  Drought condition in 
China eastern and central 
regions; a wheat, b rice (He 
et al. 2011)

Fig. 2  The precision agriculture cycle (Berni et al. 2009a)
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unmanned aerial vehicles—UAV, satellite, and sensors). 
These techniques working process requires a vast knowl-
edge of the fertilizer map, quality of soil, nutrients, and 
weeds (Moran et al. 1997). Many farmers used nutrient 
requirement data and compared them with spatial vari-
ations of the playing area (Robertson et al. 2007). These 
alterations must be pushed the farmers to move from con-
servative farming (Vellidis et al. 2008) to precision agri-
culture farming.

The primary importance of precision agriculture is man-
agement collection and data utilization to make an auto-
matic decision (Pham and Stack 2018). PA is expanding 
this change and is the primarily driven force for big data 
analytics (Wolfert et al. 2017; Poppe et al. 2015). Precision 
farming includes special features of remote sensing that are 
not present in traditional platforms, such as satellites and air-
borne platforms. The different specific applications of preci-
sion agriculture are (e.g., yield prediction, irrigation, weed 
detection, and precision farming) on the primary platform of 
remote sensing (e.g., unmanned aerial vehicles—UAV, satel-
lite, and sensors). The working process of these techniques 
requires a vast knowledge of the map of fertilizer, quality of 
soil, nutrients, and weeds (Moran et al. 1997). Many farm-
ers used nutrient requirement data and compared them with 
spatial variations of the playing area (Robertson et al. 2007). 
These alterations must be pushed the farmers to move from 
conservative farming to precision agriculture farming (Vel-
lidis et al. 2008). The primary importance of precision agri-
culture is the management collection and data utilization to 
make an automatic decision (Pham and Stack 2018). PA is 
expanding this change and is the primarily driven force for 
big data analytics (Wolfert et al. 2017; Poppe et al. 2015). 
UAVs capture aerial photographs of agricultural fields in 
precision agriculture applications to track crop health, esti-
mate nutrient status, estimate yield, and calculate crop water 
demand. Five essential points that need to be addressed by 
the research community depend on increasing the adoption 
of precision farming among farmers.

Identify the management problems that producers regu-
larly face, including agricultural, environmental, or eco-
nomic challenges.
Improve the processing of data from automated photo-
grammetric applications to calibration of instruments and 
image enhancement.
Develop algorithms in the processed data that can extract 
and interpret the information.
Adopt high spatial resolution and cost-effective platforms 
that can collect data to resolve the problems found.
Communicate these results by developing decision-mak-
ing mechanisms that can support the best management 
practices for operations into a better informed manage-
ment decision.

Fundamental principle of thermal remote 
sensing

In precision agriculture and smart farming, remote sensing 
is widely regarded as one of the most significant technolo-
gies. In the last 35 years, it has been widely used for track-
ing cultivated fields and providing successful precision agri-
culture solutions (Mulla 2013). Many crops and vegetation 
parameters can be monitored using remote sensing images 
at different wavelengths. RS techniques used to track vegeta-
tion status at various growth stages using satellite imagery 
or images captured by manned aircraft (Mora et al. 2017). 
There are two significant characteristics to define electro-
magnetic radiation, frequency, and wavelength. These data 
are transformed into temperatures (Khanal et al. 2017). 
Inside the IR zone (0.7–100 μm), two classes are distin-
guished, which are reflected—IRR (0.7–3.0 μm) and TIR 
(3.0–100 μm). Typically, the surface objects, such as trees, 
water, soil, and humans, emit TIR radiation within the range 
of (3.0–14.3 μm) of the EM spectrum (Jensen 2009). Part 
of the IR energy is transmitted to the earth’s surface within 
the range of the EM spectrum, ranging from 3 to 5 μm and 
8 to 14 μm (Vinet and Zhedanov 2011). Atmospheric gases 
(i.e., ozone, carbon dioxide, and water) absorb almost all 
radiations between 5 and 8 μm, as shown in (Fig. 3) (Jensen 
2009).

Stefan–Boltzmann, Kirchhoff’s, Wien, and Planck’s phys-
ical law better understand EM behavior. According to the 
physical law of Plank’s, frequency (f) is proportional to its 
energy factor (Q), while h is the constant that can be used 
to alter this equation. 

Equation (2.1) can be rewritten as follows after assuming 
that the wave frequency (f) is inversely proportional to its 
length (λ) and proportional to the speed of light (c).

On the other hand, the wavelength is inversely propor-
tional to its quantum energy. Therefore, less energy has a 
greater wavelength. The laws of Wien and Boltzmann define 
the relationship of black body radiations. Wien’s displace-
ment law describes the relationship between a black body’s 
actual temperature in Kelvin degrees and its maximum 
spectral wavelength. The overall output changes into shorter 
wavelengths as the temperature increases (Kuenzer and Dech 
2013).

(1)Q = hf

(2)Q =
hc

�

(3)�
max

=
b

T
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Remote sensing in agriculture

Remote sensing is the technique of material and object 
inferences from measurements made at a distance to the 
objects under analysis without physical contact. Remote 
sensing systems for PA and agriculture, in general, can be 
divided into two categories: (i) sensor platform and (ii) 
sensor type. Satellites, aerial platforms, and ground-based 

platforms are popular places for installing sensors (Fig. 4). 
Although the conventional techniques for acquiring 
weather and crop growth status are effective, they involve 
manual scouting, intensive, and time-consuming labor 
(Latif et al. 2018). It is also impossible to follow tradi-
tional approaches under adverse climate-changing condi-
tions. Geospatial technology is, i.e., under certain condi-
tions. Remote sensing and GIS are helpful for broad spatial 
and temporal data collection and tracking (Shanmugapriya 

Fig. 3  Thermal region of atmos-
pheric transmittance with stand-
ard gaseous and water-induced 
absorption bands (Richter and 
Schläpfer 2019)

Fig. 4  A typical layout for the remote, UAV, and ground sensing systems deployed for precision agriculture
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et al. 2019). RS technology can potentially revitalize the 
study of contributing factors to agricultural productivity 
based on crops and soils (Liaghat and Balasundram 2010; 
Hussain 2019). Remotely sensed satellite data are used 
to identify stress crops’ early-stage identification and any 
disruptions for crop-specific yield estimation (Bernardes, 
et al. 2011; Gu, et al. 2007). With the advent of technolo-
gies generally referred to as drones, such as unmanned 
aerial vehicle (UAV), agricultural problems such as plant 
disease or pest control can now be solved by sprinkling 
pesticides, fertilizer, and water on them.

Satellite systems remote sensing

Remote sensing techniques are used to collect data through 
different satellites. The satellite RS systems started with 
the Landsat-1 launch in 1972 (Belward and Skøien 2015; 
Markham and Helder 2012). The eventual launching of 
SPOT-1 in 1986 and Ikonos in 1999 introduced the era of 
commercial satellite systems, resulting in rapidly increasing 
image efficiency, including high spatial resolution (Toth and 

Jóźków 2016). Different airborne sensors and satellite used 
for digital application are given in (Table 1).

Numerous studies (Hatfield and Prueger 2010; Jordan 
1969) (Huete et al. 2002) on agriculture sector monitored 
the condition of crops. Some vegetation indices (VIs) were 
established, depending on the grouping of waveband, to 
measure the various plant parameters, e.g., biomass, residue 
cover, leaf area, leaf chlorophyll, and ground cover, while 
these VIs provide symptoms of vegetable conditions. The 
earth observation satellite system, such as sentinel-1, Land-
sat, GeoEye, and Spot, has been used to study crops water 
status (Table 2). Most images of satellite-based remote sens-
ing are used for biomass estimation (Yang et al. 2000) and 
prediction of crop output (Doraiswamy et al. 2003) with the 
help of (NDVI).

UAV‑based remote sensing

A series of studies have been performed using UAV tech-
nology. The most examined crops were olive (Berni et al. 
2009b; Agam et al. 2013; Poblete-Echeverría, et al. 1112), 
citrus (Gonzalez-Dugo et al. 2014; Stagakis et al. 2012), 

Table 1  Satellite and airborne thermal sensors attached to platforms

* Human operated

Sensor satellite Wavelength (µm) Spatial resolu-
tion (m)

Waveband (Thermal) Temporal 
resolution

Reference

AATSR/ENVISAT 11.0–12.0 1000 6–7 1 Llewellyn-Jones et al. 2001)
CBERS/Landsat 14.4–12.5 80 4 25
ASTER 8.122–12.65 90 09–14 15
MODIS 3.65–4.55 10,000 20–26,29–36 1
GOES-R 10.1–13.6 2000 13–16 Hourly
AVHRR 3.5–3.93 1100 3 0.5
SENTINEL-3 0.555–10.85 500 9 27
VIIRS 0.41–12.01 750 21 16
Airborne*
TIMS 8.32–12.02 50 1–6 Kealy and Hook 1993)
ATLAS 8.32–12.02 10 10–15 Lo et al. (1997)

Table 2  Types of satellite 
systems used to estimate the 
water status

Note  Integers1,2,3 represent the band number; NIR near infrared, RE  red edge, Pan panchromatic, SWIR 
short-wave infrared, TIR thermal infrared, C costal, V  visible, WN water vapor

Satellites Spatial resolution 
(m)

Revisit cycle Band number & designation

Spot-6 and -7 1.5 1 day 5:  NIR1,  RE1

GeoEye-1 0.40–2 3 Days 5:  Pan1,  NIR1

Landsat 8 15–100 16 days 11:  NIR1,  SWIR2,  TIR2,  C1

Landsat 7 15–60 16 days 8:  NIR1,  V3,  SWIR2,  TIR1,  PAN1,
Sentinel-2 10–50 5 days 13:  C1,  V3,  NIR2,  SWIR2,  WV1

Sentinel-3 20–70 2 days 15:  C1,  V3,  NIR2,  SWIR2,  WV1



1141International Journal of Environmental Science and Technology (2023) 20:1135–1152 

1 3

almond (García-Tejero, et al. 2018; Zhao et al. 2017; Zhao 
et al. 2017), vineyards (Bellvert et al. 2016a; Baluja et al. 
2012; Matese et al. 2018), and peach (Bellvert et al. 2016b; 
Park et al. 2017). The most commonly used UAV in agri-
cultural water status studies is shown in (Fig. 5). Agricul-
tural application of agro-chemicals is required for particular 
circumstances, such as location, site-specific management, 
and a particular time. These applications are completed 
with ground sprayers, which is not an accurate application 
of agro-chemicals. An indigenous UAV for the spraying of 
pesticides for standardized and site-specific applications of 
pesticides is therefore necessary. Also, the picture obtained 
from UAV will help the present state of crop, irrigation man-
agement and be a potential application for detecting diseases 
and pest attacks. Therefore, UAV secured prime importance 
to obtain a picture at the right time.

Types of remote sensor used in UAV

Images from the drone platform were used for vegetation 
mapping in the visible and IR spectrum. These sensors can 
be utilized to calculate water stress, LAI, growth stages, bio-
mass, and crop healthiness. Different other parameters, such 
as the farm survey, insect identification, and mapping, are 

also accomplished using various sensors. The list of sensors 
attached to the UAVs drone for sensing cameras is shown 
below.

RGB camera

An RGB camera usually contains a digital and conventional 
uniform sensor. RBG cameras use spectral bandwidth of 
red, green, and blue spectral circles to collect energy from 
the visible EMS. The RGB camera lens depends on image 
sharpness, while the camera’s spatial resolution regulates 
its decision within an image (Fig. 6a). The pictures extract 
the dimensional properties of the crop, such as height, 
size, and parameter (Johansen et al. 2018; Mu et al. 2018; 
Tu et al. 2019). In general, water resources for the more 
abundant crop are expected to be available quickly, result-
ing in a shortage of agricultural crop water. The production 
structure, such as width, height, spacing, missing plant, and 
ground cover fraction, is remotely identified (Castro et al. 
2018; Weiss and Baret 2017).

Multi‑spectral camera

The multi-spectral sensor has various bands in the elec-
tromagnetic spectrum. The multi-spectral camera contains 

Fig. 5  Types of (UAVs) used 
for evaluating water stress in 
the agricultural field. Note: a 
quadcopter attached with RGB 
thermal sensors (Santesteban 
et al. 2017), b fixed-wing eBee 
agriculture drone equipped 
with the multi-spectral and 
thermal camera, c DJI (S900) 
multi-rotor UAV drone, fitted 
with RGB, and thermal cameras 
(Zenmuse XT, FLIR System, 
Inc., USA), d hexacopter fitted 
out with RGB, thermal, and 
multi-spectral sensors
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4–6 groups with about 10–15 nm bandwidth in the elec-
tromagnetic spectrum region blue, green, red, red edge, 
and NIR. The multi-spectral sensor Parrot Sequoia revo-
lutionizes the agricultural sector and provides a reliable, 
adaptable solution compatible with all types of drones. 
Their geographic resolution is acceptable for RS appli-
cations, allowing the spectral response to be observed at 
the canopy level. For this purpose, multi-spectral sensors 
are frequently used in RS agricultural applications with 
reasonably low costs (Fig. 6b). The multi-spectral sensor 
detects the plants' light and absorbs in four different parts: 
green and red lights and two bands of infrared invisible to 
the human eye (Berni et al. 2009a). Some necessary speci-
fications of the multi-spectral sensor are given (Table 3).

The spatial resolution of multi-spectral sensors is ade-
quate in agricultural RS applications, enabling the spectral 
response at the canopy level. When the vegetation starts in 
stress condition, its refractive is decreased at the NIR band, 
while the reflectance of the plant is increased at the red band. 
Due to this intention, NDVI has shown a strong relationship 
with chlorophyll content, crop water stress index (CWSI), 
leaf area index (LAI), yield, and vigor (Matese et al. 2018; 
Espinoza et al. 2017; Poblete et al. 2017; Jorge et al. 2019).

Hyperspectral

Airborne hyperspectral imagery delivered detailed informa-
tion of the spectral reflection of the earth’s surface and can 
be used for RS applications. e.g., mineral mapping, land 
cover assets, and the coastal environment (Im and Jensen 
2008; Ghiyamat and Shafri 2010; Govender et al. 2007). 
Such sensors can acquire images from a visible to IR region 
of EMs in many narrow bands (Fig. 6c). A hyperspectral 
sensor formed three-dimensional data called a cube of hyper-
spectral information. These hyperspectral cube images con-
tain pixels of spatial information entire spectral reflectance 
curve (Aasen et al. 2018). In precision farming applications, 
specific biotic and abiotic stresses are monitored due to the 
high resolution of hyperspectral data (Rodríguez-Pérez et al. 
2007). Another research suggested that hyperspectral data 

Fig. 6  Models of sensors used 
on UAV platforms for ther-
mography in crops. Note: a a 
multi-sensors setup with an 
RGB, multi-spectral, and a ther-
mal camera (Santesteban et al. 
2017). b Multi-spectral sensor 
(Tetracam.Mini-MCA-6, Inc., 
Chatsworth, USA) (Turner et al. 
2011). c Hyperspectral camera 
(Headwall. Photonics, MA, 
USA). d Thermal sensors (FLIR 
System, Inc., USA) (Zarco-
Tejada et al. 2012)

Table 3  Some important specifications of sensor parrot sequoia

Sensor Wavelength 
(nm)

Band width 
(nm)

Pixel size Mpx

Red 660 40 1.2
Green 550 40 1.2
Red edge 735 10 1.2
Near infrared 790 40 1.2
RGB camera – – 16
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were used to identify the water stress in the citrus orchard 
using the photochemical reflectance index (PRI) and fluores-
cence measurements (Zarco-Tejada et al. 2012). However, 
high-resolution images from the hyperspectral sensor were 
further used to establish the canopy map between CWSI and 
(gs) in olive orchards with different irrigation managements 
(Berni et al. 2009b; Gerhards et al. 2019). The specifica-
tion of images taken from hyperspectral sensors is shown 
in Table 4.

Thermal

In the 1960s, the use of thermal data to detect water stress at 
field scale with thermal remote sensing became prominent 
(Tanner 1963). The thermal sensor uses thermal radiation to 
read passive thermal rendition with a wavelength range of 
7–12 µm (Fig. 6d). An array of microbolometers inside the 
sensors is being used to store and received the thermal rendi-
tion signal and stored these signals as raw data number (DN) 
values on the image pixel. On the other hand, a thermal sen-
sor monitored the surface temperature (Anderson et al. 2013; 
Stark et al. 2014). Thermal RS is a mechanism by which the 
heat released from an object is measured and transformed 
into temperature readings without contact with a body (Kha-
nal et al. 2017). A comprehensive list of commercial thermal 
cameras on UAV platforms for RS application in precision 
agriculture was found in the literature (Khanal et al. 2017; 
Alvino and Marino 2017; Sepulcre-Cantó et al. 2006).

Application of thermal imaging

Thermal imaging as a plant stress monitoring tool

Applying thermal input to classify plant water stress with 
thermal sensors became common in the 1960s (Tanner 

1963). The thermal sensor uses thermal radiation to read 
passive thermal rendition with a spectral range of 7–12 µm. 
An array of microbolometers inside the thermal sensors was 
used to identify and receive the thermal rendition signal and 
store these signals as raw data number (DN) values on the 
image pixel. Padhi et al. (2012) stated that various irrigation 
treatments could use thermal imaging to differentiate soil 
water deficits in cotton fields. The proposed thermal imag-
ing can be used in cotton fields to assess the soil water defi-
cit (Padhi et al. 2012). Pou et al. (2014) conducted a study 
on grape vines to examine the potential of using thermal 
imaging to evaluate the plant water stress (Pou et al. 2014). 
Grant et al. (2007) have used thermal imaging to diagnose 
the stress responses in grapevine under various irrigation 
regimes. They noticed that thermal imaging should differ-
entiate between irrigated and non-irrigated plant canopies 
and noticed a disparity between plants and treatments for 
deficit irrigation (Grant et al. 2007). Jones et al. (2002) 
investigate thermal imaginations to evaluate the stomatal 
closure at the field level. They stated that by using infrared 
thermography, the water relationship of grapevine canopies 
could be studied. The inclusion of non-leaf material in the 
analysis of the images must be avoided to make this method-
ology more precise. It is possible to avoid non-leaf material 
by selecting suitable areas in the canopy plots or using dry 
and wet temperature thresholds to define the range outside 
which temperature values are rejected. They further stressed 
the potential benefits of thermal imaging. Thermography 
enables the semi-automated analysis of large canopy areas 
to study plant stomatal behavior with much more efficient 
replication than those achieved by porometry (Table 5).

Development of data processing system

Thermal imaging and image processing often allow auto-
matic image correction, such as removing pixels represent-
ing the sky or soil. In addition, because of the potentially 
high accuracy in image comparisons, they concluded that 
thermal imaging has the potential to obtain measure-
ments that are best suited for comparative studies (Jones 
et al. 2002). It should be noticed that remote sensing can 
observe plants’ reactions to water stress rather than the 
stress itself. Unfortunately, related plant responses can 
give rise to several different environmental stresses. For 
example, water stress, mineral deficiency, disease, and 
insect damage contribute to stomatal closing, and many 
stresses appear to decrease the leaf area. Therefore, the 
effect of water tension from just one recorded reaction is 
difficult to track. Fortunately, remote sensing techniques 
from previous literature are offered to identify distinct 
stress responses (Jones and Vaughan 2010). Therefore, it 
is easier to combine multiple ways of prejudice against 
water tension attributable to other factors. Over the past 

Table 4  Specification of hyperspectral imaging through UAVs

Specifications Value

Wavelength range 450–770 nm
Field view 90°
Pixels number 656 × 494 pixel
Band width 6–24 nm (FWHM)
Wavelength interval 1 nm
Rate of frame 1–2 frames/s

Component Size (mm) Weight (g)

Regulator 115 × 80 × 40 mm 220
Computer 124 × 59 × 24 mm 95
Battery 108 × 74 × 24 mm 230
Imager 220 × 90 × 90 mm 780
Total weight – 1450
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few years, research on the estimation of water stress in 
various crops has been investigated, and RS imagery has 
increased. First of all, the research adopting both VIS and 
TIR imagery has been attempted to estimate crop water 
stress (Möller et  al. 2006; Leinonen and Jones 2004). 
The co-registration method of VIS and TIR images has 
been widely accepted to calculate pure crop temperature, 
excluding soil temperature. This makes it possible to dif-
ferentiate the canopy cover area and the soil surface in the 
VIs image and then compute the canopy cover in the TIR 
image co-registered with the VIS image. Despite the ver-
satility of two kinds of image data combined, co-registra-
tion instead involves time-consuming work. A histogram-
based approach has been implemented to eliminate the 
CT from soil background temperature using TIR imagery 
(Park et al. 2017). The method combines the TIR image 
pixel histogram and uses a constant threshold to obtain 

canopy-related temperatures (e.g., the coldest 33% of the 
histogram).

The threshold in the histogram describes the border 
between vegetation and soil distribution, and mathemati-
cal and analytical methods calculate the value. The study 
shows that the CWSI estimation process has been facilitated 
and optimized, removing the need for VIs image processing. 
However, based on site-specific crop types, proper determi-
nation of threshold values to discard non-canopy pixels in 
histogram analysis is needed. The mixed pixels of thermal 
imagery will cause significant bias in canopy temperature 
at midday, as they are included in the canopy pixel clus-
ters. As an indicator of crop water stress, the determination 
of  Twet and  Tdry for CWSI has a significant effect on the 
accuracy of CWSI values. The thermal sensor uses thermal 
radiation to read passive thermal rendition with a spectral 
range of 7–12 µm. An array of microbolometers inside the 
thermal sensors was used to identify and receive the thermal 

Table 5  Commonly used 
sensors on UAV platform

Sensors Functions Resolution Accuracy

Red edge M Multi-spectral 1280 × 960 pixel 8.2 cm/ pixel (per band) at 120 m
ThermalCAM SC640 Thermal infrared 640 × 480 pixel  ± 2 °C or ± 2%
MAPIR Survey 2 Multi-spectral 4608 × 3456 pixel 4.05 cm / pixel at 120 m
ThermoMAP Thermal infrared 640 × 512 pixel 14 cm / pixel at 75 m
Optris PI 450 Thermal infrared 640 × 512 pixel  ± 2 °C or ± 2%
Sequoia Multi-spectral 4608 × 3456 pixel 17 cm/ pixel at 100 m
ICI 9640 P Thermal infrared 640 × 480 pixel  ± 1 °C
ISI SWIR 640 P Short-wave infrared 640 × 512 pixel  ± 1 °C

Fig. 7  Data processing flow-
chart

Results of Adaptive
Median Filtering 

Canny operator
segmenta�on results 

Results of mean 
filtering

Leaflets Splice chart Mosaic  
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rendition signal and store these signals as raw data num-
ber (DN) values on the image pixel. The thermal camera 
and UAVs allow data collection to be more versatile and 
lower cost than conventional remote sensing methods. Fig-
ure 7 shows the example of picture processing for irrigation 
management. In UAV-based CWSI analysis, an attempt was 
made to find an optimal UAV flight time, showing that mid-
day UAV sensing promises optimal data collection, mini-
mizing shadow effects on the earth (Quebrajo et al. 2018; 
Bellvert et al. 2014). These UAV-based techniques would be 
a promising method with optimized technologies to detect 
plant water status, integrating sophisticated image analytic 
algorithms and upgraded camera systems (Gago et al. 2015; 
García-Tejero et al. 2018).

Time for taking thermal images

Various guidelines can be used for genotype selection and 
stress monitoring processes on how and when to measure 
canopy temperature (Pinter et al. 1990). The first model 
hypothesizes that temperature readings should be done, 
while there is less water content in the soil. The explana-
tion is that if the plants can transpire at a higher rate under 
low soil moisture levels, they will sustain comparatively 
higher growth and yield (Gardner et al. 1981). The second 
hypothesis  is that, in well-watered settings, temperature 
readings should be done. The explanation for this is that 
since plants under this situation have higher temperatures, 
they transpire less and conserve water in the soil profile that 
can be used later during the reproductive process and have 
greater yields. It is essential to determine the optimum time 
of taking thermal images considering the stage of the crop, 
time of day, and weather conditions. In most of the studies, 
canopy temperature was measured around midday. Zia et al. 
(2012) took hourly thermal images to study the impact of 
the time of day on image acquisition and found that midday 
can be the most suitable time to take thermal measurements 
due to the highest canopy temperature and lowest stoma-
tal conductance during solar noon and said that this would 
help to find the most significant difference between the treat-
ments (Zia et al. 2012). Zia et al. (2012) analyzed the canopy 
temperature measurements taken during the day and found 
that the optimal time for calculating canopy temperature is 
11:00–13:00 and 16:00 h (Zia et al. 2012). About growth 
point, time of day, and atmosphere, attempted to establish 
optimum measurement times for canopy temperature. They 
find that about 09:00 in the morning and 13:00 was the 
perfect time to measure the canopy’s temperature (Balota 
et al. 2007). A weak relationship between the depression of 
canopy temperature (CTD) and other parameters was also 
noted when the measurements were taken during low solar 
radiance with high wind speed and rain events.

Aerial images acquisition and software solutions

The soil properties and vegetation indices can be meas-
ured using various airborne sensors through remote sens-
ing techniques. Such as LAI and NDVI are the two most 
common indices to identify crop health. Also, the thermal 
sensor is used to calculate water stress from horticulture 
crops (Berni et al. 2009a). The canopy reflectance is used 
to classify the biochemical and biophysical properties with 
different methods, such as machine learning methodol-
ogy, which shows superior outcomes in many studies. The 
flight path is planned to confirm the overlapping side > 70% 
between the images of flight strips. The SfM (structure from 
motion) technique is used to analyze the series of imageries 
to generate a 3D orthomosaic (Aasen et al. 2018; Colomina 
and Molina 2014). The Pix4D and Agisoft PhotoScan were 
used to process the UAV images. The standard output of 
SfM software includes the (DSM), orthomosaic, and 3D 
cloud (Weiss and Baret 2017; Turner et al. 2011). Different 
spectral, thermal indicators can be calculated from the equa-
tion below (Jones 2013; Costa et al. 2013).

where ΔTcanopy-air, ΔTwet, and ΔTdry are variations in air and 
canopy temperature. The Tdry and Twet values were the sub-
jects of the CWSI calculated using simplified, statistical, and 
analytical methods.

Spectral and normalized indices

To estimate the various crop characteristics, i.e., biochemi-
cal and biophysical by vegetation indices, is one of the popu-
lar methods. However, NDVI and LAI have the sensitive 
issue. These indices are shown reasonable accuracy with 
satellite data. Leaf area index is a biological practice of the 
crop (Tahir 2018). It can be used to study plants transpira-
tion growth and photosynthesis. LAI can also be used in 
water balance modeling and crop yield prediction (Jonck-
heere, et al. 2004). Many researchers (Baluja et al. 2012; 
Zarco-Tejada et al. 2012; Zarco-Tejada et al. 2009; Jones 
and Vaughan 2010) measured this specific reflectance using 
RGB, multi-spectral, and hyperspectral cameras. Several 
solutions were built to resolve this situation. One potential 
solution is the use of an extensive dynamic vegetation index 

(4)ΔTcanopy−air = TC − Tair

(5)CWSI =
Tcanopy − Twet

Tdry − Twet

(6)IG =
ΔTdry−ΔTcanopy−air

ΔTcanopy−airΔTwet
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(WDRVI). For this index, 0 to 1 ranging factors are fixed 
with NIR reluctance (Gitelson 2004).

The relationship between LAI and WDRVI appears linear 
and tends to increase when the weighting factor approaches 
zero values. Another enhanced vegetation index is designed 
to show better sensitivity with LAI and blue band.

UAV operations can also acquire temperature, fluores-
cence, and water stress condition identification linking with 
a multi-spectral and thermal cameras sensor. Table 6 out-
lines the significant indices of vegetation studied through 
comprehensive literature.

A Case studies on UAV‑based thermal sensor 
for precision agriculture

The image data collection works are carried out at 9:00am, 
10: 00am, 11: 00am, 12: 00 pm, 1: 00 pm, 2: 00 pm in 
every experimental day in this field. The UAV flies at 
a relative altitude of 25 m. No irrigation is carried out 
during the experiment. By the thermal camera (Zenmuse 
XT2) on DJI multifunctional UAV (M300RTK), the infra-
red thermal images with resolution of 640 × 512 are cap-
tured. The wavelength range is 7.5–13.5 μm. The UAV is 
turned on 30 min before the measurement (Pham and Stack 
2018). All flight missions are uploaded to the drone plat-
form through the controller. The infrared thermal imaging 
camera is triggered regularly during the UAV flight, and 
the UAV platform has a fixed GPS module, which can 
automatically record the location coordinates of the shoot-
ing point in each image (tiff format). Finally, a single pho-
tograph is spliced into a orthomosaic map of the study area 

(7)NDVI =
NIR − R

NIR + R
&WDRVI =

a ∗ NIR − R

a ∗ NIR + R

(8)EVI. = 2.7 × .
NIR − R

[(7.5. ∗ B) + 1] − [NIR. + (6 ∗ R)]

by PIX-4D software. And the redundant image information 
is effectively removed through image preprocessing meth-
ods such as edge detection and filtering. The twenty soil 
moisture sensors are uniformly arranged in the field study 
area, and the coordinates of the 20 locations are obtained 
by GPS with the accuracy of 0.1 m. During UAV shooting, 
the soil moisture sensor collects soil moisture content data 
(θ) at these points. The field meteorological station col-
lects relevant data every 1 h. Predictive values of canopy 
temperature of these locations are extracted from the infra-
red thermal image after removing the soil background. 
The true canopy temperature values of these 20 points are 
observed by hand-held thermometers (TN410LCE), and 
the average of the three measured values near each point 
is regarded as the real temperature value. The canopy pre-
diction and real temperature observation are synchronized 
with soil moisture data acquisition. The experimental data 
collection and processing flowchart is shown in Fig. 8.

Real‑time irrigation management and future 
perspectives

The current development in irrigation automation provides 
a framework for continuous data transfer across irrigation 
controllers, mounted field sensors, and variable irrigation 
equipment (Quebrajo et al. 2018). UAV thermal sensors 
approaches are used in the assessment of water status of 
crops, i.e., the temperature of the canopy, threshold tem-
perature, and CWSI (theoretical and empirical) threshold, 
and CWSI (theoretical and practical) (Bian et al. 2019). 
Osroosh et al. established a theoretical CWSI algorithm to 
irrigate the apple trees automatically (Osroosh et al. 2015). 
They used a central pivot and linear irrigation system, and 
thermal imageries camera. The CWSI acquired from UAV 
thermal cameras would be optimized for real-time schedul-
ing of irrigation. Hutton and Loveys 2011 established and 
validated UAV thermal images for assessing the plant water 

Fig. 8  Original database estab-
lishment flowchart
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status, which does not require the operator’s involvement. 
Estimation of CWSI from thermal imaging has a great 
potential for quickly detecting changes in water stress and is 
used for detecting evapotranspiration (Bellvert et al. 2016a; 
Santesteban et al. 2017; Osroosh et al. 2016). The obtained 
information of evapotranspiration remained gathered to the 
irrigation valve zone assisted by the irrigation equipment. 
Accordingly, accurate data and information collated quickly 
are essential to assess the effectiveness of water usage. More 
effort is needed to make these UAVs user-friendly and acces-
sible for all types of users for precise crop assessment. Auto-
matic irrigation is a promising technology to increase the 
farm irrigation management of agricultural crops for sus-
tainable production (Osroosh et al. 2016; Piao et al. 2010; 
Webb et al. 2010; Beare and Heaney 2002; McBratney et al. 
2005). The future of automatic irrigation is expected to have 
included UAV, satellite-based RS, and ground-based sensors 
connected with WSN.

Many researchers predict more advances in temporal 
downscaling in satellite remote sensing to achieve daily 
measurement. Also, seasonal models for water stress detec-
tion were developed to schedule irrigation (Semmens et al. 
2016; Sun et al. 2017; Biggs et al. 2016). Another method 
for upcoming precision irrigation is to track the irrigation 
water directly in automated pipelines near the sub-block. 
These automated pipelines depend on proximal data col-
lection, analysis, specifications estimation, crop water sta-
tus interpretation, and irrigation system regulation. Recent 
advances in cloud computing and wireless technologies 
could help process remote sensing data quickly after acqui-
sition (Lakhwani et al. 2019; Ojha et al. 2015; Hori et al. 
2010). Finally, automation and computational resources 
will ultimately combine and create intelligent technolo-
gies for artificial intelligence and real-time processing for 
decision-making tools. Soon, farmers benefit from precise 
irrigation guidance using UAV maps regularly, weather sta-
tions, and direct sensors. These data can be collected and 
almost instantly stored on the cloud and combined with 
post-processing algorithms to decide advanced irrigation 
applications (Goap et al. 2018). Furthermore, it is expected 
that technological advancements in the coming years will 
result in smaller and more affordable devices, making ther-
mal sensing a widespread practice in agriculture, irrigation 
management, and related fields.

Conclusion

This research highlighted the state of the art, possibilities, 
and drawbacks for detecting crop water stress with ther-
mal remote sensing. UAV technology improved CWP for 
these widely used sensors: multi-spectral, hyperspectral, 
and thermal. UAV with thermal sensors is a valuable tool 
for monitoring and assessing crop water status among these 
cameras. Therefore, regular tracking of crops for character-
izing the water condition is better achieved using a UAV 
network. Researchers recently tried to increase crop produc-
tivity by an adaptive irrigation planning algorithm, which 
depends on simulated CWSI of thermal imageries sensors 
mounted on a central pivot and linear irrigation systems. 
Also, UAVs with remote sensors provide a cost-effective 
solution and data actuations. The current review paper has 
open new pathways for applying UAV-based thermal remote 
sensing techniques, potentially used in precision irriga-
tion systems. Furthermore, research will show the extent 
to which the presented techniques are applicable in precise 
agriculture, and various crop-cultivar-site and time-specific 
experiments will remain for further work. Several limita-
tions are preventing the broader use of UAVs for PA. For PA 
applications installation, the main reason for adopting the ad 
hoc procedure is the absence of a standardized workflow. It 
is also the fact that discourages the pertinent stakeholders. 
In addition, as PA requires data-intensive procedures for the 
image’s manipulation, experts and skilled personnel are also 
needed. This leads to training or hiring an expert to assist 
them with image processing that is also a costly option for 
an average farmer. The fact mentioned above may proscribe 
the adoption of UAV technologies from farmers with small 
agricultural fields.; however, this is not the case for most of 
the fields in Asia.
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