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Abstract
Global circulation models have been used to project future climate changes, which encourage experts to design mitiga-
tion measures. Still, it is challenging to use the raw data at a local scale without downscaling. Hence, this study applied a 
statistical downscaling model to downscale daily data generated from the second generation of the Canadian Earth System 
Model under two Representative Concentration Pathways scenarios (RCP4.5 and RCP8.5) using observed data for model 
calibration and validation. The downscaled results showed that the maximum temperature likely to increases in the range 
of 2.04–2.50 °C for RCP4.5 in the 2050s (2041–2070) and 2080s (2071–2099), respectively, and the minimum temperature 
indicate an increase by 0.87 °C in 2050s and 1.56 °C in 2080s averaged over the watershed level. The projected mean annual 
and seasonal air temperatures are likely to increase up to the end of the twenty-first century at all stations. The utmost annual 
rainfall change is projected to be 14.5% in the 2080s for RCP4.5 at Modjo. The highest seasonal precipitation change is 
projected to be 30.9% (RCP8.5) in the main rainy season (Kiremt) at Chefedonsa. Seasonal-based future projection of the 
precipitation shows non-significant trends, except the Kiremt season. The study revealed that the temperature was highly 
influenced by altitude and slightly affected by corresponding land use land cover type. In general, the increase in tempera-
ture could worsen the environmental conditions in warm seasons; and an increase in precipitation in the Kiremt season is 
expected to bring a likely risk of flooding.
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Introduction

The increasing trends in emissions of greenhouse gases 
have caused increasing temperature trends throughout the 
world (UNFCCC 2007; Calow et al. 2011; Montt et al. 
2013; Costanza et al. 2014; UNEP 2017, European Union 
2018). Warming of the world aligned with the emission of 

Greenhouse Gases (GHGs) is nowadays absolute, and the 
atmospheric concentration of carbon dioxide  (CO2) has 
increased significantly which induced the mean global tem-
perature to increases (UNFCCC 2007). Investigating how 
temperature and precipitation changes could affect the real 
world and involves answering how much climate variation 
there will be, what impacts will follow and how best to adapt 
and mitigate the causes (Baede et al. 2001; Bates et al. 2008; 
FAO 2018).

The rising trend of temperature has made different hydro-
climatological threats with many socio-economic aspects 
and also will cause changes in cropping patterns and the 
spreading of disease vectors putting several portions of the 
world at risk (Kabat et al. 2002; UNEP 2017). It has been 
agreed that the rising trend of air temperature has altered 
the intensity and patterns of hydrologic cycle elements 
especially precipitation (Sonali and Nagesh 2013; Wagesho 
et al. 2013). Assessing the trends and changes of temperature 
and rainfall is very vigorous for worthwhile and real water 
resources management and development in a sustainable 
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manner (Rao and Legesse 2013; Semiromi et  al. 2014; 
Gemechu et al. 2015; Amirabadizadeh et al. 2016; Asfaw 
et al. 2018; Wei et al. 2018; Lu et al. 2019). The future pro-
jection of precipitation and temperature studies have enor-
mous benefits for water resource development activities, 
moisture management in rainfed agriculture and academics 
in this area to describe the spatiotemporal variability. Future 
climate changes have direct influences on the surface runoff 
which highly depends on precipitation intensity and patterns 
(Mahmood and Babel 2014; Alemu and Dioha 2020). Thus, 
estimating precipitation and temperature changes in future 
is required for streamflow information, which is very impor-
tant for projects related to water resources development and 
construction and equally to mitigating the world’s climate-
changing trends (Robinson 2008; FAO 2011).

Developing countries are commonly affected by climate 
change due to more belief in climate reliant natural resources 
and limited finance for adaptation (McSweeney et al. 2010), 
and East Africa is obvious as a susceptible home for climate 
change (Gebrechorkos et al. 2019). Ethiopia, part of East 
Africa, is typically influenced and vulnerable place for cli-
mate change, for the reason that its economic development 
highly depends on rainfed agriculture. Mengistu et al. (2014) 
reported that the temperature over the Upper Blue Nile River 
Basin of Ethiopia has increased by 0.1 °C to 0.15 °C/dec-
ade. Mekonen and Berlie (2020) reported that the increasing 
trends of minimum, average and maximum temperatures at 
the ratio of 0.098 °C, 0.069 °C and 0.041 °C per decade, 
respectively and declining trends of rainfall at a level of 
6.5 mm per decade in the Northeastern parts of Ethiopia. 
Additionally, Abebe and Kebede (2017) reported an increas-
ing trend of + 0.57 °C for the maximum temperature while 
the minimum temperature indicates a declining trend by 
0.6 °C in Megech catchment in Ethiopia. The study also dis-
covered that the mean annual temperatures in the northern 
part of Ethiopia are increasing by about 0.54 °C per decade 
(Gebrehiwot and Veen 2013). Changes in temperature and 
precipitation patterns have a direct impact on the hydrologi-
cal cycle and water resources availability. For that reason, 
it is vital to assess the future trends of air temperature and 
precipitation in the country. The Modjo catchment is one 
of the affected areas by rainfall variability due to climate 
change. The catchment is characterized as a sensitive area 
to climate change and has been experienced by high floods 
during rainy season and droughts in dry season. It is also 
witnessed that the consequence of the climate change over 
time on precipitation due to high variability of temperature 
has been visible.

The numerous findings revealed that future climatic 
change projection will be significant by employing differ-
ent Global Climate General Circulation Model (GCM) and 
Regional Climate Model (RCM). The GCMs are commonly 
employed to evaluate climate change projection and the key 

tools for studying global change, provide realistic projec-
tion with an accuracy of present climate condition when 
evaluated as of global and continental scales (Trzaska and 
Schnarr 2014). However, the GCMs are coarse in resolu-
tion and may not be directly applied to local scale studies 
to evaluate the probable climate change impact (Dibike 
and Coulibaly 2005). Thus, there was an in-need on behalf 
of high-resolution scenarios at a catchment or local scale 
level that results much finer than that obtained by a global 
or even some regional climate models. Subsequently, the 
downscaling techniques were developed as a tool to mini-
mize a gap between the GCMs and the local scales neces-
sary at the catchment level (Eden et al. 2012; Trzaska and 
Schnarr 2014; Cannistra 2016). The downscaling techniques 
of climate models aim to solve this scale mismatch (Can-
nistra 2016). The core downscaling approaches regularly 
used in the generation of higher resolution climate scenarios 
for certain areas are statistical and dynamical downscaling 
approaches (Hewitson and Crane 1996; Eden et al. 2012; 
Trzaska and Schnarr 2014; Cannistra 2016; Smid and Costa 
2018). Dynamical downscaling develops climate scenario 
data for local scales by developing and using Regional Cli-
mate Models (RCMs) with the coarse GCM data used as 
boundary conditions (Hay and Clark 2003). On the other 
side, Statistical Downscaling Method (SDSM) works by 
developing numerical relationships between large-scale 
atmospheric variables, the predictors, local surface vari-
ables and the predictands (Wilby et al. 2004). The SDSM 
has been employed at different places over the world for 
future changes in temperatures and precipitation projections 
(Liu et al. 2017; Feyissa et al. 2018; Al-Mukhtar and Qasim 
2019; Phoung et al. 2020; Shitu and Tesfaw 2021).

Numerous spatiotemporal numerous studies have been 
done on the projection of air temperature and precipita-
tion under climate change ranging from watershed to river 
basins wide-reaching by using data of statistical downscal-
ing techniques in Ethiopia (Kebede et al. 2013; Feyissa et al. 
2018; Gebremeskel and Kebede 2018; Tesfaye et al. 2019). 
The results from those studies show the applicability of the 
technique in the country and its good correlation with the 
observed climate data (Kebede et al. 2013; Feyissa et al. 
2018).

The study of climate change is believed to provide infor-
mation about the air temperature and precipitation changes, 
to mitigate the crisis due to spatiotemporal variability under 
climate change conditions, to secure food demand and 
improve living standards of the local communities in the 
area. Thus, many problems and challenges will come up 
with climate change if there are no continuous evaluation 
and mitigation measures. In particular, Modjo watershed 
is vulnerable to erratic rainfall and moisture stress prob-
lems. Thus, the study was designed to evaluate the poten-
tial future changes of temperatures and precipitation under 
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climate change during the two future periods in the 2050s 
(2041–2070) and 2080s (2071– 2100), using the GCM data 
of CanESM2 model under two Representative concentration 
pathways (RCP4.5 and RCP8.5) outputs downscaled using 
the SDSM model, in Modjo watershed, Awash River Basin, 
Ethiopia.

Materials and methods

Description of the study area

Modjo watershed is located in the upper Awash River 
basin, Ethiopia (Fig.  1), and its total area coverage is 
1901.69   km2. Geographically it is placed between the 
longitude 38°50´E and 39° 17´E, and latitudes 8° 25´ N 
and 9°07´N. The watershed drains to Modjo River, then 
flows to Koka dam and join Awash River as one tributary 
of the Basin. The watershed altitude range from 1573 to 
3049 m above sea level. The rainfall pattern of the water-
shed is characterized by bimodal with two peaks through-
out the year in April for the short rainy season (which start 
from February and extends up to May) and July for the 

main rainy season (which ranges from June to September) 
(Eshetu 2020). The mean rainy season locally known as 
Kiremt contributed above 80% of the annual rainfall and 
the short season which starts from February to May is 
locally known as Belg. The monthly total rainfall distribu-
tion in the watershed varies commonly from as small as 
3.5 mm for the driest month (December) at Modjo station 
to 290.7 mm for the rainy month (July) at Aleltu station 
(Gessesse et al. 2015). Accordingly, the annual rainfall 
distribution of the watershed varies from 1040 mm in the 
upstream to 873 mm in downstream parts.

The total mean annual rainfall of the watershed ranges 
from 852.45 mm at Bishoftu station to 993.78 mm at 
Modjo station gained from the observed data collected 
from the respective station (1985–2014). The mean tem-
perature is also ranging from 16.6 °C (Chefedonsa station) 
to 21 °C (Bishoftu station) in the watershed. The land use 
land cover map is indicated that the dominant one is an 
agricultural land use in the watershed. Lithic Leptosols, 
Vertic Cambisols, Chromic Luvisols, Eutric Vertisols and 
Haplic Luvisols are the major soil groups in the watershed 
(Gessesse et al. 2015).

Fig. 1  Study area a Ethiopian-River basin; b Awash River Basin; c Mojo watershed and d Mojo watershed Land use land cover
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Data analysis and processing

To evaluate changes in precipitation and temperature 
trends in future decades, the Statistical Downscaling Model 
(SDSM) has been employed as a tool to downscale GCM 
outputs to a local scale. Downscaling process established 
a link between large-scale atmospheric variables (predic-
tors) and the climate variables on a local scale (predictands) 
(Wilby and Dawson 2007). To achieve the set of objectives, 
two types of data were required and collected: (1) daily 
observed precipitation and temperatures for three stations 
(Chefedonsa from the upstream, Bishoftu from the mid-
dle and Modjo from the downstream part of the watershed) 
throughout 1985–2014 from the Ethiopian National Mete-
orological Agency (ENMA), (2) the predictor’s data was 
downloaded from a Canadian climate data and scenarios 
website (https:// clima te- scena rios. canada. ca). The quality of 
observed data was checked based on the homogeneity test 
and normality of the Kolmogorov–Smirnov test at a signifi-
cance level of 95%.

The general circulation model employed in the discovery 
was: National Center of Environmental Prediction (NCEP), 
a resolution of 2.5°, the homogenized (gridded) records of 
atmospheric data was downloaded from the so-called rea-
nalysis project of the National Centers for Environmental 
Prediction (NCEP)—National Center for Atmospheric 
Research (NCAR). The model was developed to support cli-
mate change investigating scholars by integrating data from 
numerous climate sources with modeled future forecasts 
(Kalnay et al. 1996; Schoof and Pryor 2003). The sound-
ness and easy availability of the NCEP dataset makes it a 
selective climate data center for an investigation related to 
climate variability and impacts studies (Schoof and Pryor 
2003). NCEP data was used to correlate GCM models and 
observed data during the historical periods.

The Second Generation of the Canadian Earth System 
Model (CanESM2) was designed at the Canadian Centre 
for Climate Modeling and Analysis (CCCma). The model 
comprises the physical coupled atmosphere–ocean model 
CanCM4, coupled to a terrestrial carbon model (CTEM) and 
an ocean carbon model (CMOC) (Merryfield et al. 2013). 
The model provides long-term climate projections for Phase 
5 of the Coupled Model Inter-comparison Project, which in 
turn informed the Fifth Assessment Report (AR5) of the 
Intergovernmental Panel on Climate Change (Taylor et al. 
2012; Merryfield et al. 2013). The CanESM2 model has a 
resolution of 2.79° latitude and 2.81° longitude.

Future local climate scenario generation

Climate scenarios data obtained from GCM outputs are 
commonly applicable at a large-scale, whereas not suita-
ble for study at the catchment level to evaluate the impact 

and adaptation investigations that need in-depth local data 
(Mearns and Hulme 2001; Mearns et al. 2003; Auffham-
mer and Hsiang 2011; Xue et al. 2014). The global yields 
from GCM outputs are downscaled to local areas by 
employing either two methods of downscaling such as sta-
tistical or dynamical downscaling. Statistical downscaling 
has usual and recognized statistical procedures for down-
scaling. It is a unique model among various downscaling 
methods and simple for usage and inexpensive (Wilby 
et al. 1998; Abbasnia and Toros 2016; Gebrechorkos et al. 
2019). Several findings over the world point out that the 
SDSM gives trustworthy estimates of future temperatures 
and precipitation, extreme events, seasonal and annual 
precipitation, and areal characteristics of precipitation 
(Sun et al. 2015; Abbasnia and Toros 2016; Sayad et al. 
2016; Gebremeskel and Kebede 2018; Gebrechorkos et al. 
2019; Tesfaye et al. 2019). The model has been used as 
a suitable tool for downscaling of GCMs output at the 
local scale and feasibly generates meteorological climate 
data by employing an integration of stochastic weather 
generator and multiple linear regression (Hewitson and 
Crane 1996; Wilby and Dawson 2007). The origin of this 
method is designing multiple regression models. There-
fore, to simulate climatic parameters at an appropriate 
time scale, a multivariate linear regression model was 
established between predicted climatic variables at station 
scale (as dependent variable) and large-scale predictors 
(as independent variables) through the following steps:

Selection of predictors

Selecting a predictor is the first step in the downscaling pro-
cess. It is an iterative practice that comprising a free screen-
ing of likely settings and predictors, which is repeated until 
an objective function is enhanced (Wilby et al. 1998). The 
predictors with the maximum correlation are selected using 
the screen selecting predictor’s tool in the SDSM. First, the 
predictors downloaded from GCM for historical periods are 
associated with the observed minimum temperature, maxi-
mum temperature and precipitation in the baseline. Then, 
the highest correlation predictors are chosen. The chosen 
number of predictors for the study stations differs based on 
objective function from two to five. The relation concerning 
the predictors and predictands are established based on the 
p-value and correlation statistics values.

The most appropriate sets of predictor variables are 
selected based on partial correlation and percentage of 
explained variance (E) analysis among the predictands and 
the individual predictors. Acceptable prediction results were 
generated based on the values of the correlation of predictors 
with a p-value less than 0.05. The SDSM model considered 
the default value for bias correction factor as one for tem-
perature. The ‘Bias Correction’ parameter compensations 

https://climate-scenarios.canada.ca
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for any inclination in the downscaling model to under and 
over prediction the variance of the downscaling conditional 
process. The screened predictors for precipitation and tem-
perature at Modjo, Bishoftu and Chefedonsa stations are 
given in Table 1.

Calibration and validation of the model

Before using the outputs of the SDSM model, a model must 
be confirmed for its reliability, accuracy and predictive per-
formances (Osman and Abdellatif 2016). At the first cal-
culation, the model will not often give satisfactory objec-
tive function results. SDSM models require the selection of 
predictors based on objective function values to minimize 
mismatch modeled output with the observed collected data 
for the selected stations.

There are many predictors in the SDSM model, which 
can be selected during calibration and validation based on 
the objection function values (Wilby et al. 2004). During 
calibration of the SDSM, regression models were developed 
for every month of the year based on the association between 
predictands and selected predictors. The first 2/3 of the 
observed data which is 20 years (predictand) and reanalysis 
(predictors) datasets are used as input during calibration of 
the model, and the last 10 years for validation of the model. 
The period from 1985–2005 was used for model calibra-
tion and 2006 –2014 for model validation for all Modjo, 
Bishoftu and Chefedonsa stations. During calibration time 
the performance of a model was evaluated using objective 
functions such as the coefficient of determination (R2) and 
mean absolute error (MAE). These objection function results 

decide the model significance of climate change projection 
at selected study areas.

After successful calibration and validation, the daily, 
monthly and annual time series data of maximum tempera-
ture (Tmax), minimum temperature (Tmin) and precipita-
tion (PC) were simulated for two classes of future periods 
namely, the 2050s (2041–2070) and the 2080s (2071–2100) 
under future climate scenarios for the predictors of RCP4.5 
and RCP8.5 scenarios of CanESM2 GCM. In this study, 
the performance of generated results was evaluated using 
statistical objective criteria to check any biases in the simu-
lated data. For this, more recent datasets for the period of 
1985–2014 were applied to calculate mean monthly biases 
using observed and simulated (RCP4.5 and RCP8.5) tem-
peratures (Tmax and Tmin) and precipitation.

Results and discussion

Spatiotemporal observed data analysis

Figure 2 indicated the patterns and trends of mean annual 
temperatures (maximum and minimum) and precipita-
tion data of Modjo, Bishoftu and Chefedonsa stations for 
30 years period (1985 − 2014). The collected daily tempera-
tures and precipitation data were statistically examined for 
their spatiotemporal variations based on the annual time 
interval to avoid their characteristic seasonality effect on 
the analyses. Figure 2a and b presents the trend of mean 
daily temperature and annual precipitation of Bishoftu sta-
tion, Fig. 2c and d reflected the mean daily temperature and 

Table 1  The selected predictors 
for minimum and maximum 
temperatures and precipitation 
for all stations

Where Tmin is the minimum temperature, Tmax is the maximum temperature and P is the precipitation

Predictors Symbol Modjo station Bishoftu station Chefedonsa

Tmin Tmax P Tmin Tmax P Tmin Tmax P

Mean sea level pressure ncepmslpgl ✓

Ncepp1_ugl ✓

500 hpa vorticity ncepp_zgl ✓ 
500hpa geopotential height ncepp500gl ✓

500hpa wind direction ncepp5thgl ✓ ✓

500hpa divergence ncepp5zhgl
850 hpa airflow strength ncepp8_fgl
850 hpa zonal velocity ncepp8_ugl ✓ ✓ ✓

850 hpa meridional velocity ncepp8_vgl ✓ ✓

850 hpa wind direction ncepp8thgl ✓ ✓

850 hpa divergence ncepp8zhgl
Ncepprcgl ✓ ✓ ✓

Specific humidity at 500 hpa nceps500gl ✓ ✓ ✓

Specific humidity at 850 hpa nceps850gl ✓

Surface specific humidity ncepshumgl
Mean temperature at 2 m nceptempgl ✓ ✓ ✓ ✓ ✓
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annual precipitation of Modjo station whereas, Fig. 2e and 
f also reflected the mean daily temperature and annual pre-
cipitation of Chefedonsa station, respectively. The figures 
indicated that the mean daily temperature is generally shown 
an increasing trend over 30 years period at all stations. 
However, the precipitation shows insignificant patterns. For 
instance, annual precipitation at Bishoftu station did not 
show a significant pattern in trends (Fig. 2b). However, at 
Chefedonsa station, annual precipitation shows decreasing 
trends from 1985 to 2003 and then increasing up to 2014 
(Fig. 2f). This finding is in line with the finding by Eshetu 
(2020) whereby reported both annual and seasonal rainfall 
showed a non-significant trend at all study stations for the 
past 30 (1983–2010) years in the Modjo River watershed. 
Besides, as indicated in Fig. 2, the projected temperature and 
precipitation did not follow the same patterns spatially and 
temporally both annually and seasonally. Earlier studies also 
show an inverse relationship between change in temperature 
and precipitation (Nandozi et al. 2012).

Performance evaluation of downscaling model

Before downscaling future temperatures and precipitation 
from the CanESM2 model at the station's scale, the simu-
lation performance of SDSM was evaluated based on the 
objective functions. Then, the daily minimum and maximum 

temperatures and precipitation were projected based on 
the model-scenarios in two future periods in the 2050s 
(2041–2070 and 2080s (2071– 2100). Lastly, the future 
period’s changes in minimum, maximum temperature and 
precipitation were compared with baseline (1985–2014). 
Hence, to confirm highly correlated results, predictors from 
the NCEP re-analyzed data were selected based on their sta-
tistical significance during calibration, i.e., significant par-
tial correlation (r) at the 5% confidence level. The selected 
predictors for all stations were given in Table 2 based on 
their statistical correlation measures with each predictands 
that were used for future temperatures and precipitation 
projections.

The statistical parameters used for SDSM performance 
were listed with their calibration and validation values 
(Table 3). The calibration results revealed that there was a 
statistical agreement between observed and simulated data at 
all stations (Fig. 3). Then, the ten years of data (2005–2014) 
were employed to validate the performance of the model. 
The results also indicated a sounded agreement between the 
observed and simulated values at all stations with the coeffi-
cient of determination (R2) > 0.6 and mean absolute error of 
less than 0.56 (Table 3 and Fig. 3). However, the minimum 
temperature for Chefedonsa meteorological station for Octo-
ber to December was overestimated by the model compared 

Fig. 2  Mean daily temperatures and annual precipitation of 30 years (1985–2014) of all stations
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to observed data that could be related to the elevation and 
rugged topography of the area (Fig. 3) (Akhtar et al. 2009).

Future temperature and precipitation change 
scenarios

Temperature

The projected future temperatures (minimum and maxi-
mum) from the SDSM model under both RCP scenarios of 
the CanESM2 show increasing trends up to the end of the 
twenty-first century. The results from the model under both 
future climate scenarios revealed that both minimum and 
maximum temperatures will continue increasing. The change 
in maximum temperature is higher for the RCP8.5 than the 
RCP4.5 for all stations (Fig. 4 and Table 4). The maximum 
temperature is predicted to increase by 4.27 °C and 4.31 °C 
under RCP4.5 and RCP8.5, respectively in the 2080s relative 
to the baseline period at Modjo station (Table 4 and Fig. 4a 
and b). The results of the model projection show that change 
in minimum temperature is 0.91 °C to 1.07 °C under RCP4.5 
and from 1.29 to 1.95 °C for RCP8.5 in the 2050s and 2080s, 
respectively for Modjo Station (Table 4 and Fig. 4c and d). 
At Modjo station the higher changes of minimum tempera-
ture are projected to be 1.29 °C and 1.95 °C in the 2050s and 
2080s, respectively under RCP8.5 (Fig. 4d).

Although the projected increasing trend in the mini-
mum temperature is lower under both RCP scenarios com-
pared to the maximum temperature at all stations except, 
Chefedonsa station (Fig. 4(a-l)). At Bishoftu station, the 
increasing trends of minimum temperature are projected to 
be 0.27 °C and 0.35 °C in the 2050s and 2080s, respec-
tively under RCP4.5 (Fig. 4g). At Chefedonsa station, the 
increasing trends of maximum temperature are projected to 
be 0.8 °C and 0.9 °C in the 2050s and 2080s, respectively 
under RCP4.5 (Fig. 4i) and while, the change of minimum 
temperature ranges from 0.5 °C for RCP4.5 and 1.8 °C for 
RCP8.5 in 2080s period (Fig. 4l). The change of minimum 
and maximum temperatures projections for both scenarios 
are tabulated in-depth in Table 4 for all stations. In both 
future projection periods, Tmin and Tmax will be warmer 
under RCP8.5 relative to RCP4.5.

Generally, it is worth noting that the obtained results 
based on both model-scenarios represent an increase in 
minimum and maximum temperatures at all stations during 
the future projection periods. However, increases in mini-
mum and maximum temperatures are diverse under both 
climate scenarios at all stations and for both future peri-
ods. Remarkably some studies have investigated the future 
changes of temperatures from different GCMs at different 
places in Ethiopia and reported increasing changes (Tessema 
2011; Kassie 2014; Kassie et al. 2014; Mekasha et al. 2014; 
Asfaw et al. 2018; Mekonnen and Disse 2018; Gebremeskel 
and Kebede 2018; Gedefaw et al. 2018; Tesfaye et al. 2019; 
Alemu and Dioha 2020; Mekonen and Berlie 2020; Tadese 

Table 2  List of predictands per station with their respective selected 
predictors

Station Predictands Predictors (NCEP 
Re-analysis) NCEP 
code

Partial r

Modjo Precipitation ncepp1_fgl 0.173
ncepp8_ugl 0.304

Maximum temperature ncepp500gl 0.266
ncepp5thgl 0.359
ncepp8_vgl 0.164

Minimum temperature ncepp8_ugl 0.224
ncepprcpgl 0.122
nceptempgl 0.237

Bishoftu Precipitation ncepp1_ugl 0.376
ncepp1thgl 0.247
nceps500gl 0.146

Maximum temperature ncepp5thgl 0.077
ncepprcpgl 0.093
nceptempgl 0.449

Minimum temperature ncepp850gl 0.222
ncepp8thgl 0.155

Chefedonsa Precipitation ncepp8_ugl 0.107
ncepp8thgl 0.066
nceps500gl 0.162

Maximum temperature ncepp8_vgl 0.136
nceptempgl 0.159

Minimum temperature ncepp1_ugl 0398
ncepp500gl 0.204
nceptempgl 0.230

Table 3  Statistical performance evaluation of SDSM for calibration 
and validation periods

Station Parameter Calibration period Validation 
period

R2 MAE R2 MAE

Modjo Precipitation 0.71 0.102 0.64 0.08
Tmax 0.89 0.144 0.86 0.138
Tmin 0.79 0.56 0.84 0.28

Bishoftu Precipitation 0.97 0.14 0.69 0.16
Tmax 0.78 0.203 0.82 0.039
Tmin 0.89 0.53 0.91 0.21

Chefedonsa Precipitation 0.82 0.27 0.74 0.18
Tmax 0.79 0.44 0.76 0.37
Tmin 0.73 0.2 0.81 0.16
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et al. 2020). Ayele et al. (2016) reported that the projected 
temperature increases in an average of 1.6 °C over the short-
term period 2021–2040 and nearly 4 °C over the long-term 
period 2081–2100 in the Gilgel Abbay watershed in Ethio-
pia. Besides, the study conducted in Kessem watershed in 
Awash River Basin in Ethiopia also reported that the incre-
ment of maximum temperature would range from 1.6 to 
6.1 °C and 2.3 to 7.5 °C over the short time 2015–2044 and 
long period 2045–2075, respectively (Yadeta et al. 2020).

Precipitation

The average annual outputs from the CanESM2 model 
under both RCP scenarios revealed that precipitation will 
also show increasing until the end of the twenty-first century 
(Table 4). At Modjo station, the percentage rise in annual 
precipitation will be 7.6% and 14.5% for RCP4.5 and 2.6% 
and 9.1% for RCP8.5 in the 2050s and 2080s, respectively. 
At Bishoftu station, the percentage change in annual pre-
cipitation will be 8.3% and 10.3% for RCP4.5, and 7.7% 
and 12.9% for RCP8.5 in the 2050s and 2080s, respectively. 
Similarly, the percentage change of annual average precipita-
tion will be 2.5% and 6.8% for RCP4.5, and 1.1% and 10.9% 
for RCP8.5 at Chefedonsa station. The results revealed 
that the percentage change in precipitation is minimum at 

Chefedonsa station under RCP8.5 in the 2050s compared to 
the baseline period. In parallel to this, the maximum per-
centage change was projected under RCR4.5 in the 2080s at 
Modjo station. Generally, the model projected the increasing 
trends of annual precipitation for both projection periods in 
both scenarios for all study stations. This finding is aligned 
with the study that reported an annual increasing trend of 
rainfall for five among eight stations considered during 
investigation in Ethiopia (Gedefaw et al. 2019). Similarly, 
several studies confirmed the annual increasing trends at 
different stations in Ethiopia (Kebede et al. 2013; Mengistu 
et al. 2014; Feyissa et al. 2018; Meseret and Belay 2019; 
Alemayehu et al. 2020).

Seasonal change projections

The seasonal change values are more significant for local 
impacts studies on climate change than annual values. In 
most parts of Ethiopia, there are two rain seasons, the short 
(locally named as Belg) and long rainy (locally named as 
Kiremt) seasons. The long rainy season is from June to 
September while the short rain season is from February 
– May, the dry season is from October – January, respec-
tively (Gebrechorkos et al. 2019; Gedefaw et al. 2019; Jilo 

Fig. 3  Monthly mean observed and simulated maximum and minimum temperatures by NCEP and CanESM2 models for each station
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et al. 2019; Gurara et al. 2021a). In the country, the utmost 
essential rainy season is from June to September for rainfed 
agriculture.

The seasonal projections of minimum, maximum tem-
peratures and precipitation under both RCPs (RCP4.5 and 
RCP8.5) indicates a significant change in climate variables 
at all stations (Table 5). Overall, temperature changes are 
more sounded among seasons and stations, also differ for 
both RCPs and projection periods. In the kiremt season in 
the 2050s, compared to the baseline period, minimum and 
maximum temperatures will increase by 0.92 °C and 1.51 °C 
at Modjo station. The increment of maximum temperature 
in Bega season under RCP4.5 scenario will be 1.91 °C in 
the 2050s and 3.88 °C in the 2080s from the baseline period, 

while it will be 2.59 °C in the 2050s and 3.92 °C in the 
2080s under RCP8.5 (Table 5). Similarly, in Belg season, the 
maximum changes in minimum and maximum temperatures 
will be 1.58 °C and 3.16 °C for RCP8.5 in the 2080s and 
detail seasonal changes at each station in each season under 
both RCPs were presented in Table 5.

On the other hand, the CanESM2 model projected outputs 
revealed that there will be a seasonal variation of minimum 
and maximum temperatures at Bishoftu station in both future 
projection periods (the 2050s and 2080s) under both RCPs 
(Table 5). In Kiremt season, the maximum temperature will 
increase by 0.75 °C in the 2050s and 0.81 °C in the 2080s 
under RCP4.5. In the Belg season, compared to the baseline 
period, the maximum changes in minimum and maximum 

Fig. 4  Monthly mean observed (1985–2014) vs the projected future two periods (2050s and 2080s) for both the maximum and minimum tem-
peratures for all stations using CanESM2 GCM future projection climate model under RCP4.5 and RCP8.5

Table 4  Downscaled changes 
in projected temperatures 
(Tmax and Tmin) (°C) and 
precipitation (%) for each 
selected stations

Station Modjo Bishoftu Chefedonsa

Predictands Projection periods RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5

Precipitation (%) 2050s 7.6 2.6 8.3 7.7 2.5 1.1
2080s 14.5 9.1 10.3 12.9 6.8 10.9

Tmax (°C) 2050s 2.17 2.91 0.86 1.2 0.8 1.1
2080s 4.27 4.31 0.95 1.6 0.9 1.6

Tmin (°C) 2050s 0.91 1.29 0.27 0.39 0.5 1.2
2080s 1.07 1.95 0.35 0.92 1.2 1.8
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temperatures will increase by 1.10 °C and 1.80 °C in the 
2080s under RCP8.5 at Bishoftu station. The change of max-
imum temperature in Bega season under RCP8.5 scenario 
will be 1.23 °C in the 2050s and 1.66 °C in the 2080s from 
the baseline period, while it will increase by 0.81 °C in the 
2050s and 0.91 °C in the 2080s under RCP4.5 (Table 5). 
Generally, the projected minimum temperature shows 
decreasing trends in the Kiremt by 0.08 °C under RCP8.5 in 
the 2050s from the baseline period.

Similarly, the model projected outputs shown that there 
will be a seasonal variability of both the minimum and maxi-
mum temperatures at Chefedonsa station in both future pro-
jection periods under both RCPs (Table 5). In the Kiremt 
season, the minimum temperature will increase by 0.4 °C 
in the 2050s and 0.5 °C in the 2080s under RCP4.5. In the 
Bega season, the maximum changes in minimum and maxi-
mum temperatures will increase by 1.60 °C and 1.70 °C in 
the 2080s under RCP8.5 at Chefedonsa station. The mean 
change in minimum temperature in Belg season under 
RCP8.5 scenario will be increased by 0.9 °C in the 2050s 
and 1.6 °C in the 2080s (Table 5). Generally, the projected 
minimum temperature will be higher by 2.6 °C in the 2080s 
of RCP8.5 in Belg season than the projected maximum tem-
perature by 1.8 °C in 2080s of RCP8.5 in Kiremt season.

Table 5 shows seasonal percentage changes in precipi-
tation from the CanESM2 GCM downscaled results in 
the 2050s and 2080s projection periods for both RCP4.5 
and RCP8.5 at all study stations. The results revealed that 
under both RCPs, different patterns of seasonal precipita-
tion changes are projected at all stations over both future 
projection periods. In Kiremt season, increasing changes are 
projected over both future periods. However, in both RCP 
scenarios the projected precipitation values were different 
at all stations.

In the 2050s and 2080s periods, selected RCPs sce-
narios, the projected precipitation data was significantly 

changing. Especially, in the seasonal period, the maximum 
projected precipitation show changes up to 30.9% in the 
2080s at Chefedonsa station under RCP8.5. In future, both 
RCPs shows similar rising trends in the Kiremt season, 
although the magnitudes of the changes are higher under 
RCP8.5 than RCP4.5. The extreme wettest season, 30.9%, 
is projected in the 2080s under RCP8.5 at Chefedonsa in 
the Kiremt season and 22% is projected in the same period 
in the Bega season at Bishoftu station. Table 5 presents 
comparatively the seasonal predicted future changes of 
precipitation at all stations for both future periods. The 
results show that the projected precipitations have similar 
changing trends under the two RCPs in Kiremt and Bega 
seasons, except for Bega season at Chefedonsa station 
where the changes will be decreasing in both future cli-
mates scenarios. The magnitude of precipitation changes 
in the 2080s is larger than that of the 2050s in all seasons 
and detail seasonal variation of precipitation for the two 
future periods was tabulated in Table 5.

The seasonal projected precipitation ranges from -10% 
to 30.9%, the smallest decrease is projected in the 2050s 
and the highest value is projected to happen in the 2080s at 
Chefedonsa in Belg and Kiremt seasons, respectively. This 
finding is in line with the reported increasing trends of 
annual rainfall in Adami Tulu Jido-Kombolcha watershed 
in Ethiopia (Gemechu et al. 2015). Bekele et al. (2017) 
reported an increasing trend of rainfall in Kiremt season 
in eight-station among twelve stations used for the study 
in Awash River Basin, Ethiopia. Similarly, Feyissa et al. 
(2018) reported that the rainfall in Kiremt rainy season 
will increase by 20.9% under RCP4.5 (2071–2100) relative 
to baseline in Addis Ababa, Ethiopia. On the other side, 
Asfaw et al. (2018b) evaluated the variability of rainfall 
in north-central Ethiopia and reported that the Kiremt 
and annual rainfall were shown a statistically significant 
decreasing trend while that of Belg was non-significant.

Table 5  Seasonal variation of minimum temperature (Tmin), maximum temperature (Tmax) in °C and precipitation (Prec) in mm for the two 
future periods under both RCPs at each station

Station Modjo Bishoftu Chefedonsa

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5

Parameter Seasons 2050s 2080s 2050s 2080s 2050s 2080s 2050s 2080s 2050s 2080s 2050s 2080s

Tmin Kiremt 0.92 1.13 1.51 2.34 0.06 0.19 − 0.08 0.6 0.4 0.5 0.9 1.2
Bega 0.81 0.96 1.12 1.83 0.32 0.3 0.62 1.06 0.5 0.6 0.9 1.6
Belg 0.99 1.11 0.9 1.58 0.4 0.55 0.62 1.1 0.9 0.6 1.4 2.6

Tmax Kiremt 2.97 5.79 4.02 5.84 0.75 0.81 0.98 1.42 1.1 1.2 1.3 1.8
Bega 1.91 3.88 2.59 3.92 0.81 0.91 1.23 1.66 0.8 0.9 1.2 1.7
Belg 1.61 3.13 2.1 3.16 1.02 1.13 1.27 1.8 0.6 0.7 0.8 1.3

Prec Kiremt 14.9 20.8 13 22 12.2 15.3 4.02 5.84 16.9 21.6 23 30.7
Bega 8.5 21.8 3.4 9.1 5.9 7.4 2.59 3.92 − 2.2 − 1.2 − 9.5 − 3.7
Belg 4.7 1.11 − 8.5 − 3.9 6.8 8.1 2.1 3.16 − 4.9 0.1 − 10 5.7
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Relationship between temperatures 
and precipitation

Figure. 5 showed the trends of observed changes in mean 
temperatures and precipitation for each station and it can 
be observable that the relationships in the observed trends 
were not consistent annually. Significant negative correla-
tions between observed yearly mean temperature and pre-
cipitation at some year while it was positively correlated at 
another year. The relationship is positive at Bishoftu and 
Chefedonsa stations and negative at Modjo station.

Future climate projection also confirmed that in the hot 
season over the watershed, higher temperatures are allied 
with lower precipitation amounts and vice versa. Hence, 
seasonally, strong negative correlations dominate, as dry 
conditions favor more sunshine and less evaporative cool-
ing, while Kiremt wet season is cool. The projected mean 

maximum and minimum temperatures show increasing and 
the relationship of higher warm-season temperatures with 
lower precipitation during dry Bega season is projected to 
be consistently increasing and could alter the streamflow 
patterns (Gurara et al. 2021a). The study also confirmed 
that increasing trends of temperatures will increase poten-
tial evapotranspiration which exhibits evidence of increased 
drought severity in the upper Wabe Shebele Basin in Ethio-
pia (Gurara et al. 2021b). Nandozi et al. (2012) reported that 
the correlation of two climatic conditions such as rainfall 
and temperature patterns are seasonally variable in Uganda.

Impacts of altitude and Land use land cover 
on the Temperature

The investigations revealed that the temperature was influ-
enced by altitude and corresponding land use land cover 

Fig. 5  The correlation between 
mean temperature and annual 
precipitation at Bishoftu and 
Chefedonsa stations
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type. The temperature condition is inversely related to the 
altitude. The low altitude area is characterized by high tem-
perature while the lowest temperature is associated with 
high altitude. The highest temperatures were projected at 
Modjo station in the southern area of the watershed with 
low altitude, and the lowest temperature change is projected 
in the Northern part at Chefedonsa station where the area 
is characterized by high altitude (Fig. 1). Overall, as spa-
tial variability, we observed approximately + 3.12 °C incre-
ment from the south to the north across the watershed from 
the average of thirty years observed data. Seasonally, air 
temperature is inversely correlated to precipitation. Kiremt 
(rainy) season is characterized by heavy precipitation with 
low temperatures and Bega (dry season) is characterized by 
warm temperature with very low precipitation.

In the study area, the impact of land use land cover was 
slightly significant as the large landscape of the watershed 
was covered by a single land use land cover (agriculture) 
(Fig. 1). The highest temperature zones observed in the 
southern parts may associate with the decline of forests, 
a rise of built-up area and expansion of industrialization. 
Besides, in the Northern part of the watershed, the projected 
changes in temperatures are minimum due to the large area 
coverage of cropland (Fig. 1). Remarkably, many findings 
reported that the decline of forest and agricultural land due 
to urbanization and industrialization causes an increment in 
air temperature (Setturu et al. 2013; Aik et al. 2021).

Conclusion

Increasing trends of air temperatures and variability of 
precipitation due to climate change are recently one of the 
substantial environmental agendas in today’s world that has 
been considered as sensitive issues and a priority area for 
investigation. Thus, the study was designed to evaluate the 
potential future changes of temperatures and precipitation 
under climate change during the two future periods in the 
2050s (2041–2070) and 2080s (2071– 2100), using the GCM 
data of CanESM2 model under two Representative concen-
tration pathways (RCP4.5 and RCP8.5) outputs downscaled 
using the SDSM model. The calibration and validation result 
shows that the downscaled air temperatures and precipitation 
are in agreement with observed data.

The simulation results revealed an increase in both mini-
mum and maximum temperatures and annual precipitation in 
both future projection periods. The projected future changes 
of maximum temperature show higher increasing trends 
under the RCP8.5 than the RCP4.5, while the projected pre-
cipitation is the reverse except in the 2080s at Bishoftu and 
Chefedonsa stations. The average rising trends of maximum 
temperature is range from 2.17 to 4.31 °C at Modjo, 0.86 to 
1.6 °C at Bishoftu station, and 0.8 to 1.6 °C at Chefedonsa 

station up to the end of twenty-first century. The rise in mini-
mum temperature ranges from 0.58 to 1.95 °C at Modjo and 
0.19 °C to 0.92 °C at Bishoftu station from the base period 
(1985–2014) up to the end of twenty-first century. In terms 
of spatial distribution, the highest projected increase in mini-
mum and maximum temperatures are forecasted at Modjo 
station, but a high magnitude of precipitation is projected at 
Chefedonsa station. Temporally, the extreme of minimum 
and maximum temperatures are projected in the 2080s under 
RCP8.5 climate scenarios at all stations.

Seasonal changes in air temperatures and Kiremt precipi-
tation are projected to be increasing, but in Bega and Belg 
seasons precipitation trends show insignificant increasing or 
decreasing trends. The forecasted increasing temperatures 
and variability of precipitation will affect the hydrological 
cycle for future planning and development of the watershed. 
Overall, what can be drawn from the investigation is that in 
both future periods; the temperature is rising which could 
bring drought in the area near future due to high evapo-
rating demands of the atmosphere. Therefore, to overcome 
increasing risks of temperature and precipitation variability 
adaptation design like rainwater harvesting structures will 
be required. Coming studies on future climate change evalu-
ation should underline to incorporate adaptation measures.
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