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Abstract
Groundwaters are continuously polluted by various factors, including industry, excessive fertilizer, and pesticide use. In 
this study, ten heavy metals (Pb, Zn, Cr, Mn, Fe, Cu, Cd, Ni, Al, and As) were analyzed in groundwater samples collected 
from Bafra Plain, and groundwater quality was assessed through heavy metal pollution index (HPI), heavy metal evaluation 
index (HEI) and degree of contamination (Cdeg) indices. Geostatistical analyses and ordinary kriging methods were used to 
determine the spatial distribution of heavy metals and pollution indices. The present findings revealed that Al, As, Fe, and Mn 
concentrations in some sections of the study area were above the limits set for drinking waters. In terms of pollution indices, 
21.97% of the study were found to be highly polluted with HPI, 16.27% with HEI, and 36.08% with Cdeg. Geostatistical 
analyses revealed that Al, Mn, HPI, HEI, and  Cdeg exhibited moderate spatial dependence, and As and Fe exhibited strong 
spatial dependence. In some parts of the research area, groundwater iron levels were above the limits set for drip irrigation. 
Less heavy metal pollution levels were encountered in western parts of the research area. It was thought that pesticide and 
fertilizer used over the agricultural lands and geological structures were effective in groundwater pollution. It was concluded 
based on the present findings that groundwater quality should continuously be monitored, and fertilizer and pesticide use 
should be minimized to reduce groundwater pollution levels. Geostatistical methods should also be used in the management 
and development of groundwater resources.
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Introduction

Surface and groundwater resources are largely allocated for 
agricultural, domestic, and industrial uses. Thus, water qual-
ity should continuously be monitored (Maskoni et al. 2020; 
Mthembu et al. 2021). Water resources pollution can be nat-
ural or anthropogenic (Ravindra and Mor 2019; Zhai et al. 

2019). Anthropogenic pollutants include agrochemicals, fer-
tilizers, industrial pollution, or domestic pollution. There 
have been recent increases in metal pollution of surface and 
groundwater (Arslan and Ayyıldız Turan 2013; Long et al. 
2020). High metal concentrations in drinking waters pose 
severe threats to human health (Tirkey et al. 2017). High 
heavy metal contents may result in an ulcer or cancer-like 
diseases; besides, heavy metals may influence the brain and 
liver (Khalid et al. 2020; Singh et al. 2018).

There are several studies conducted in various parts of 
the world about heavy metal contents of surface and ground-
water and potential risks exerted on human health (Bhuyan 
et al. 2017; Gokalp and Mohammed 2019; Mthembu et al. 
2020; Wen et al. 2019). Mukherjee et al. (2020) determined 
heavy metal (Fe, Sr, Ni, Zn, Cr, Pb, and Cu) contents of 
groundwater in Eastern India and reported that Fe and Pb 
values exceeded allowable limits. Qiao et al. (2020) took 
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samples from 130 groundwater wells in the Guanzhong plain 
region of China and conducted a risk assessment study using 
13 heavy metal parameters.

Instead of assessing the health risks of heavy metals in 
waters separately, water quality indices considering all heavy 
metals together have recently been employed (Chaturvedi et al. 
2018; Rezaei et al. 2017). Water quality indices or pollution 
indices are simple and efficient methods developed to iden-
tify pollution levels of water resources or sources of pollution, 
and these methods offer a reliable tool for water management 
planners (Afonne et al. 2020; Rahman et al. 2020; Singh et al. 
2017). HEI, HPI, and  Cdeg have been used to investigate heavy 
metal pollution levels of the waters and potential use of water 
resources as drinking water (Dippong et al. 2019; Paul et al. 
2019; Singha et al. 2020). Gharaat et al. (2020) used HPI, HEI, 
and  Cdeg indices to examine heavy metal pollution of ground-
water in southern Iran and identified quite a high pollution 
problem in some sections of the research site. Singaraja et al. 
(2015) assessed groundwater heavy metal pollution in India 
using HPI, HEI and  Cdeg indices and indicated potential effects 
of chemical wastes and domestic leakages on pollution.

Geostatistical methods are commonly used to estimate 
pollution values at unsampled locations. These methods also 
facilitate identifying pollution sources and water resources 
management practices (Bodrum-Doza et al. 2019). Ordinary 
kriging method is commonly used to assess the spatial distri-
bution of groundwater quality traits between the geostatisti-
cal methods. (Arslan 2017; Ashrafzadeh 2016; Karami et al. 
2018). Islam et al. (2017) used the ordinary kriging method 
to assess spatial distribution maps for groundwater heavy 
metals in the Rangpur region of Bangladesh. Fallah et al. 
(2019) investigated heavy metal pollution of groundwater 
in Canada using HPI, HEI, and  Cdeg indices. Researchers 
initially determined the best semivariograms model for each 
parameter and used ordinary kriging for spatial distribution.

Bafra Plain is among the largest irrigation districts of Tur-
key, and groundwater of the plain plays a great role in irriga-
tion and domestic uses. Besides, in recent years, excessive 
quantities of chemical fertilizers and pesticides are used in 
agricultural practices. This study was conducted (1) to assess 
heavy metals contents of groundwater in terms of drink-
ing water quality, (2) to determine heavy metal pollution of 
groundwater with the use of HPI, HEI, and  Cdeg indices, (3) 
to generate spatial distribution maps with the use of krig-
ing method through geostatistical modeling of heavy metal 
contents, HPI, HEI, and  Cdeg values, and (4) to identify the 
sections of the plain with potential heavy metal pollution.

Materials and methods

Study site

This research was laid out in the Middle Black Sea Region 
in the north of Turkey. The study area is located between 
41–36´–41–44´ north latitudes and 35–48´–36–1´ east lon-
gitudes, covering about 134  km2 land area and 14 villages 
(Fig. 1). The altitude of the study area varies between 2 and 
28 m, and the average slope is around 1%. The study area 
has a temperate climate with annual average precipitation of 
775 mm and a temperature of 18 ºC.

Bafra Plain is considered to be young geologically (about 
2000  years) and composed of smooth alluvial terrains 
(Demirci et al. 2020). Besides, the upper sections of the 
plain are also composed of volcanic rocks, sandstone, and 
claystone deposits (Fig. 2). The aquifer of the study area is 
unconfined, and groundwater well depths vary between 5 
and 20 m. Groundwaters are generally used as irrigation or 
drinking water. Soil depth is around 1.5 m, and soil texture is 
clay-loam. Soil average pH is around 8.0, and organic matter 
content is high. Paddy, maize, wheat, pepper, and water-
melon are the primary crops cultivated in the Bafra Plain. 
Intensive pesticide, insecticide, and fertilizer are practiced 
in agricultural production activities. There are agricultural 
industry, textile, and machinery production factories in some 
parts of the area.

Groundwater sampling and analysis

The water samples were taken from 44 different groundwater 
wells in September 2016, and coordinates of groundwater 
wells were determined using Global Positioning Systems 
(Magellan Spor Trak Pro). Before water sampling, pumps 
were operated for 15 min, and water samples were collected 
in polyethylene bottles of 1 L. The samples were acidified 
using  HNO3 acid and preserved at 4 ºC until the analyses.

Water samples were subjected to ten different heavy 
metals (lead (Pb), zinc (Zn), chromium (Cr), manganese, 
(Mn), iron (Fe), copper (Cu), cadmium (Cd), nickel (Ni), 
aluminum (Al), and arsenic (As)) analyses with the use of 
Agilent 7500a inductively coupled plasma mass spectrom-
etry (ICP-MS) device following EPA 200.8 guidelines in 
General Directorate of State Hydraulic Works.
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Pollution assessment indices

The pollution assessment indices of HPI, HEI, and Cdeg 
were used to efficiently evaluate the heavy metal pollution 
levels of the groundwaters using ten parameters (Pb, Zn, Cr, 
Mn, Fe, Cu, Cd, Ni, Al, and As).

Heavy metal pollution index (HPI)

The heavy metal pollution index (HPI) was developed 
by Mohan et al. (1996) to evaluate the combined effect 
of heavy metals in water and employed by researchers to 
determine pollution levels of waters (Shil and Singh 2019; 

Hossain and Patra 2020). HPI was calculated with the use 
of Eq. (1) and Eq. (2):

where Wi is the unit weight of the ith parameter, Qi is the 
sub-index of the ith parameter, and n is the number of heavy 
metals measured. Mi , Ii and Si are the monitored values of 
heavy metals, ideal and standard values of the  ith parameter, 
respectively.

(1)HPI =

∑n

i=1
WiQi

Wi

(2)Q =

n∑

i=1

|
|Mi − Ii

|
|

Si − Ii
× 100

Fig.1  Study area and sampling 
sites
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Heavy metal evaluation index (HEI)

The heavy metal evaluation index (HEI) was developed 
by Edet and Offiong (2002) to identify the availability of 
waters to be used as drinking water. HEI is calculated with 
the use of Eq. (3):

where Hcand Hmac are the measured concentrations 
and maximum admissible value of the ith parameter, 
respectively.

Degree of contamination (Cdeg)

The degree of contamination (Cdeg) takes combined effects 
of different water quality criteria into account and is cal-
culated with the use of the following equations (Backman 
et al. 1998):

(3)HEI =

n∑

i=1

Hc

Hmac

(4)Cdeg =

n∑

i=1

Cfi

where Cfi is the contamination factor, Mi is the meas-
ured value of the  ith parameter, and MACi is allowable 
concentration.

Geostatistical modeling and spatial distribution 
maps

Geographical information systems and geostatistical meth-
ods were used to assess the spatial distribution of heavy 
metal characteristics and different pollution indices. The 
geostatistical software package ArcGIS (version 10.1) was 
used to prepare spatial distribution maps and semivari-
ogram models. In geostatistical modeling, data on ground-
water characteristics and pollution indices were subjected to 
a normality test using the Kolmogorov–Smirnov test. The 
second phase determined minimum, maximum, mean, stand-
ard deviation, skewness, and kurtosis-like basic descriptive 
statistics of heavy metal characteristics. Then, 11 semivari-
ogram models (circular, spherical, tetra-spherical, penta-
spherical, exponential, Gaussian, rational quadratic, hole 

(5)Cfi =
Mi

MACi

− 1

Fig. 2  Geological setting of 
Bafra District
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effect, K-Bessel, J-Bessel, and stable) were tested to identify 
the best models for each parameter. The models with the 
highest coefficient of determination  (R2) were determined 
as the best models. Finally, the best semivariogram models 
identified for each trait were used in the kriging method to 
generate spatial distribution maps and estimated values of 
unsampled locations.

Cross-validation was used to identify the estimation per-
formance of the models. Mean error (ME), root-mean-square 
error (RMSE), average standard error (ASE), mean stand-
ardized error (MSE), and root-mean-square standardized 
error (RMSSE) were estimated in order to identify the best-
fit of the theoretical models (Arslan, 2013). For accurate 
estimation of the model, MSE should be close to 0; RMSE 
and ASE values should be small as much as possible, and 
RMSSE should be close to 1. These values were calculated 
with the use of the following equations (ESRI, 2008):

(6)ME =
∑

(Z − Zi)

(7)RMSE =

�
∑�

Z − Zi
�2

n

(8)ASE =

������
�

1

n

n

�
�

Zi −

∑n

i=1
Zi

n

�

i=1

2

(9)MSE =
1

n

n∑

i=1

(Z − Zi)
2

where Zi is predicted value, Z is measured value, and n is the 
number of observations.

Results and discussion

Heavy metal properties and pollution indices 
of groundwater

The primary descriptive statistics for groundwater heavy 
metal characteristics are given in Table 1. Lead (Pb) val-
ues were varied between 0.0009 and 0.00983 mg/L with 
a mean value of 0.00178 mg/L. Zinc (Zn) values varied 
between 0.017 and 0.82 mg/L, and chrome (Cr) values 
varied from between 0.001 to 0.021 mg/L. Copper (Cu) 
concentrations ranged between 0.012 and 0.055 mg/L, 
and nickel (Ni) concentrations varied between 0.008 and 
0.051 mg/L with a mean value of 0.015 mg/L. Cadmium 
(Cd) concentrations varied between 0.001 and 0.019 mg/L. 
Pb, Zn, Cr, Cu, Cd, and Ni values over the entire research 
area were below the standards set by WHO (2011) for 
drinking waters, and therefore, it could be stated that there 
was no problem in drinking.

Manganese (Mn) values varied from 0.027 to 
1.072  mg/L (mean, 0.333  mg/L), and values of some 
wells were greater than the limiting value of 0.1 mg/L 
set by WHO (2011). Groundwater iron (Fe) values var-
ied among 0.129—5.57 mg/L, and the values of some 
wells were far above the limiting value of 0.3 mg/L set 

(10)RMSSE =

√√√
√1

n

n∑

i=1

(Z − Zi)
2

Table 1  Descriptive statistics for heavy metal concentrations and pollution indices

na number of samples, SDa standard deviation, CVa coefficients of variation

Parameter Min Max Mean S.D C.V WHO
guideline value

Skewness Kurtosis Transformation

Pb (mg/L) 0.0009 0.00983 0.00178 0.0014 78.65 0.010 4.822 28.47 Log-normal
Zn (mg/L) 0.017 0.279 0.082 0.057 69.51 5.000 1.40 4.88 Log-normal
Cr (mg/L) 0.001 0.021 0.0023 0.0043 186.96 0.050 2.81 10.98 Log-normal
Mn (mg/L)) 0.027 1.072 0.333 0.243 72.97 0.100 0.93 3.41 Log-normal
Fe (mg/L) 0.129 5.57 1.93 1.739 90.10 0.300 0.726 2.10 Log-normal
Cu (mg/L) 0.012 0.055 0.030 0.01 33.33 2.000 0.139 2.064 Normal
Cd (mg/L) 0.001 0.0019 0.00188 0.0001 5.32 0.003 0.109 2.62 Normal
Ni (mg/L) 0.0008 0.051 0.015 0.0108 72.00 0.070 1.177 4.58 Log-normal
Al (mg/L) 0.005 3.937 0.306 0.715 233.66 0.200 3.564 16.16 Log-normal
As (mg/L) 0.0001 0.185 0.021 0.043 204.76 0.100 2.518 8.363 Log-normal
HEI 4.044 138.53 23.124 26.61 115.08 – 2.72 10.665 Log-normal
HPI 40.18 356.64 85.224 73.16 85.84 – 2.455 8.108 Log-normal
Cdeg -7.81 56.394 5.973 13.099 219.30 – 1.948 7.299 Normal
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for drinking waters. Aluminum (Al) concentrations var-
ied between 0.005 and 3.937 (mean 0.306 mg/L) with 
some groundwater wells exceeding WHO (2011) limit of 
0.200 mg/L. Arsenic (As) concentrations varied between 
0.0001 and 0.185 mg/L with a mean value of 0.021 mg/L, 
and some wells had greater values than the limiting value 
of 0.1 mg/L set by WHO (2011) for drinking waters.

The HPI, HEI, and Cdeg indices were used to assess 
heavy metal pollution of groundwater. The HEI values var-
ied between 4.044 and 138.5, with a mean value of 23.124. 
The HPI values varied from 40.18 to 356.64, with a mean 
value of 85.224. The degree of contamination (Cd) results 
varied from -7.81 to 56.394, with an average of 5.973.

Spatial distribution of heavy metals and pollution 
indices

In kriging method, data were initially subjected to a normal-
ity test to minimize the errors (Xie et al. 2011). Kolmogo-
rov–Smirnov test was applied to present data, and while 
copper, cadmium, and degree of contamination exhibited 
normal distribution, the other parameters exhibited log-
normal distribution (Table 1).

The coefficient of variation (CV) is used to determine the 
variability of the investigated traits. The CV values of ≤ 15 

indicate low variability, CV values between 15 and 35 indi-
cate moderate variability, and CV values of > 35 indicate 
high variability (Wilding 1985). Based on CV values of 
original data,  Cdeg exhibited low variability, Cu exhibited 
moderate variability, and the other parameters exhibited high 
variability (Table 1).

In the present study, ten different heavy metals were 
investigated in groundwaters, and three different pollution 
indices were calculated using these values. Geostatistical 
modeling and spatial distribution maps were conducted for 
four heavy metals (Al, As, Mn, and Fe) posing problems 
in terms of drinking and domestic uses and HPI, HEI, and 
Cdeg pollution indices.

For each trait, 11 different semivariogram models were 
compared, and the best model was identified for each trait. 
The best semivariograms model was identified as Gaussian 
for As and HEI; exponential for Fe and HPI; hole effect for 
Al and  Cdeg; and J-Bessel for Mn (Table 2). Different semi-
variograms for different traits may be attributed to different 
sources of pollution. Fallah et al. (2019) reported the best 
model as penta-spherical for Mn, tetra-spherical for Fe and 
HEI, circular for HPI, and Gaussian for Cdeg.

Nugget (Co)/Sill (Co + C) ratio reveals spatial depend-
ence, and the ratios of < 25% indicate strong dependence, 
ratios between 25–75% indicate moderate dependence, and 

Table 2  Semivariogram model 
parameters for heavy metals and 
pollution indices

Parameter Models Nugget  (C0) Sill  (C0 + C) Range (m) Nugget ratio

Al Hole Effect 1.671 2.843 18,697 58.78
As Gaussian 7.39 8.11 7745 91.12
Fe Exponential 1.2517 1.4279 5082 87.66
Mn J-Bessel 0.4517 0.8636 14,825 52.30
HPI Exponential 0.4517 0.9558 20,819 47.26
HEI Gaussian 0.5960 0.8827 21,668 67.52
Cdeg Hole Effect 126.52 204.99 21,668 61.72

Table 3  Cross-validation 
between observed and predicted 
values for heavy metals and 
pollution indices

Prediction errors
Parameter

Mean Root-Mean-Square Mean Standardized Root-Mean-
Square Standard-
ized

Average Standard

Al − 0.0869 0.7197 − 0.1701 1.1805 0.7641
As 0.0012 0.0726 0.0032 0.0171 7.5253
Fe 0.2958 1.885 0.0225 0.464 4.7175
Mn − 0.0071 0.2431 − 0.0904 0.9385 0.2904
HPI 0.0019 0.2496 − 0.0663 0.8608 0.3257
HEI − 1.7277 26.075 − 0.0898 1.0943 22.0178
Cdeg − 0.1453 13.0374 − 0.0138 1.0942 11.9102
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ratios of > 75% indicate weak dependence (Cambrella et al. 
1994). In terms of nugget ratios of groundwater traits, Al, 
Mn, HPI, HEI, and Cdeg exhibited moderate, while As and 
Fe exhibited strong dependence. Geostatistical range values 
varied between 5082 and 21,668 (Table 2).

According to cross-validation results for investigated 
traits, ME values varied between -1.7277 and 0.2958, and 
RMSE values varied between 0.0726 and 26.075 (Table 3).

High arsenic (As) contents of groundwater pose serious 
risks to human health, and long-term use of such waters 
may result in liver, lung, and skin cancers (Chowdhury et al. 
2010). As the content of drinking waters should be lower 
than 0.1 mg/L. The spatial distribution of As is shown in 
Fig. 3, and about 4.73% of the study area had problems in 
terms of drinking water (Table 4). The problematic sites are 
mostly located in southern parts of the study area. High As 
levels may either be geogenic-originated or may be resulted 
from anthropogenic factors including fertilizer, pesticide 
uses, metal and alloy manufacture, oil refinery, and fossil 
fuels (Ayotte et al. 2003; Zhang et al. 2019). Agricultural 

activities, especially paddy cultivation, are intensively prac-
ticed in the study area, and high As might have resulted 
from fertilizers and As-containing pesticides used over the 
agricultural lands.

Iron plays an important role in groundwater to be used 
for both irrigation and drinking, and iron sources are mostly 
anthropogenic (Li and Zhang 2010). In terms of irrigation 
and drinking water quality, iron was mapped in three differ-
ent categories (Fig. 4). In drinking waters, iron concentra-
tions should be below 0.3 mg/L; about 99.3% of the study 
area had problems in terms of drinking water, and iron con-
centrations reached quite high levels in some parts of the 
study area (Table 4). Iron concentrations of irrigation waters 
should not exceed 5 mg/L, but iron values above 1.5 mg/L 
may result in plugging of drippers (FAO 1994). Iron con-
centrations were greater than 1.5 mg/L in 7.64% of the study 
area, and in the case of drip irrigation in these sections, 
dripper plugging may be encountered. Therefore, sprinkler 
or furrow irrigation should be practiced in these parts of the 
study area instead of drip irrigation. Besides, iron levels of 

Fig. 3  Spatial distribution of Al, As, Fe, and Mn in groundwater
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three wells were above 5 mg/L. Thus, these waters should 
not be used in irrigations.

The spatial distribution of aluminum is shown in Fig. 3. 
Al concentration of drinking waters should be less than 
0.2  mg/L, and Al concentrations were greater than the 
drinking water quality criterion in 12.26% of the study area 
(Table 4). Problematic sites are located in southern parts of 
the research area, and geological structure could be the pri-
mary source of Al in groundwaters. Buragohain et al. (2010) 
explained that the high aluminum in groundwater might be 
caused by its dissolution from clays and other alumino-sili-
cate minerals in soils and sediments.

High manganese (Mn) concentrations may lead to Alz-
heimer-like diseases and influence the intellectual functions 
of the children (Wasserman et al. 2006; Tirkey et al. 2017). 
High Mn concentrations of waters may be originated from 
industrial activities and intrusions from sediment and rocks 
into groundwaters (Demirel 2007). Mn concentrations of 
greater than 0.1 mg/L in drinking waters may pose some 
risks to human health. In terms of Mn concentrations, 
95.18% of the present study area was found to be unsuitable 
for drinking, and only five wells were found to be suitable 
for drinking.

HPI is commonly used to assess heavy metal pollution of 
water resources (Sobhanardakani 2018). For HPI, the criti-
cal value is 100. Waters with HPI values of < 100 have low 
pollution levels and do not pose any risks on human health. 
On the other hand, waters with HPI values of > 100 are con-
sidered as highly polluted waters (Ghaderpoori et al. 2018). 
High pollution problem was encountered in 22.40% of the 
present study area, and these sites are located in three dif-
ferent sections of the study area. Correlation analysis was 
conducted to investigate the relationships between HPI and 
measured heavy metals, to determine the heavy metals effec-
tive in HPI and to identify sources of pollution (Table 5). 
There were significant correlations between HPI and As 
(r = 0.993) at 1% level. Such a case revealed that high HPI 
might have resulted from pesticides and fertilizers.

The waters with HEI values of < 10 are classified as low 
polluted, HEI values of between 10 and 20 are classified 
as medium polluted, and HEI values of > 20 are classi-
fied as highly polluted waters. About 0.26% of the pre-
sent study area exhibited low pollution, 83.47% medium 
pollution, and 16.27% high pollution. In terms of HEI, 
highly polluted sites are located in southeast sections of 

Table 4  Spatial distribution of selected heavy metals and pollution indices

Characteristics Range Area (ha) %

Al 0.0–0.20 11,744 87.74
0.20 < 1641 12.26

As 0.0–0.01 12,752 95.27
0.01 < 633 4.73

Fe 0.0–0.30 93 0.7
0.30–1.50 12,269 91.66
1.50 < 1023 7.64

Mn 0.0–0.10 645 4.82
0.10 < 12,740 95.18

HPI 0–100 (Low) 10,386 77.6
100–200 (Medium) 2941 21.97
200 < (High) 58 0.43

HEI 0–10 (Low) 35 0.26
10–20 (Medium) 11,172 83.47
20 < (High) 2178 16.27

Cdeg 0–3.0 (Low) 2756 20.59
3.0–6.0 (Medium) 5800 43.33
6.0 < (High) 4829 36.08
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the study area. HEI had significant correlations with Pb, 
Cr, Fe, Ni, and Al at 1% level. High Pb concentrations of 
groundwaters mostly result from fertilizers and pesticides 
(Hossain and Patra 2020). It was thought that fertilizer 
and pesticide-like anthropogenic polluters had significant 
effects on HEI.

The waters with Cdeg values of < 3 are considered to have 
low heavy metal pollution, Cdeg values between 3–6 are 
considered to have medium heavy metal pollution, and Cdeg 

values of > 6 are considered to have high heavy metal pollu-
tion (Fallah et al. 2020). About 20.59% of the present study 
area had low pollution, 43.33% had medium pollution, and 
36.08% had high pollution. Western sections of the study 
area had low pollution, and pollution levels increased toward 
the study area’s eastern sections. The Cdeg values had sig-
nificant correlations with Pb, Cr, Fe, Ni, and Al at 1% level. 
High Cdeg values might have resulted from agricultural pol-
lutants and geological structure.

Fig. 4  Spatial distribution of HPI, HEI, and  Cdeg in groundwater

Table 5  Correlation coefficients for pollution indices and heavy metal concentrations

Pb Zn Cr Mn Fe Cu Cd Ni Al As Cdeg HEI HPI

Cdeg 0.632** 0.068 0.692** 0.181 0.587** 0.125 − 0.175 0.595** 0.823** 0.280 1
HEI 0.739** 0.104 0.867** 0.183 0.457** 0.234 − 0.143 0.701** 0.958** 0.089 0.937** 1
HPI − 0.018 − 0.046 − 0.075 − 0.172 0.220 − 0.082 − 0.208 − 0.170 0.006 0.993** 0.385** 0.198 1
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Conclusion

In this study, concentrations of ten heavy metals (Pb, Zn, 
Cr, Mn, Fe, Cu, Cd, Ni, Al, and As) were determined 
in the groundwater of the Bafra plain. The heavy metal 
pollution of the plain was assessed through the HPI, HEI 
and  Cdeg pollution indices and geostatistical methods. The 
ordinary kriging method was used to generate spatial dis-
tribution maps of heavy metals and pollution indices. Al 
values were above the permissible limits set for drink-
ing waters in 12.16% of the study area, As in 4.73%, Fe 
in 99.3%, and Mn in 95.18% of the study area. About 
21.97% exhibited high pollution in terms of HPI, 16.27% 
in terms of HEI and 36.08% in terms of Cdeg. Greater 
pollution levels were encountered in southeastern sec-
tions of the study area. Groundwater pollution was mostly 
anthropogenic and partially geogenic-originated. Heavy 
metal pollution of groundwater is a significant issue in 
terms of both drinking and irrigation purposes. In order 
to reduce heavy metal pollution in groundwater, the use of 
pesticides and fertilizers should be reduced, and industrial 
facilities should be controlled. New industrial facilities 
should not be allowed to be established in areas with high 
pollution.

Therefore, the quality of water resources should con-
tinuously be monitored, and different pollution indices 
should be used to determine current pollution levels. Geo-
graphical information systems and geostatistical methods 
should also be used in water resources management.
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