
Vol.:(0123456789)1 3

International Journal of Environmental Science and Technology (2023) 20:3537–3560 
https://doi.org/10.1007/s13762-021-03696-2

REVIEW

Pesticide residues degradation strategies in soil and water: a review

R. Kaur1 · D. Singh1 · A. Kumari1 · G. Sharma1 · S. Rajput1 · S. Arora1 · R. Kaur1 

Received: 11 August 2020 / Revised: 28 June 2021 / Accepted: 23 September 2021 / Published online: 22 November 2021 
© Islamic Azad University (IAU) 2021

Abstract
The benefits of using pesticides globally to control pests come at the cost of their ubiquitous occurrence in the ecosystem. 
The uncontrolled use of pesticides in agricultural practices, manufacturing and food industries and in health sector not 
only contaminates the environment but also affects non-targeted organisms. There are various biotic and abiotic methods 
of transforming or removing pesticides, but they may give rise to harmful end products. In this article, various techniques 
such as photodegradation, phytodegradation and biodegradation used to remove or transform pesticides in the environment 
are discussed. The current study revealed that use of UV or sunlight to degrade pesticides on soil surface is an effective 
method, but the results may vary in the laboratory and field conditions. The plants absorb these chemicals from the soil and 
metabolize it into simpler forms by different processes such as phytovolatilization, phytostimulation, phytoextraction and 
rhizodegradation. The bioremediation process using microbes or soil microflora to degrade pesticides is a cost-effective 
technique till date. Actinomycetes and cyanobacteria are the most efficient degraders among the micro-organisms. Microbes 
possess different enzymes such as Glutathione S-transferases (GSTs), esterases and cytochrome P450 which are involved 
in the degradation process.

Keywords  Biodegradation · Environmental pollutants · Photodegradation · Phytoremediation · Rhizodegradation

Introduction

Pesticides are considered as poisons which not only harm 
targeted pests but also affect humans, animals and environ-
ment. Their exposure to humans causes respiratory, repro-
ductive, gastrointestinal, neurological disorders and even 
cancers in humans (Nicolopoulou-Stamati et  al. 2016). 
People who are exposed to these pesticides include spray-
ers, production workers, mixers, formulators, loaders and 
agricultural farm workers. The workers who manufacture 
and prepare these pesticide formulations are at greater risks 
(Aktar et al. 2009). Living beings get exposed to pesticides 
through direct skin contact, inhalation or ingestion. The pes-
ticides upon entering the human or animal body may get 
metabolized, excreted, stored or bioaccumulated (Nicolo-
poulou-Stamati et al. 2016; Stoytcheva 2011).

Pesticides are chemical substances or biological agents 
that have been tremendously used in agricultural practices 
to kill, repel, prevent or control pests and to increase crop 
production. They are released intentionally into the envi-
ronment to prevent various pests (Mahmood et al. 2016). 
They are mainly categorized according to their use such as 
to control insects (insecticides) or fungi (fungicides), con-
trol herbs/weeds (herbicides/weedicides) and control rodents 
(rodenticides) (Eddleston et al. 2002). Besides agricultural 
practices, manufacturing and food processing industries also 
release pesticides through their effluents into the environ-
ment. They are toxic and persistent organic pollutants that 
tend to bioaccumulate in the food chain; hence, there is a 
need to degrade them (Bapat et al. 2016; Cardeal et al. 2011; 
Vela et al. 2017).

The use of pesticides to mitigate pests has been increased 
to many folds in past few decades all over the world. Besides 
agricultural fields, many pesticides are also commonly used 
in homes such as in the form of powders, sprays and poisons 
for controlling rats, fleas, cockroaches, ticks, mosquitoes 
and bugs. The risks linked with the use of pesticides have 
exceeded their beneficial effects. Pesticides also affect and 
even kill or destroy non-targeted animals and plants along 
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with the harmful targeted ones (Mahmood et al. 2016). 
Only a small amount of pesticides, i.e. less than 1% which 
is applied to control pests, may reach their target. By run-
off, spray drift, off-target deposition and photodegradation, 
a large volume of pesticides is lost. The low concentrations 
of certain chemicals may not cause detectable effects in liv-
ing organisms, but they may cause genetic disorders and 
physiological changes (Hernández et al. 2013; Bernardes 
et al. 2015).

Understanding of metabolism of pesticides in plants and 
micro-organisms is required for their safe development, effi-
cient use and the development of bioremediation approaches 
for contaminated soil and water (Eerd et al. 2003). Pesti-
cides biotransformation can happen through multi-stage pro-
cedures recognized as metabolism or co-metabolism. Co-
metabolism is the biotransformation of an organic compound 
which is not used either as an energy source or as an organ-
ism's constituent element. Individual degradation–detoxi-
fication process responses consist of oxidation, reduction, 
hydrolysis and conjugation. Diversity of the metabolic path-
way relies on the xenobiotic compound's chemical struc-
ture, organism, cultural circumstances, metabolic variables 
and controlling the activity of these biochemical pathways 
(Hoagland et al. 2001; Pileggi et al. 2020). Understanding 
of these enzymatic procedures has developed our knowl-
edge of pesticide science, plant and microbial biochemis-
try and physiology, particularly ideas linked to pesticide 
mechanisms of intervention, strength, selectivity, tolerance 
and economic destiny. There are some basic similarities and 
distinctions between the metabolism of a plant and microbial 
pesticides. Abiotic degradation is caused by chemical and 
physical procedures such as photolysis, hydrolysis, oxida-
tion, reduction and rearrangement of the pesticide (Eerd 
et al. 2003; Lushchak et al. 2018). Furthermore, pesticides 
may be biologically inaccessible due to compartmentaliza-
tion that happens without changing the chemical structure 
of the initial molecule as a consequence of adsorption of 
pesticide molecule to soil and soil colloids. Enzymatic con-
version, however, is by far the main path of detoxification, 
which is the consequence of biotic procedures facilitated 
by crops and micro-organisms. Pesticide metabolism can 
require a 3-phase method. In Phase I, oxidation, reduction or 
hydrolysis change the initial features of the parent compound 
to generally produce a commodity that is more water-soluble 
and usually less toxic than the parent. The second phase 
involves the combination of pesticide or pesticide metabolite 
with sugar, amino acid or glutathione, which increases water 
solubility and reduces toxicity compared to the pesticide 
of the parent. Phase II metabolite generally has little or no 
phytotoxicity and can be deposited in cellular organs. The 
final stage includes the conversion of Phase II metabolites 
into secondary conjugates which are non-toxic in nature 
(Hodgson 2012; Hatzios and Penner 1982).

Pesticide degradation by different methods

Pesticide residue degradation is accompanied by different 
methods such as by using physical, chemical and biological 
agents which degrades various insecticides, fungicides, her-
bicides, etc., into less bioactive degradation products. The 
main techniques used in the degradation of pesticide residues 
are photodegradation, phytodegradation and biodegradation.

Photodegradation

It is the process by which the photodegradable molecules 
get degraded by the absorption of photons especially, whose 
wavelengths are found in sunlight. It causes alterations in the 
materials/substances by oxidation and hydrolysis using sun-
light and air (Yousif and Haddad 2013). Photodegradation of 
pesticides by photosensitized and photocatalytic methods is 
discussed by various authors as given in Table 1.

Mechanism of photodegradation of pesticides

There are numerous reports on the photodegradation of 
pesticides in the literature. However, only limited data are 
available on the mechanism of photolysis of pesticides in 
the natural environments. In this chapter, we have classified 
the photodegradation of pesticides into two categories, i.e. 
photosensitized and photocatalytic degradation.

Photosensitized degradation

Photosensitizer-mediated photodegradation involves absorp-
tion of light by a molecule in a photochemical process. In 
the photosensitization process involving redox reactions, the 
initial transfer of an electron or atom produces free radicals 
such as hydroxyl radical (·OH), but the oxidized or reduced 
sensitizers underwent various reactions to convert back to 
initial species (Fig. 1) (Burrows et al. 2002). Among all the 
other radicals and active oxygen species such as hydroper-
oxyl radicals, triplet oxygen, superoxide radical anions and 
organic peroxyl radicals, only the hydroxyl radical is the 
strongest oxidizing species which accelerates the process 
of pesticide oxidation yielding carbon dioxide, water and 
inorganic ions as final products (Bustos et al. 2019).

There are many studies on organic photosensitiz-
ers which accelerate the photochemical reactions, thus 
increasing the degradation rate. Lin et al. (2000) observed 
the photodegradation of Butachlor and Ronstar herbicides 
using diethylamine as photosensitizer under natural sun-
light. The amine groups which act as photosensitizers are 
diethylamine, triethylamine and diethylphenylene diamine 
which are used to enhance the photodegradation rate (Lin 
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et al. 2000). In a study, Nayak et al. (2016) observed that 
degradation of Chlorpyrifos and Diuron was enhanced 
by the presence of 500 mM fructose as photosensitizer 
(Nayak et al. 2016).

Furthermore, Bielska et al. (2015) used a hybrid pho-
tosensitizer containing Rose Bengal embedded into the 
halloysite nanotubes. They used this photosensitizer to 
photodecompose the pesticide 4-n-nonylphenol (Biel-
ska et al. 2015). Gatica et al. (2019) reported the photo-
degradation of herbicide Isoxaflutole using Riboflavin 
sensitizer by Fenton and photo-Fenton processes. They 
observed that only the photo-Fenton process degrades 
the Isoxaflutole efficiently (Gatica et al. 2019). Liang 
et al. (2017) studied the photodegradation of Fenvalerate, 
a synthetic Pyrethroid insecticide using UV light (Liang 
et al. 2017). Bustos et al. (2019) observed the photodeg-
radation of Dichlorvos (DDVP) using simulated sunlight 
and dissolved oxygen. Humic acid acts both as an accel-
erator and inhibitor of Dichlorvos depletion in this pho-
tochemical reaction (Bustos et al. 2019).

Photocatalytic degradation

The photocatalytic process involves a catalyst such as 
TiO2 to accelerate the degradation process of pesticides 
in combination with UV light. Due to high efficiency, high 
stability, low cost and non-toxic nature, titanium dioxide is 
considered as the best photocatalyst in the photochemical 
reactions (Fig. 2).

Abdennouri et al. (2016) in a study observed that the 
photocatalysts titanium dioxide and titanium pillared puri-
fied clay were efficient in degrading the pesticides (Abden-
nouri et al. 2016). Similarly, Jafaria et al. (2016) use the 
UVC and UVC/TiO2 process in the photolytic and photo-
catalytic degradation of Diazinon in water. They observed 
that mineralization of Diazinon by photocatalytic pro-
cess is higher than that of photolysis (Jafari et al. 2016). 
Gupta et al. (2015) observed the photocatalytic activity of 
CoFe2O4@TiO2 nanocomposite for the photodegradation 
of Chlorpyrifos used to control pest insects. The results 
of the study revealed that nanocomposite exhibits a strong 

Fig. 1   Photosensitized degrada-
tion of pesticides (Figure modi-
fied from Burrows et al. 2002)

UV light

hv

+

+

Sensitizer Sensitizer*

Pesticide 

Sensitizer
Pesticide* 

Mineralization
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photocatalytic activity on the photodegradation of Chlor-
pyrifos (Gupta et al. 2015).

In another study, Peiter et al. (2017) investigated that Cu/
CuO electrode acts as photocatalyst and can be used to gen-
erate electricity as well as in remediation of natural systems. 
They observed that pesticides Aminol and Connect were 
degraded up to 54.46 and 21.02% under UV light (Peiter 
et al. 2017). Cruz et al. (2017) studied the photocatalytic 
activity of GO–TiO2 catalyst under UV–Vis light. They 
observed that it catalyses the photodegradation of pesti-
cides such as Diuron, Alachlor, Isoproturon and Atrazine 
(Cruz et al. 2017). Similarly, Jonidi-Jafari et al. (2015) stud-
ied the photodegradation of Diazinon using photocatalyst 
ZnO–TiO2 (Jonidi-Jafari et al. 2015).

Phytoremediation

Phytoremediation is plant use for bioremediation and has 
been less studied than methods based on bacteria. However, 
it has been shown to be more efficient to control soil, water 
and even air pollution than by bacteria. Plant uptake of pes-
ticides is based on the physico-chemical characteristics of 
the compound, mode of execution, type of soil, environ-
mental variables and species of plants. Plants use various 
mechanisms such as phytodegradation, phytoextraction, 
rhizodegradation, rhizofiltration and phytostabilization to 
remove pesticides from soil (Yan et al. 2020). In the last 
century, transgenic crops containing particular pesticide-
degrading enzymes were created as the latest breakthrough 
in phytoremediation. The overexpression of genes engaged 
in the development, absorption or storage of particular pol-
lutants in transgenic plants makes it possible to resolve some 
of the disadvantages of phytoremediation, such as elevated 

levels of pesticides or the storage of organic pollutants. Once 
pesticides are degraded to non-toxic metabolites or totally 
mineralized by particular transgenic plants, the crops can be 
securely disposed-off, while their domain activities have not 
yet been controlled owing to their potential environmental 
and biodiversity effects, and this approach may gain growing 
scrutiny in the close future (Ortiz-Hernández et al. 2013).

Factors influencing phytoremediation

There is a range of variables that govern uptake and degra-
dation of pesticides in plants such as moisture content, pes-
ticide concentration, type of soil and organic carbon. Some 
of them are given below:

Structure of pesticides

The chemical’s composition performs a significant part in 
the design of its stabilization. A small change in the pesti-
cide's composition causes a dramatic shift in its biotrans-
formation and eventually affects phytoremediation. The 
attached alkyl or halogen group to a pesticide molecule 
makes it less bio-available and cannot be remediated by 
crops (Cork and Krueger 1991). Chlorinated pesticides are 
hard to phytoremediate due to their water-insoluble nature. 
After entry to roots, the pesticide molecules can be translo-
cated to shoot through xylem. Therefore, the transportation 
of non-ionic pesticides differs significantly between species 
of plants and relies on the chemical properties (Namiki et al. 
2018). The absorption and translocation of hydrophobic 
compounds are therefore restricted, and their phytodegra-
dation is subsequently restricted. On the other side, the pes-
ticide transformation by micro-organisms of the rhizosphere 
could lead to metabolites being uptake and translocated 
more effectively by crops. Consequently, any element that 
enhances the microbial activity in the rhizosphere should 
also improve the general effectiveness of phytoremediation 
of pesticides (Yan et al. 2020).

Pesticide concentration

The level of pesticide determines the phytoremediation 
achievements. When a pesticide’s level reaches plant remedi-
ation capacity, it impacts the frequency of phytoremediation. 
Yu et al. reported that Butachlor takes 6318.0; 2919.9; and 
10,823.2 days to decrease to half-life when present in non-
rhizosphere, wheat rhizosphere and inoculated rhizosphere 
at 1.0 mg kg1, 10 mg kg−1 and 100 mg kg−1 concentrations, 
suggesting that remediation is fully conditional on pesticide 
application frequency (Yu et al. 2003).

UV Light 

H2O          OH. 

Pesticide

CO2 + H2O

Fig. 2   Photocatalytic degradation of pesticides (Figure modified from 
Wang et al. 2016)
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Soil moisture content, pH and temperature

Soil moisture is a significant parameter for pesticide diffu-
sion and movement within crops. Pesticides indicate higher 
degradation as the moisture content rises, while the rate of 
degradation declines when the soil is dry. A study demon-
strates that γ-BHC insecticide degrades more quickly in 
aquatic land than in moist and aerobic land (Racke et al. 
1994). When the ground is moist or immersed, DDT is 
quickly transformed into DDD and stays permanent in 
dryland (Vidali 2001). Pesticide phytoremediation varies 
depending on pH of the soil which further depends on the 
charge that pesticide molecules carry. It manages the adsorp-
tion and transportation of pesticides within the plant's root 
and shoot. According to Mamy and Barriuso, when the pH 
of the soil reduces, it provides a favourable atmosphere for 
Glyphosate molecules that can be readily connected to the 
adverse loads of clay or plant root cells (Mamy and Bar-
riuso 2005). Temperature is also an important factor in 
pesticide remediation. As temperature increases, pesticides 
readily dissolved in the aqueous phase which improves their 
availability to the microbes. Thus, the soil microbial com-
munities may directly or indirectly facilitate the process of 
phytoremediation. Some pesticides are also seen to be vola-
tized at greater temperatures. Low temperature, however, 
hampers the pesticide degradation. Research indicates that 
DDT shows faster degradation at temperatures above 40 °C 
(Guerin 1999).

Plant enzymes

Within plant cells, there are several plant enzymes that 
degrade pesticide molecule to simpler forms. Plant enzymes 
such as GSTs, cytochrome P450, peroxygenases, carboxy-
lesterases, peroxidize and N-, O-glucosyltransferases can 
transform xenobiotic compounds in phytotransforma-
tion (Tripathy et al. 2014). In transgenic plants, the genes 
engaged in the degradation of pesticides are isolated from 
microbes and utilized to boost the rate of phytoremediation. 
In order to produce enzymes that degrade and biotransform 
pesticides quicker, this genetic engineering method enables 
crops to convey a specific gene more dominantly. A study 
indicates that production of cytochrome P450 reductase 
(YR) linked protein by transgenic potato plant through Agro-
bacterium gene conversion capable of degrading 7- ethoxy-
coumarin O-demethylation and Chlortoluron in concentra-
tions greater than control crops (Inui et al. 1999).

Microbiology of soil

Some microbes such as bacteria and fungi have a symbiotic 
association with rhizosphere crops that increases the extrac-
tion of pesticides. These micro-organisms are essential as 

they accelerate the cycle of degradation. Rhizobacteria have 
escalated the uptake of Thiamethoxam and Acibenzolar-S-
methyl by maize and tomato crops, as noted by Myresiotis 
et al. (2014) (Myresiotis et al. 2014).

Organic acids

Some researchers have indicated that the phytoremedia-
tion method is facilitated by organic acid exudates from 
crops. For example, the effect of weathered 2,2-bis(p-
chlorophenyl)-1,1-dichlorethylene on abiotic desorption was 
investigated by White and Kottler with the concentrations 
ranged from 0.001 to 0.10 M. They also observed the extrac-
tion of polyvalent inorganic ions from the soil. The study 
results indicated that soil alteration with organic acids such 
as oxalic acid and citric acid improved the intake of p,p'-
DDE (White and Kottler 2002).

Age and species of plant

The capacity of plants to remediate pesticides also relies on 
their age and species. Knuteson et al. (2002) observed that 
young crops (2-week-old crops) showed higher Simazine 
uptake (2-chloro4,6-bis(ethylamino)-1,3,5-triazine) as com-
pared to one-month aged crops (Knuteson et al. 2002). Some 
experiments have shown that mature crops with compara-
tively higher biomass have accumulated more pesticides that 
account for their reduced activity (Tu et al. 2004). Similarly, 
Gawronski and Gawronska (2007) reported that numerous 
plant families especially Brassicaceae, Fabaceae, Poaceae, 
Asteraceae, Chenopodiaceae, Salicaceae, and Caryophyl-
laceae comprise multiple species which show great phy-
toremediation potential (Gawronski and Gawronska 2007).

There are five techniques for phytoremediation (Peer 
et al. 2005) (Fig. 3)

•	 Phytoextraction: crops collect pollutants to decontami-
nate groundwater and soil

•	 Phytodegradation: where plants degrade organic pol-
lutants through their own metabolic activities

•	 Phytotransformation: where plants stabilize the pollut-
ants in soil

•	 Phytovolatilization: where plants absorb and transpire 
pollutants into less harmful volatile forms

•	 Rhizoremediation: filtration with plant roots or whole 
plants

Phytodegradation and transformation

Phytodegradation is the process of degrading pollutants 
through phytoenzymes or root exudates into simpler 
components as a consequence of microbial metabolism 
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that facilitates contaminant detoxification. However, in 
converting complex and refractory compounds into fun-
damental molecules via phytocompounds, no process is 
completely effective. Thus, phytotransformation refers to 
chemical transformation without complete interruption. 
Pesticides collected from soil or water are generally metab-
olized by several metabolic processes in plants into less 
toxic or non-toxic products. Xia and Ma (2006) revealed 
that Eichhornia crassipes (water hyacinth) had eliminated 
organophosphate Ethion (Xia and Ma 2006). Similarly, 
Chang et  al. (2005) demonstrated Atrazine transloca-
tion and split it into less complicated plant metabolites. 
(Chang et al. 2005) In another research, dehalogenation 
of DDT in aquatic plant Elodea was noted. Phytotrans-
formation is feasible by catalysing endogenous enzymes 
that respond with volatile functional groups of pesti-
cides such as NO−2, OH−, NH−2, COOH−, Br−, Cl− and 
I− in Phase I through oxidation–reduction and hydrolysis 
reactions (Sandermann 1992; Trapp et al. 1994). This is 

accompanied by the combination of pesticides with modi-
fied enzymes in Phase II resulting in detoxification of pes-
ticides (Eerd et al. 2003). Conjugation is caused through 
the addition of tripeptides such as glutathione or moiety 
of sugar or novel compound. Glutathione S-transferase as 
a catalyst has been reported to conjugate glutathione with 
pesticides through a nucleophilic attack. Most of these 
metabolic processes resemble the human metabolism of 
transforming xenobiotic chemicals (Dixon et al. 2002). 
Many xenobiotics, such as pesticides, induce the activa-
tion of GST encoding DNA. Many herbicide safeners are 
used to remote glutathione conjugation and detoxification 
by either raising glutathione concentrations or improving 
GST operation. Examples of pesticides that are conjugated 
with glutathione are Cyanazine, Atrazine and Simazine, 
whereas 2,4-D, chloramben and Bentazone prefer glu-
cose conjugation. Conjugated compounds involve adeno-
sine triphosphate-dependent enzymes to migrate into the 
vacuole, and their transportation across the vacuole has 

Fig. 3   Different techniques of 
phytoremediation
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been proved in many plant species. ATP-binding cassette 
(ABC) transporters are the best identified system for mov-
ing pesticides after GST conjugation from root cells and 
into vacuoles. The metabolism of plants is restricted to 
compartmentation and retention in Phase III. In contrast 
to mammals, plants have no way of excreting unwanted 
compounds. Soluble metabolites are placed in the vacuole 
or are included in the cell wall structures (Riechers et al. 
2005).

Phytovolatilization

In phytovolatilization process, plants uptake and transpire 
water-soluble contaminants. Contaminants present in soluble 
form in crops undergo several reactions and eventually vola-
tilize along the stream of transpiration into the atmosphere. 
There are two types of phytovolatilization:

Direct phytovolatilization  This method involves plant-
mediated absorption and translocation of contaminants into 
the shooting part to spread pass through hydrophobic bar-
riers such as cutin or suberin in the epidermis and in plant 
dermal tissues.

Indirect phytovolatilization  By deploying large amounts of 
soil plants, carrying large amounts of water can increase the 
flow of volatile contaminants from the subsurface by the fol-
lowing methods (Jasechko et al. 2013):

•	 Lower the water table.
•	 Fluctuations in the water table cause gas fluxes.
•	 Increased soil permeability.
•	 Redistribution of hydraulics.

Phytovolatilization is important for extremely vola-
tile pollutants such as methyl-tert-butyl alcohol (MTBE), 
ethylene dibromide (EDB), carbon tetrachloride (CTC) 
and trichloroethylene (TCE). Methyl-tert-butyl alcohol 
(MTBE) volatilization was recorded between the leaf, root 
and wood (Hong et al. 2001). Phytovolatilization may hap-
pen in breakdown products through rhizodegradation or 
phytodegradation. The level of TCE at transpiration sites 
in Utah ranged from 10 to 100 times greater than at sites in 
Florida, which were chosen to reduce groundwater pollution 
because to recurring rains (Doucette et al. 2003). A decrease 
in xylem volatile compound with a rise in the range from 
the rhizosphere zone was investigated by Ma and Burken, 
2003. Highly unstable compounds such as TCE are there-
fore immediately oxidized through hydroxyl radicals into the 
environment. But due to environmental parameters such as 
lower air circulation, phytovolatilization cannot be effective 
(Ma and Burken 2003).

Rhizodegradation

Rhizosphere applies to the soil area around the origins of 
plants that influence the metabolism of plants. Rhizosphere 
creates a complex atmosphere around the plant to ensure 
metabolically energetic microbiome (Capdevila et al. 2004). 
Notably, the existence of crops with a big rhizosphere soci-
ety may improve the microbial cell count in big fields around 
them. Plant Growth-Promoting Rhizobacteria (PGPR) are 
an important microbial community which help in cycling 
of plant nutrients, soil formation, insect control and detoxi-
fication of pesticides (Rajkumar et  al. 2010). Together, 
Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth-
Promoting Rhizobacteria (PGPR) form an association 
against soil contamination. Because of chemical pollutants 
in soil, microbes appear to live in the chemical-rich sur-
rounding that serves as their energy source. This approach 
involves various gene pools in the rhizodegradation of pes-
ticides in rhizosphere. Different study findings have shown 
that parallel gene transfer of degrading genes could provide 
soil microbes in the soil atmosphere to detoxify pesticides. 
In Sphingomonas species,  the introduction of indistin-
guishable lin genes clearly displays the concurrent transfer 
of HCH-detoxifying capacity. Miyazaki et al. (2006) dem-
onstrated the propagation of linB genes to detoxify HCH in 
the organic settings has been proved (Miyazaki et al. 2006).

Improving rhizodegradation

1.	 The best plant–bacteria selection:
	   Rhizospheric bacteria are better suited to colonize 

the rhizosphere and are the best choice for pesticide 
degradation. Shim et al. (2000) introduced toluene o‐
monooxygenase genes from Bacillus cepacia G4 into 
several other bacteria separated from the poplar tree 
rhizosphere. The authors observed that when recombi-
nant strains of bacteria were introduced in non-sterile 
soil to cover poplar tree stems, recombinants isolated 
from plant rhizosphere could survive, while non-rhizos-
pheric recombinant populations were unable to survive 
in the rhizosphere. These species also expressed toluene 
o‐monooxygenase (TOM) genes and degrade trichloro-
ethylene (TCE) (Shim et al. 2000).

2.	 Endophytic bacteria:
	   Families Pseudomonadaceae, Enterobacteriaceae and 

Burkholderiaceae possess the most prevalent cultiva-
ble endophytic species separated from a broad range of 
habitats, including woody plants, herbaceous plants and 
grass species. Doty (2008) recognized some endophytic 
bacteria resistant to elevated levels of heavy metals, ben-
zene, ethyl-benzene toluene and xylenes, trichloroethyl-
ene or polyaromatic hydrocarbons (Doty 2008). Sicili-
ano et al. (2002) indicated that some crops can produce 
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endophytic bacterial genotypes for contaminant degra-
dation (Siciliano et al. 2001). In any event, the benefits 
of using rhizo- or endophytic bacteria will rely on the 
sort of contaminant and the ability of each bacterium to 
degrade (Segura et al. 2009).

3.	 Seed colonization:
	   The cheapest method that can be used to introduce 

micro-organisms to the soil is to coat the seeds with 
suitable bacteria. Similarly, the initiation of endophytes 
can be performed using comparable processes (Rocha 
et al. 2019). Seed adherence was tested using count-
able numbers of live cells and recently using gfp or lux 
reporter genes. The number of adhered bacteria can be 
identified using microscopy (confocal microscopy and 
scanning electron microscopy). Rhizobacteria attach to 
the seeds by flagellar and chemotactic proteins. Several 
studies revealed that membrane proteins are important 
in cell adhesion and this is in line with the fact that the 
exterior surfaces are the first point for the contact of 
the bacterium to the seeds (Pinski et al. 2019; Yousef-
Coronado et al. 2008).

4.	 Production of biosurfactants:
	   An issue with soil bioremediation is the bioavail-

ability of the pollutants. This absence of bioavailabil-
ity often reduces efficiencies in extraction of pesticides 
(Megharaj et al. 2011). Bacteria use various techniques 
to enhance the bioavailability of hydrophobic com-
pounds such as PAHs, development of extracellular 
polymeric substances including the excretion of biosur-
factants and the formation of biofilms on PAH crystals 
(Johnsen and Karlson 2004). In the hydrophobic layers 
of the micelles, hydrophobic pollutants are solubilized to 
further enhance the transformation of compounds from 
a solid to a liquid phase where they become more acces-
sible to bacteria. The rhamnolipids out of glycolipids are 
the main source of bacterial biosurfactants. It has been 
shown that rhamnolipids can increase the biodegrada-
tion level of pesticides (Cui et al. 2008). Therefore, the 
search for rhizobacteria for promoting contaminant bio-
availability is of great interest in the context of bioreme-
diation. This asset is also worrying because a percentage 
of biodegradable microbes show positive chemotaxis to 
pollutants. The combined activity of biosurfactant and 
chemotaxis can therefore contribute to bacterial growth 
and microbial propagation in polluted areas, helping to 
remove pesticides (Orozco et al. 2014).

5.	 Engineering of rhizoremediation bacteria:

Genetic modification of bacteria to enhance the ability of 
bioremediation is a classic strategy (Carpi and ed.  2011). 
Reports on introducing catabolic genes into distinct bacteria, 
creating hybrid cells and promoting changes to improve the 
expression of genes of concern are extensive in the literature. 

Construction of recombinant species capable of combining 
distinct characteristics, such as contaminant degradation 
with biosurfactant production, healthy colonization capa-
bilities and plant growth capability, is still possible. How-
ever, the introduction of recombinant species in the sector is 
limited in many nations and these legal constraints, together 
with some well-sustained environmental issues, may restrict 
the growth of this sector (Segura et al. 2009; Gkorezis et al. 
2016).

Phytoextraction

Plants have  been used to extract pollutants/contami-
nants  from soil, water and atmosphere. The plants 
which absorb excessive amounts of contaminants from the 
soil are called hyperaccumulators (Yan et al. 2020). Most 
of the plants used for phytoextraction are from Brassi-
caceae family (Szczygłowska et al. 2011). Phytoextraction 
is becoming a remediation technology more commonly used 
in which field-level outcomes have been shown. It involves 
the magnitude of contamination, bioavailability of metals 
and the capacity of crops to capture, receive and store metals 
from soil that is becoming a task for scientists and execu-
tives of phytoextraction enterprises. Researchers use mod-
ern techniques such as LCMS-ToF, HPLC and GC–MS for 
quantitative analysis of pesticides uptake by plants (Chen 
et al. 2012a; Ghori et al. 2016).

In the event of soil to plant uptake, the capacity for accu-
mulation of pesticides may be influenced by many plant 
features such as water uptake capacity and soil depth and 
structure (Pérez-Lucas et al. 2018). Once pesticides are 
stored by plant root cells, they can either be placed in the 
roots or transported to the plant's aerial parts where the ana-
lytes can be stored, metabolized or volatilized. In general, 
the accumulation of pesticides in plant roots is ineffective 
for remediation, although the amount of soil contaminants 
decreases (Karthikeyan et al. 2003). An apparent exception 
to this is aquatic plant-based remediation systems, where 
extraction of contaminants by plant roots can be significant. 
In root system, Eichhornia crassipes (water hyacinth) can 
accumulate the insecticide Ethion more effectively than in 
its shooting system. Because the roots built up more than 
50% of the plant mass, including the leaves, can be readily 
collected, this system can be used effectively to phytoreme-
diate water contaminated with Ethion (Xia and Ma 2006). 
Pesticide molecules can be transferred to the xylem vessels 
after being collected by plant roots and translocated with 
the plants transpiration flow. Many experiments have been 
dedicated to the distribution of pesticides in plant species, 
mainly due to the elevated productivity and easy cultivability 
of the crops (Vila et al. 2007). It has been noted that several 
crops have considerable capacity for accumulation of a wide 
range of pesticides (Chhikara et al. 2010). Gent et al. (2007) 
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explored the use of DDE by various cultivars of Cucurbita 
pepo and recorded shoot bioconcentration variables up to 
23.7 for the Raven cultivar (White et al. 2005). A part of the 
pesticide molecules translocated to shoots can be adsorbed 
in plant macromolecules such as lignin or cellulose. The 
use of trees, primarily poplar and willow, requires into 
account this system for phytoremediation and phytopump-
ing (Fernandez et al. 2012). After the phytoaccumulation, 
crops require to harvest after a specified period. At last shoot 
tissues need to be burned, composed or disposed-off by other 
methods (Pascal-Lorber and Laurent 2011). Different plant 
species involved in the phytodegradation of pesticides are 
given in (Table 2).

Biodegradation of pesticides

Sunlight and micro-organisms play a vital role in the envi-
ronmental degradation of different pesticides. The pesticide 
spraying on crops ended up by making their way into the 
soil and sediments as well as into the water bodies. Soil and 
sediments contain different micro-organisms which utilizes 
these chemical compounds for their growth thus, degrad-
ing them into simpler forms (Parte et al. 2017; Huang et al. 
2018). The micro-organisms that are capable of degrading 
the pesticides and thus converting them into non-hazard-
ous substances include bacteria, fungi and algae. Among 
them, Actinomycetes and Cyanobacteria are more efficient 
degraders inhabiting the soil (Parte et al. 2017; Sehrawat 
et al. 2021).

The biodegradation studies by various authors revealed 
many species of bacteria such as Bacillus, Pseudomonas, 
Brevibacterium, Alcaligenes, Enterobacter and Klebsiella 
and fungi such as Fusarium, Aspergillus, Penicillium, Rho-
dotorula and Candida that are capable of degrading the 
pesticide residues (Parte et al. 2017; Joutey et al. 2013). 
Microbes involved in the degradation of pesticides reported 
by various authors are given in Table 3. Micro-organisms 
are considered as efficient bioremediators as they easily 
chemically transform pesticides due to their high catalytic 
activity, fast reproduction rate and large surface to volume 
area. Some microbes need adaptation time for synthesizing 
the pesticide-degrading enzymes, while others acquire this 
ability through random mutations (Ortiz-Hernández et al. 
2013; Verma et al. 2014).

Factors affecting microbial degradation 
of pesticides

There are various factors such as pH of the soil, moisture 
content, organic matter, carbon and nitrogen content and 
temperature which affect the rate of pesticide degradation in 
the soil by microbes. Practices such as tillage and manuring 

also affect the physical, chemical and biological charac-
teristics of soil along with microbial diversity and activity 
(Somasundaram et al. 1989).

Soil pH and salinity

The effect of soil pH on pesticide degradation greatly 
depends upon its susceptibility to acid or alkaline hydroly-
sis. Soil pH affects the pesticide adsorption on soil surfaces, 
mobility, chemical speciation and bioavailability. In a study, 
Singh et al. (2003) examined the effect of soil pH on the 
degradation of organophosphate insecticide Chlorpyrifos 
(Singh et al. 2003). The results revealed that the degrada-
tion process increased when the soil pH is ≥ 6.7. Soil salin-
ity affects the rate of pesticide degradation to great extent. 
There are many studies which reported that high salt content 
decreases the degradation process of pesticides. Siddique 
et al. (2002) observed that an initial pH of 8 is effective for 
degradation of isomers of 1,2,3,4,5,6-hexachlorocyclohex-
ane (HCH) in liquid culture, while pH 9 is effective in soil 
slurry cultures (Siddique et al. 2002). Kah et al. (2007) also 
revealed that pH affects the rate of degradation of six acidic 
pesticides, namely 2,4-D, Dicamba, Fluroxypyr, Fluazifop-
P, Metsulfuronmethyl, and Flupyrsulfuron-methyl) and four 
basic pesticides, namely Metribuzin, Terbutryn, Pirimicarb 
and Fenpropimorph (Kah et al. 2007). In a similar study, 
Fang et al. (2010) showed that neutral pH is required for 
the effective degradation of DDT, while acidic or alkaline 
pH inhibits the degradation process by Sphingobacterium 
sp (Fang et al. 2010).

Soil moisture  Moisture content of the soil greatly affects the 
degradation as it is essential for proliferation and microbial 
activities. The rate of pesticide degradation accelerates with 
water content and slows down in dry soils (Fishel 1997; 
Singh and Walker 2006).

Pesticide structure  The structure of the pesticide deter-
mines its physical and chemical properties, thus affecting its 
degradation rate. The addition of polar groups such as OH, 
NH2 and COOH provides an attacking site to the microbes, 
while addition of substituents on benzene ring enhances the 
rate of degradation (Lushchak et al. 2018; Pal et al. 2010).

Pesticide concentration and solubility  The concentration of 
pesticide in the soil is an important parameter in the deg-
radation process. The high initial concentration of the pes-
ticide will affect the number of attacking sites in soil and 
also have toxic effect on microbes. Fang et al. (2010) in a 
study observed that the degradation activity of the bacte-
rium Sphingobacterium sp. was inhibited by the higher con-
centration of DDT (Fang et al. 2010). Pesticides with high 
water solubility will tend to degrade faster than with lower 
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Table 3   Micro-organisms involved in the degradation of pesticides

Micro-organisms Pesticide degraded Pesticide type References

Bacteria
Bacillus safensis, Bacillus subtilis 

and Bacillus cereus
Chlorpyrifos, Malathion and 

Dimethoate
Insecticides Ishag et al. (2016)

Alcaligenes faecalis Endosulfan Insecticide and acaricide Kong et al. (2013)
Enterobacter ludwigii Chlorimuron-ethyl Herbicide Pan et al. (2018)
Rhodococcus sp. Chlorimuron-ethyl Herbicide Li et al. (2017)
Stenotrophomonas maltophilia Chlorimuron-ethyl Herbicide Zang et al. (2016)
Bacillus cereus Deltamethrin Insecticide Zhang et al. (2016)
Serratia marcescens Tebuconazole fungicide Wang et al. (2018)
Stenotrophomonas sp. O,O-dialkyl phosphorothioate and O,O-

dialkyl phosphate
Insecticides Deng et al. (2015)

Stenotrophomonas maltophilia Methomyl Insecticide Mohamed (2009)
Pseudomonas putida and Acinetobacter 

rhizosphaerae
Fenamiphos Nematicide Chanika et al. (2011)

Bacillus cereus Chlorpyrifos Insecticide Liu et al. (2012)
Burkholderia gladioli Profenofos Insecticide Malghani et al. (2009)
Serratia marcescens Nicosulfuron Herbicide Zhang et al. (2012)
Bacillus and Morganella Carbaryl Insecticide Hamada et al. (2015)
Cyanobacteria and Algae
Synechocystis sp. Chlorpyrifos Insecticide Singh et al. (2011)
Spirulina platensis Chlorpyrifos Insecticide Thengodkar and Sivakami (2010)
Synechocystis sp. Anilofos Herbicide Singh et al. (2013)
Nostoc muscorum Malathion Insecticide Ibrahim et al. (2014)
Microcystis novacekii Methylparathion Insecticide and acaricide Fioravante et al. (2010)
Fischerella sp. Methylparathion Insecticide and acaricide Tiwari et al. (2017)
Chlamydomonas reinhardtii Fluroxypyr Herbicides Zhang et al. (2011)
Chlamydomonas reinhardtii Prometryne Herbicides Jin et al. (2012)
Chlamydomonas reinhardtii Isoproturon Herbicides Bi et al. (2012)
Scendesmus obliquus Myclobutanil Herbicides Cheng et al. (2013)
Fungi and yeast
Aspergillus niger Chlorimuron-ethyl Herbicide Sharma et al. (2012)
Aspergillus oryzae Monocrotophos Insecticide Bhalerao and Puranik (2009)
Fusarium oxysporum, Aspergillus 

oryzae, Lentinula edodes, Penicillium 
brevicompactum and Lecanicillium 
saksenae

Terbuthylazine, Pendimethalin and 
Difenoconazole

Herbicides and fungicide Pinto et al. (2012)

Fusarium sp. Lindane Insecticide Sagar and Singh (2011)
Aspergillus sydowii and Penicillium 

decaturense
Methyl parathion Insecticide and acaricide Alvarenga et al. (2014)

Aspergillus versicolor Triclosan Antimicrobial Taştan and Dönmez (2015)
Cladosporium cladosporioides Chlorpyrifos Insecticide Chen et al. (2012a, b, c)
Trametes versicolor, Pleurotus ostreatus Thiabendazole, Imazalil, Thiophanate 

methyl, Ortho-phenylphenol, Diphe-
nylamine and Chlorpyrifos

Fungicides Karas et al. (2011)

Pichia pastoris Chlorpyrifos Fungicide Kambiranda et al. (2009)
Candida sp. Lindane Insecticide Salam and Das (2014)
Pseudozyma sp. Lindane Insecticide Abdul Salam and Das, 2013
Rhodotorula sp. Lindane Insecticide Salam et al. (2013)
Saccharomyces cerevisiae 4,6-Dinitrocresol or Karathane Insecticide and fungicide Zaharia et al. (2013)
Galactomyces geotrichum Lincomycin Bacteriocides Zhang et al. (2015)
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solubility as microbes attack only the dissolved fraction of 
them in the soil (Odukkathil and Vasudevan 2013).

Temperature  Temperature affects the pesticide’s adsorption 
in the soil by changing its solubility and hydrolysis. Sid-
dique et  al. (2002) observed the effect of temperature on 
the degradation of Isomers of 1,2,3,4,5,6-hexachlorocy-
clohexane (HCH), used as broad-spectrum organochlorine 
pesticides against a wide range of soil-dwelling and plant-
eating insects (Siddique et al. 2002). They investigated that 
an optimum incubation temperature of 30 °C was effective 
for degradation of these isomers in liquid culture as well as 
in soil slurry. Fang et al. (2010) took different temperatures, 
i.e. 20, 30 and 40  °C, to check the rate of degradation of 
DDT by Sphingobacterium sp. They observed that tempera-
ture of 30 °C was effective for the activity of the bacterium 
(Fang et al. 2010).

Soil organic matter  The presence of soil organic matter 
either enhances the microbial activities by accelerating the 
degradation rate by co-metabolism or decreases it by stimu-
lating the adsorption process (Perucci et al. 2000). The pres-
ence of organic matter also influences the microbial flora of 
that area, thus increasing the species diversity which ulti-
mately adds up more enzyme systems to attack the pesticide 
molecules (Neumann et al. 2014).

Biochemical reactions involved in pesticide 
degradation

The rate of degradation for different pesticides in the soil 
varies greatly as it is decided by both biotic and abiotic fac-
tors. Some pesticides are considered recalcitrant as they take 
longer periods for degradation and get accumulated in the 
food chains (Cawoy et al. 2011). Glutathione S-transferases 
(GSTs), esterases and cytochrome p450 are the key enzyme 
families involved in the pesticide degradation (Bass and 
Field 2011).

Oxidation

Oxygenases are oxidoreductase enzymes which participate 
in the oxidation of reduced substrates by utilizing FAD/
NADH/NADPH as a co-substrate and thus transferring oxy-
gen from molecular oxygen. The most commonly reported 
bacterial enzymes in the bioremediation of pollutants are 
mono- or dioxygenases. They increase the water solubility, 
reactivity and cause cleavage of the aromatic ring (Arora 
et al. 2009). Oxygenation is the most crucial step in the 
degradation of the pesticides involving oxidative enzymes 
such as cytochrome p450s. There are also other oxidative 
enzymes that catalyse polymerization of various pesticides 
which are laccase, peroxidase, polyphenol-oxidase and 

tyrosinase. White rot fungi have been proved as an effective 
bio-transformer by many authors because of the presence of 
these enzymes which degrades variety of pollutants in the 
environment (Pointing 2001). In a study, Torres-Duarte et al. 
(2009) showed the biotransformation of organic halogenated 
pesticides by laccase–mediator system. The results revealed 
that an oxidative dehalogenation is involved in this catalytic 
process (Torres-Duarte et al. 2009).

Reduction

Most of the environmental pollutants are halogenated chemi-
cals, and dehalogenation is one of the most common reduc-
tive reactions. The halogen atom on non-aromatic carbon is 
replaced by hydrogen atom in these reactions (Matsumura 
1982). The halogenated atoms present in the molecules of 
pesticides increase the carbon oxidation states, thus making 
the aerobic degradation less favourable for highly halogen-
ated compounds. On the other hand, the anaerobic degrada-
tion is more convenient, since more halogens the molecule 
has, it is easier to produce a reductive dehalogenation. The 
metabolites of the de-halogenated pesticides are more prone 
to further aerobic degradation (Baczynski et al. 2004; Kopy-
tko et al. 2016).

Hydrolysis

The enzymes involved in this process are hydrolases which 
are greatly involved in the pesticide degradation. Pesticides 
containing peptide bonds, esters, ureas, thioesters or carbon-
halide bonds are easily catalysed by the enzymes hydrolases, 
and the redox cofactors are also not generally required (Scott 
et al. 2008). These enzymes have broad substrate specific-
ity, and are stable at wide range of pH and temperature 
(Karns et al. 1987). The hydrolysis of the organic pollutants 
is mainly done by the bacterial activities. The hydrolytic 
enzymes involved in the biodegradation process disrupt the 
chemical bonds in the pesticides, thus converting them into 
less toxic compounds. This mechanism is effective for the 
biodegradation of organophosphate and carbamate insec-
ticides (Karigar and Rao 2011). In a study, Singh (2014) 
revealed the role of carboxylesterase enzymes in the degra-
dation of organophosphate pesticides. Carboxylesterases or 
carboxylic-ester hydrolases hydrolyse the carboxylic-ester 
bonds with relatively broad substrate specificity (Singh 
2014).

Conclusion

The use of pesticides in agricultural practices is an effective 
pest management method which significantly affected the 
farmer’s economy, as huge amount of annual food loss could 
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be saved. Pesticides are used in manufacturing industries, 
food industries and even in homes to manage pests. The 
application of these chemicals (antimicrobials) also helped 
in saving many lives in public sector. Despite of many ben-
efits, they also possess disadvantages, as only little amount 
of these pesticides reach the target organisms and rest pol-
lutes the environment thus, affecting animals and humans 
to great extent. In this review article, we have discussed the 
various techniques used for the degradation of these harmful 
synthetic chemicals in the soils and water bodies. Photo-
degradation of pesticides on the soil surface by sunlight is 
an effective technique. The degradation process which uses 
photosensitizer is called photosensitized degradation, and 
the sensitizer regenerates back in this process. Nowadays, 
photodegradation using a photocatalyst gains more inter-
est. The photocatalyst accelerates the rate of degradation to 
many folds. Plants also uptake these chemicals and metabo-
lize them to non-toxic ones by different processes such as 
phytovolatilization, phytoextraction, phytoaccumulation, 
phytostimulation and phytodegradation. Besides photodeg-
radation and phytodegradation, biodegradation of the pesti-
cides by microbes is also an effective and efficient technique. 
In this chapter, we have discussed the various factors such 
as pesticide structure, soil moisture, salinity, organic matter 
and temperature which affects the rate of degradation by 
microbes. Bacteria, fungi and algae are commonly known 
for pesticide degradation, and among them, actinomycetes 
and cyanobacteria are the most efficient ones.
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