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Abstract
Activated carbons from cocoa shell-based were obtained to evaluate their capacity as a salt adsorbent material (methylene 
blue and ferric chloride) an aqueous solution. The dry shell (cocoa shell precursor) was ground and classified into three 
particle sizes, 8–20, 40–60, and 80–120 + mesh, and with them activated carbons were obtained by a controlled thermo-
chemical process using a 23 factorial experiment design, with the surface area as the response variable, and the temperature 
(420–480 °C), impregnation ratio IR (1–1.5), and reaction time (30–120 min) as independent variables. The best preparation 
conditions were 480 °C, 1.5 (IR), and a reaction time of 30 min. From these conditions, three activated carbons with surface 
areas of 990, 1217, and 969 m2/g were prepared, and designated A, B, and C, respectively. Additionally, activated carbons 
presented characteristics of mesoporous structures. The adsorption analyses performed by UV–VIS showed that the adsorp-
tion efficiency of methylene blue (50 to 100 mg/L) and ferric chloride (100 to 250 mg/L) was B > C > A, and the removals 
of methylene blue and ferric chloride were from 97.1 to 89.8% and from 94.4 to 82.3%. FTIR spectroscopy analysis shows 
that the activated carbons contain abundant functional groups related to carboxylic acids and phenols. The experimental 
data were fitted to the Freundlich, Langmuir, and Temkin adsorption models. The Freundlich adsorption model obtained 
the lowest error values, followed by the Langmuir and Temkin adsorption models. The adsorption isotherms by adjusting 
the coefficient of determination (R2) and the sum of squared errors were classified.
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Introduction

In different industrial sectors such as textiles, mining, metal-
lurgy, and oil, among others, large amounts of wastewater 
are generated, whose composition is highly varied and rich 
in toxic wastes and chemical substances (Jan et al. 2010; 
Rasalingam et al. 2014; Charles et al. 2016; Alkathiri et al. 
2020). With increase in industrialization, the production of 
harmful organic and inorganic substances and heavy met-
als such as arsenic, cadmium, chromium, cobalt, copper, 
iron, lead, manganese, mercury, nickel, tin, and zinc has 
also increased (Pangeni et al. 2014; Chen et al. 2017a, b; Ma 
et al. 2017; Wołowiec et al. 2019; Deng et al. 2020; Egirani 
et al. 2020). Most of these substances are not biodegradable 
and act as species resistant to the environment, which causes 
ecological damage and unfavorable effects on the develop-
ment of ecosystems and living beings.

Following environmental approaches, industries have 
been showing interest in developing new studies and meth-
ods for the treatment of their waters (Bhatti et al. 2011; 
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Wang et al. 2015; Harsha et al. 2017). In general, water treat-
ment involves physical methods followed by physicochemi-
cal methods. But, at this stage, it is not possible to remove 
all pollutants, especially dissolved organic compounds, 
heavy metals, and chemicals. Although there are technol-
ogies for treating produced water, these can involve high 
costs, long reaction times, and low efficiency for water with 
high concentrations of contaminants (Fakhru’l-Razi et al. 
2009; Igunnu et al. 2014; Yousef et al. 2020). Conventional 
physical, chemical, and biological processes for wastewater 
decontamination are usually applied. Chemical treatment 
is applied to increase effluent quality by using coagulat-
ing and flocculating agents; however, it is less effective for 
substances with a high degree of solubility (Heiderscheidt 
et al. 2015; Pathania et al. 2017; Liu et al. 2019). Biological 
treatment depends on the chemical composition of the pol-
lutants, nature, and microorganisms, and their growth affects 
the ability to degrade the species in the water. The selectivity 
of microorganisms is associated with the characteristics of 
the effluent and the process conditions, but the process is not 
very efficient to eliminate substances in effluents continuous, 
and short periods (Robinson et al. 2001; Panahi et al. 2018). 
Regarding the physical process, in the first separation stage 
and/or after chemical or biological treatments, the removal 
of solids, particles, and soluble substances can be conducted 
by precipitation, ion exchange, membrane filtration, electro-
chemical destruction, and ozonation, among others (Hameed 
et al. 2008; Shou et al. 2016; Agrawal et al. 2017).

Several studies have focused on adsorption methods using 
activated carbon of different materials such as wood, organic 
material, residual biomass, and polymers. Activated carbons 
have cavities or pores in their structure, and their content 
contributes to the quality of textural properties. These prop-
erties define the specific surface area of the material and 
confer adsorbent properties to remove toxic substances. In 
general, activated carbons from organic material with high 
carbon content are synthesized (Odubiyi et al. 2012; Fares 
et al. 2018; Meng et al. 2019; Yang et al. 2020; Valério et al. 
2020). Lignocellulosic biomass is a sustainable feedstock, 
and its use which reduces the accumulation of residual bio-
mass in the form of fruit peel, wood, and leaves is projected. 
Currently, one of the agroindustries that generate a large 
amount of lignocellulosic biomass in the department of San-
tander (Colombia) is the cocoa sector, since it is the largest 
cocoa producer with 42.1% equivalent. Colombia is the fifth 
largest cocoa producer worldwide and the third largest in 
Latin America, for which it projects production of 246,000 
tons by 2021 (Ortiz et al. 2014; Sánchez et al. 2021). The 
cocoa industry economically exploits the seed (cocoa beans), 
which represents 10% of the weight of the fresh fruit, and 
in the manufacture of chocolate, its derivatives are used. 

However, other by-products such as cocoa mucilage and 
shell are produced and represent about 75.7 and 85.9% of 
the total fruit on a wet basis (Afoakwa et al. 2013; Cam-
pos et al. 2018). The valorization of residual biomass such 
as cocoa shell plays an important role within the economic 
and environmental scheme. In addition, the high content of 
lignocellulosic biomass makes it an ideal precursor for the 
preparation of biomaterials.

The pretreatment of residual biomass represents one of 
the main technological challenges for the utilization and 
subsequent conversion into bioproducts with high added 
value such as activated carbons. Meanwhile, the character-
istics of the valorization processes depend on the activa-
tion, pyrolysis conditions, and nature of the fluids of interest. 
Unlike many works reported in the bibliography, the present 
research work, as an innovative aspect, seeks to contribute to 
the sustainable socioeconomic development of the country 
by carrying out future projects on a pilot scale. In this way, 
an appropriate methodology for pretreatment and synthesis 
of activated carbons, it is possible to develop and commer-
cialize adsorbent materials, based on the efficient manage-
ment of biomass and the sustainable use of biodiversity and 
its ecosystemic services. The most important properties of 
adsorbents are the retention capacity and selectivity of the 
substances. Nonetheless, the concentration of the soluble 
pollutant (adsorbate), the pH of the solution, and the pol-
lutant-adsorbent ratio are also important (Faria et al. 2008; 
Sotelo 2013). There is a wide variety of adsorbent materi-
als of a carbonaceous nature, which greatly influences their 
porosity and surface area, and the multi-component separa-
tion properties. Activated carbons are materials with high 
adsorption capabilities, of which a large part is produced 
from organic waste, mainly of the lignocellulosic type. Fur-
thermore, it has been established, through thermogravimetry 
and heat treatment tests, that a high percentage of the lig-
nocellulosic material is transformed into activated carbon, 
while organic compounds such as cellulose and hemicel-
lulose are converted into liquid products and gases. Ther-
mogravimetric analysis to determine the kinetics of the 
pyrolysis process of materials is applied. Previously, kinetic 
models from various heating rates with values around 5, 10, 
15, 20, and 40 °C/min are determined. However, the heat-
ing rates depend on the type of biomass. From the curve 
with a specific heating rate, it is essential to identify the 
degradation stages of the substances studied. In this way, 
it is possible to determine the abrupt changes and the tem-
perature range of mass loss. Moreover, a low heating rate 
around 10 to 15 °C/min is recommended, because there is 
a significant exothermic difference between pyrolysis and 
in situ heterogeneous oxidation of biomass (Melgar et al. 
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2008; Manals et al. 2011; Saldarriaga et al. 2015; Han et al. 
2016; Jo et al. 2017). The application and selectivity of acti-
vated carbons largely depends on the preparation conditions, 
and their chemical and textural properties (Wang et al. 2011; 
Díaz et al. 2013; Rivera et al. 2016; Oliveira et al. 2017; 
Aliakbari et al. 2018; Vuppaladadiyam et al. 2019). The 
use of biomass to prepare activated carbons has a positive 
impact on reducing organic waste. In numerous researches 
works, the use of activated carbons from vegetable biomass 
has been contemplated, due to their high efficiency in the 
removal of organic and inorganic compounds such as metals 
(White et al. 2011; Oyedun et al. 2014; Contescu et al. 2018; 
Cai et al. 2018; Priya et al. 2020). However, this efficiency 
depends on the nature of the vegetal material, reaction time, 
and chemical activation (Tejeda et al. 2014; Deliyanni et al. 
2015; Yakout et al. 2016; Pak et al. 2016; Wahid et al. 2017).

To comply with the above, in this work, the cocoa shell 
precursor was used as raw material to produce activated 
carbon and evaluate its adsorption capacity with methyl-
ene blue and ferric chloride. Methylene blue is a cationic 
dye and is classified as organic salt. This dye is adapted in 
research due to its great potential to evaluate the quality of 
adsorbent materials (Ndolomingo et al. 2015). To obtain 
the best pyrolysis conditions, a 23 factorial design was car-
ried out using temperature, impregnation ratio, and reaction 
time as process variables. The quality of the carbons and 
the analysis of the adsorption isotherms were conducted by 
ATR-FTIR and UV–VIS spectroscopy. Finally, the results 
obtained in the experimental tests were fitted to the models 
of the adsorption isotherms from Freundlich, Langmuir, and 
Temkin.

Materials and methods

Materials

In this work, the shell from the cocoa fruit with a humidity 
of 83.43% by weight was selected. The biomass on a dry 
basis was selected due to its content of cellulose (30.84% 
by weight), hemicellulose (23.85% by weight), and lignin 
(28.35% by weight). The biomass activation was conducted 
with phosphoric acid (99.5%, Sigma-Aldrich) with impreg-
nation ratio of 1 and 1.5 with respect to the cocoa shell. The 
pyrolysis tests were carried out in a horizontal Carbolite 
UN 110 reactor in an inert chamber with nitrogen grade 5. 
For the adsorption tests, the salts of methylene blue (99%, 
Sigma-Aldrich) and ferric chloride (99%, Sigma-Aldrich) 
were used.

Activated carbon preparation

Chemical composition of cocoa shell

Moisture content was determined by adding 1 g of initial 
biomass in a previously weighed capsule. Then, the cap-
sule with the sample was placed in an oven with controlled 
temperature at 105 °C, for a period of 120 min. By weight 
difference, the biomass wet weight is reported until a con-
stant weight is obtained. To determine the holocellulose 
content, about 2 g of dry biomass with known humidity and 
sieved in the 60–80 mesh range was weighed. The sample 
was treated by adding 150 ml of 1.5% sodium chlorite and 
10 drops of concentrated acetic acid. The mixture was left 
in a water bath for 30 min of reaction. This procedure was 
repeated four times. Then, the mixture was subjected to 
filtration and drying processes. To calculate the cellulose 
content, 1 g of biomass was weighed and refluxed with a 
mixture of 20 ml of acetic acid and methanol in a 1:1 ratio, 
for 60 min. Subsequently, the sample was cooled and 50 ml 
of a nitro-alcoholic mixture was added to it. After 60 min of 
boiling reaction, the mixture was vacuum filtered, washed 
with deionized water, and dried in an oven at 105 °C until 
constant weight. Hemicellulose was determined by the dif-
ference between the percentage of homocellulose and cel-
lulose. For the determination of lignin, 15 ml of sulfuric 
acid was added to 1 g of biomass with constant stirring for 
2 h. Then, water was added slowly until obtaining a solution 
with an acid concentration around 3%. The resulting mixture 
was refluxed for 4 h and allowed to stand for 24 h in order 
for the insoluble material or lignin to settle completely. Sub-
sequently, the solid was filtered and washed with hot water 
and dried in an oven at 105 °C until constant weight (Toribio 
et al. 2014; Watkins et al. 2015; Mansora et al. 2019).

Treatment of the cocoa shell

The cocoa shell was initially subjected to a grinding stage 
in a TRAPP TRF 300 mill, and subsequently brought to a 
natural drying stage for 72 h. Then, the ground shell was 
separated by sieving in a Gran Test—Pinzuar sieve equip-
ment, into three particle sizes with a mesh number ranging 
between 8 and 120. Subsequently, the crushed cocoa shell 
called cocoa shell precursor was divided into three groups by 
particle size intervals for the preparation of three activated 
carbons, which were coded as A, B, and C.
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Chemical activation of biomass

The biomass (cocoa shell precursor) was impregnated with 
phosphoric acid H3PO4, using impregnation ratio (IR) of 1 
and 1.5, between phosphoric acid/cocoa shell (Molina et al. 
2004, Lamine et al. 2014; Chen et al. 2017a, b). During 
the chemical activation stage, approximately 300 g of dry 
and ground cocoa shell was weighed, and then, H3PO4 was 
added according to the impregnation ratio. The activation of 
the cocoa shell was carried out with constant stirring, main-
taining the temperature at 100 °C for 60 min. The impregna-
tion ratio (IR) can be obtained using Eq. 1:

where:
minitial = mass of cocoa shell precursor, g.
msample after impregnation = mass of biomass after impregna-

tion, g.
mliquids = mass of condensed liquids in the collector dur-

ing reaction, g.

Thermogravimetric analysis (TGA)

The thermal decomposition was conducted on a thermo-
gravimetric balance (Athlon thermogravimetric analyzer) 
to 10 mg of previously dried cocoa shell, in the temperature 
range between 25 and 800 °C, at a heating rate of 15 °C/min 
with a nitrogen flow of 50 ml/min. To identify the stages of 
thermal degradation of cocoa shell, the heating rate of 15 °C 
/min was selected, according to the methodology reported in 
the literature (Gil et al. 2010).

Pyrolysis testing and experiments design

The activated carbon preparation was realized through a 
thermochemical process in a Carbolite UN 110 oven, under 
an inert nitrogen atmosphere at a flow of 20 ml/min (Fig. 1). 
For each experiment, 300 g of cocoa shell precursor, previ-
ously activated with phosphoric acid, was used.

(1)IR =
mafter impregnation − minitial

minitial

The experimental design allows the evaluation of the indi-
vidual and interaction effect of the factors on the response 
variable. The 2 k factorial arrangement consists of k factors 
with two test levels. For example, the effect of k factors 
can be observed graphically to facilitate the interpretation 
of the results. The Pareto diagram determines the hierarchy 
of the main factor. In addition, a large number of tests for 
each selected factor are not necessary. For the preparation 
of activated carbons, this work used a 23 factorial design to 
establish the effect of 3 variables: impregnation ratio (IR), 
temperature, and reaction time, each variable with 2 levels. 
The responses variables were: surface area and activated car-
bon yield. Then, the best synthesis conditions in the prepa-
ration of the activated carbons A, B, and C were applied. 
Table 1 shows the three variables and their two levels.

The reaction temperatures were previously determined 
based on the decomposition results of the thermogravimetry 
analysis test (Sect. 2.2.4). Subsequently, the activated carbon 
samples were subjected to a water-based washing process in 
a Soxhlet extraction system until obtaining washing waters 
with a pH in the range of 5 to 6. Finally, for the drying pro-
cess the samples were placed in an oven at a temperature of 
105 °C, for 24 h. During the pyrolysis test, the liquid product 
is condensed in the collector with dry ice. The mass balance 
was performed by gravimetry, using the following equations:

where:
minitial = mass of impregnated sample, g.
mfinal = mass residual biomass after reaction, g.
mliquids = mass of condensed liquids in the collector dur-

ing reaction, g.
% Activated carbon = percent by weight of activated car-

bon after reaction.
% Liquids = percent by weight of liquids after reaction.

(2)%Activatedcarbon =
100

(

mfinal

)

minitial

(3)%Liquids =
100

(

mliquids

)

minitial

(4)%Gas =
100

(

minitial − mfinal

)

minitial

N2

1

2

3

4

Fig. 1   Scheme of the pyrolysis reactor (Carbolite): 1. nitrogen cylin-
der, 2. temperature controller, 3. reactor with pellets, 4. liquid collec-
tor

Table 1   Factor levels

Factors Level (–) Level ( +)

X1: Temperature (°C) 420 480
X2: Impregnation ratio (g shell/g 

acid)
1 1.5

X3: Time (min) 30 120
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% gas = percent by weight of gas after reaction.
The best synthesis conditions were used to obtain acti-

vated carbons A, B, and C.

Characterization

Surface area determination

The surface area was determined with a Vac Prep 061 
Micromeritics equipment. The activated carbon samples 
were weighed into 9-mm-diameter glass cells and loaded 
into the equipment. Then, the degassing step was carried 
out at a temperature of 120 °C, for 2 h. Subsequently, the 
same procedure was carried out at 300 °C for 10 h, main-
taining the vacuum pressure at 6 Pa. The texture character-
istics such as surface area and pore volume were determined 
from adsorption–desorption isotherms with nitrogen at 77 K 
applying the Brunauer, Emmett, and Teller (BET) method. 
The specific areas of the samples with the BET method 
(Brunauer–Emmett–Teller) and the consistency criterion of 
the Rouquerol transform were calculated (Brunauer et al., 
1938; Llewellyn et al. 2017). Nitrogen adsorption in this 
work was carried out in the range of relative pressure values 
(p/p°) from 0.02 to 0.99. The information was normalized 
using 3FLEX V4 software.

ATR‑FTIR infrared spectroscopy

The cocoa shell and activated carbons were characterized by 
ATR-FTIR spectroscopy in order to qualitatively determine 
the functional groups. The infrared spectra were acquired 
with a Thermo Scientific Nicolet IS50 FTIR spectrometer, 
which has an attenuated total reflectance cell equipped with 
a single-pass diamond reflection crystal, with a 45° fixed 
angle of incidence. The obtained IR spectra were normalized 
using the OMNIC software.

Adsorption capacity assessment

Determination of activated carbon adsorption by UV–VIS 
spectroscopy

Adsorption tests were performed on different solutions of 
methylene blue and ferric chloride with initial concentra-
tions between 50–450 and 50–350 mg/L, respectively. 0.1 g 
of activated carbon was added to 5 ml of each solution in 
15 ml capped test tubes for centrifuge (Falcon). Subse-
quently, these tubes were shaken on a FALC F340 Series 
horizontal shaker, at 150 rpm, for 24 h (estimated time to 
reach equilibrium). The activated carbon was then separated 
by centrifugation in a Hettich Zentrifugen 320R equipment 

at 6000 rpm for 5 min. The final concentration of methylene 
blue or ferric chloride was determined from the supernatant 
liquid.

The methylene blue and ferric chloride calibration curves 
were estimated in a UV–VIS GO 3.12 spectrophotometer, at 
λ = 290 cm−1, using solutions in the range of 10 to 125 mg/L, 
and 10 to 240 mg/L, respectively. Fitting to the calibration 
correlations was conducted with the Beer–Lambert method.

Adsorption isotherms

- Langmuir model This model assumes that when the adsorb-
ate (methylene blue and ferric chloride) comes into contact 
with the adsorbent (activated carbon), it only covers the lat-
ter with a homogeneous monolayer around its surface. The 
theoretical model of the Langmuir isotherm proposes that, at 
equilibrium, the maximum saturation point is obtained when 
there is no more adsorption in the monolayer formed by the 
adsorbate. Once a cation occupies an adsorption site, there 
will be no more molecular attraction at that specific site. The 
mathematical correlation adjusted to his theory is reflected in 
Eq. 5 (Basha et al. 2008, Ndi Nsami et al. 2013, Taghdiri et al. 
2013, Salahudeen et al. 2014, Wahid et al. 2017):

where qmax and b are the Langmuir constants, which rep-
resent the maximum adsorption capacity (mg-g−1) of the 
adsorbent, and Ce is the energy constant related to the heat of 
adsorption (dm3-mg−1). In order to evaluate the parameters b 
and qmax through the fitted Langmuir isotherms, it is neces-
sary to linearize the model as indicated in Eq. 6:

- Freundlich model This model proposes that the binding 
sites with the great thermogravimetric test (Fig. 3) attraction 
force are initially occupied by the adsorbate molecules. Then, 
the weakest sites are consecutively occupied, thus decreasing 
the molecular binding as the degree of occupation of each 
site increases. Freundlich’s expression is represented by Eq. 7 
(Basha et al. 2008, Ndi Nsami et al. 2013, Salahudeen et al. 
2014, Wahid et al. 2017):

The adsorption parameters are obtained with Eq. 8,

(5)qe =

(

qmax.b.Ce

1 + b.Ce

)

(6)
Ce

qe
=

Ce

qmax

+
1

qmaxb

(7)qe = k.C1∕n
e

(8)Ln
(

qe
)

= Ln
(

Kf

)

+
1

nf
Ln

(

Ce

)
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where kf is the equilibrium constant (mg-g−1(dm3mg−1)1/1n) 
and nf is the constant related to the affinity between the salt 
(methylene blue or ferric chloride) and the absorbent (acti-
vated carbon).

-- Temkin isotherm model  This model was developed to 
understand the indirect effects on the adsorbate–adsorbent 
interaction. In an isothermal adsorption, the heat of adsorp-
tion of all the molecules in the layer decreases linearly (Basha 
et al. 2008). The adsorption isotherm is represented by Eq. 9 
(Basha et al. 2008, Ndi Nsami et al. 2013, Salahudeen et al. 
2014, Wahid et al. 2017),

where KT is the Tenkim equilibrium constant, and from nT 
it is possible to calculate b, which is related to the heat of 
adsorption calculated from the expression in Eq. 10:

(9)qe = nTLn
(

KT

)

+ + nTLn
(

Ce

)

(10)nT =
RT

b

Results and discussion

Obtaining activated carbons

In this work, cocoa shell-based activated carbon was pro-
posed as a precursor, considering that its high lignin content 
(28.35% by weight, on a dry basis) is favorable for the per-
formance of the products obtained under pyrolysis condi-
tions. Figure 2a shows the yield by weight of the cocoa shell 
precursor at different particle diameters after the grinding 
process.

The ground biomass was divided into three samples by 
particle size range called cocoa shell precursor A (8–20 
mesh), B (40–60 mesh), and C (80–120 + mesh). The weight 
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percentage of the three cocoa shell samples and the particle 
size is shown in Fig. 2b. It is concluded that after grinding, 
the highest percentage is obtained by cocoa shell precursor 
B, followed by A and the lowest is C.

Figure 3 shows the results of the shell thermogravimetry. 
Pyrolysis starts at approximately 240 °C. In the DTG curve, 
a maximum peak associated with the decomposition of cel-
lulose and hemicellulose appears. According to the behavior 
of the DTG derivative, it can be observed that the greatest 
mass loss occurs near 310 °C. On the other hand, a cumu-
lative mass loss of 48% by weight is observed around 350 
°C, and the mass loss gradient decreases as the temperature 
increases. The results show that in the range from 400 to 
500 °C the mass loss is 8% by weight, achieving a maximum 
cumulative weight loss of 65% around 700 °C.

Three defined stages are given Fig. 4, the first between 
30 and 180 °C where evaporation of light components and 
water occurs, the second between 200 and 500 °C where 
the greatest change occurs due to chemical reactions, and 
the last stage where there is less mass loss due to decom-
position reactions. These trends are similar to the results 
reported by various authors (Garcia et al. 2008; Salahudeen 
et al. 2014; Carrier et al. 2011; Zhang et al. 2014; Jo et al. 
2017; Cai et al. 2018), who determined that hemicellulose 
and cellulose decompose in the temperature range between 
200–260 °C and 240–350 °C, respectively. The increase in 
temperature causes the breaking of glycosidic bonds and 
some C—C bonds of the hydrocarbons, alcohols, aldehydes, 
acids, and others (Wang et al. 2007). However, these com-
pounds tend to generate tar, carbon, and light gases such as 
CO, CO2, H2O, and others. Meanwhile, lignin decomposes 
at temperatures above 280 °C. Therefore, the multiple reac-
tions give rise to the formation of a carbon-rich product as 
lignin decomposes at higher temperatures (Gao et al. 2016; 
Yang et al. 2020). These results corroborate that the cocoa 
shell precursor used in the present work tends to form solid 
residues with significant yields around 400 °C.

Analysis of the 23 factorial experiment

Table 2 reports the product yields of each pyrolysis test used 
to obtain activated carbons, using the fitting of the maximum 
and minimum variables values of the experiment design 
which was performed with the Statgraphics Centurion XVII 
software.

Table 2 and the Pareto diagram (Fig. 4) show that the 
yield and the surface area of the activated carbons, obtained 
from the cocoa shell precursor in the pyrolysis process, 
depend on the effects of IR > temperature > time, in that 
order.

Likewise, the chart shows that variables and interactions 
AC (RI and Time) and BC (Temperature and Time) exceed 
the statistical limit point of t value (size of the difference 
between the population’s mean), which represents a sig-
nificant contribution. Meanwhile, the results indicate that 
the surface area of the activated carbons depends on the 
impregnation ratio (IR). However, this property does not 
depend on the levels used for the temperature and time fac-
tors. The activated carbon yield increases significantly due 
to the dehydrating character of phosphoric acid that facili-
tates the loss of hydrogen and oxygen in the form of water. 
These reactions produce carbon enrichment and also gener-
ate improvement in the textural properties of the adsorbent 
material. (Gao et al. 2016).

The texture of activated carbon varies in terms of the 
phosphoric acid ratio and the rotary kiln temperature in the 
pyrolysis stage. The impregnation ratio is the most important 
effect, and must be considered before each pyrolysis test 
in order to obtain carbons with the desired qualities. Acti-
vated carbons with high surface area values for conditions 
of impregnation ratio, temperature, and time are obtained, 
with values of 1.5, 480 °C, and 30 min, respectively. These 
process conditions were selected for the prepared activated 
carbons from cocoa shell precursor with different particle 

Table 2   Yield and characterization of cocoa shell pyrolysis products

Sample RI Tempera-
ture, °C

Time, min % Activated 
carbon

% Liquids % Gas Surface area (m2/g) Pore volume 
(cm3/g)

Pore size (nm)

1 1.5 420 30 32.36 41.33 26.31 1128.00 0.50 5.18
2 1 420 120 32.18 46.84 20.97 963.79 0.31 4.18
3 1.5 480 120 27.80 58.08 14.12 1006.50 0.42 5.02
4 1 480 30 30.35 49.78 19.87 791.67 0.23 4.01
5 1 480 120 31.31 39.03 29.66 730.09 0.21 4.05
6 1.5 480 30 28.20 33.80 38.00 1217.72 0.52 5.09
7 1.5 420 120 28.00 54.42 17.57 1079.58 0.50 5.07
8 1 420 30 34.19 44.84 20.96 626.45 0.21 4.09
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diameters. Subsequently, the carbons in adsorption tests 
of methylene blue and ferric chloride salts will be applied. 
Before starting the adsorption studies of the activated car-
bons, it is necessary to determine their textural and chemi-
cal properties, considering that the adsorption efficiency 
depends on the pore structure. Figure 5a shows the volume 
distribution by pore type for activated carbons A, B, and C 
obtained from cocoa shell precursor.

According to IUPAC (International Union of Pure and 
Applied Chemistry), activated carbons are classified accord-
ing to their pore size as, macropores (> 50 nm in diameter), 
mesopores (2–50 nm in diameter), and micropores (< 2 nm 
in diameter). Therefore, activated carbons A, B, and C pre-
sent mesoporous structures with values of: 80.68, 80.84, 
and 81.07%, respectively. So, the macropore and micropore 
structures fractions for the activated carbons range from 
17.71 to 18.11% and between 1.21 and 1.22%. Additionally, 
the porosity of activated carbons A and B is in the pore size 

region between 2 and 30 nm. Meanwhile, carbon C is in the 
pore size region between 2 and 50 nm.

According to the nitrogen adsorption–desorption behav-
ior, the results show that the activated carbons present a 
hysteresis cycle, which allows classifying these materials 
as type IV isotherms of the IUPAC classification (Fig. 6b). 
However, carbon C shows a higher hysteresis cycle, which 
indicates that the adsorbent–adsorbate interaction is lower 
than carbons A and B. In Fig. 5b, is observed the complete 
formation of the monolayer from the reduced pressure value 
of approximately 0.06, and after this value, the multilayer 
adsorption occurs. The results show similar trends to works 
reported by other authors, where significant nitrogen adsorp-
tion is observed at low relative pressures, corresponding to 
adsorption in micropores (Martín et al. 1990; Puziy et al. 
2017). On the other hand, increased adsorption at interme-
diate and high relative pressures is characteristic of multi-
layer adsorption formation. Table 3 shows the surface area 
of the A, B, and C synthesized activated carbons, obtained 
by pyrolysis of the cocoa shell precursors with mesh particle 
diameters of 8–20, 40–60, and 80–120 + , respectively.

The activated carbons synthesized showed a slight 
increase in pore volume in the increasing order of A < B < C 
and the surface areas are around 1000 m2/g. That indicates 
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Table 3   Characterization of the activated carbons surface area

Sample Surface area 
(m2/g)

Pore volume 
(cm3/g)

Pore 
size 
(nm)

A 990.78 0.39 4.23
B 1217.72 0.52 5.09
C 969.43 0.69 6.66
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that the proposed methodology with the factorial design 
of experiments in the thermochemical treatment on cocoa 
shell precursor with particle mesh diameters between 8 
and 120 + is suitable to obtain activated carbons with very 
prominent surface areas.

Characterization of activated carbons by FTIR 
spectroscopy

Figure 6 shows the infrared spectra of the cocoa shell precur-
sor and its activated carbons. The results of the ATR-FTIR 
spectra provide unique information about the functional 
groups present on the activated carbons surface, which are 
useful to relate the chemical composition with the adsorp-
tion properties.

The variation of the peaks in the infrared spectra that the 
thermochemical test conditions and the particle diameter of 
the cocoa shell precursor produce different effects on the 
structure of the activated carbon is evidence.

The broad bands between 3600 and 2900 cm−1 are related 
to the –OH group, which can be attributed to the presence of 
surface species such as phenol type and carboxylic acid. The 
stretch bands between 1550 and 1650 cm−1, corresponding 
to the C = O group, can be mainly attributed to carboxylic 

acids. However, functional groups associated with lac-
tones or cyclic ester-type organic compounds are present 
in this region, and these compounds can overlap at around 
1630 cm−1. The bands between 990 and 1300 cm−1, there is 
an intensity that corresponds to C-O type single bonds, both 
ethers, and hydroxyls.

The FTIR spectrum of the cocoa shell precursor sam-
ple shows vibrations of the methylene > CH2 group typical 
of cycloalkanes around 1025 cm−1 and the C-H of methyl 
groups between 1290 to 1400 cm−1. In addition, bands at 
2850—2920 cm−1 typical of aliphatic C–H stretching and 
1375—1465 cm−1 associated with aliphatic C–H bending, 
are observed. The results show that the intensities of some 
characteristics groups present in the cocoa shell precursor 
are absent in the activated carbons obtained during the ther-
mochemical process at 480 °C. Therefore, the decrease in 
H atoms shows that the activated carbons present structures 
with high carbon content with graphitized type carbon struc-
tural arrangement. The signals attributed in this study cor-
roborate with the results reported in the literature (Fuente 
et al. 2003; Allwaret et al. 2016; Nandiyanto et al. 2019).

The decrease in intensity in the aliphatic bending and 
stretching region indicates that activated carbons are mainly 
composed of aromatic and cyclic oxygen-rich structures typ-
ical of phenolic, carboxylic compounds. The results affect 
that the abundance of these functional groups influences 
the chemical nature of the surface of each activated carbon. 
From the normalized spectra, it is observed that the intensi-
ties of the bands of these structures are higher for activated 
carbon B followed by activated carbons A and C. In this 
case, it is probably due to the oxidation produced by the 
phosphoric acid.

Methylene blue and ferric chloride adsorption 
analysis

The calibration curves (concentration vs absorbance) for the 
methylene blue and ferric chloride solutions are given Fig. 7, 
using the absorbances measured at λ = 290 cm−1 (Absλ), 
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which showed coefficients of determination (R2) of 0.9801 
and 0.9948, respectively.

The correlations obtained from the calibration curves 
using the Beer–Lambert’s law are shown in Eqs. 11 and 12.

Assessment of the adsorption capacity

The adsorption capacity of methylene blue increases as 
their initial concentration in the solution increases, for the 
three carbons studied (Fig. 8). The percent removal tends to 
decrease with increase in concentration. The results show 
that the adsorption tendency of methylene blue, for con-
centrations (Co) between 50 to 100 mg/L, is in the order 
of B > C > A. For higher concentrations, the adsorption of 
activated carbons is in the order of A > C > B.

The ferric chloride adsorption results (Fig. 9) show simi-
lar trends to methylene blue. However, the percent removal 
of ferric chloride is lower with increase in initial concentra-
tion. For concentrations between 50 and 200 mg/L, the car-
bons are ordered as B > C > A. While, for higher concentra-
tions the adsorption order of the activated carbons is ordered 
as A > C > B, keeping the same absorbent ratio.

Figure 10 shows the fitting of the experimental data 
for the adsorption of methylene blue and ferric chloride 

(11)Methylene blue ∶ Ce = 8, .2 + 432.3Absλ

(12)Ferric chloride ∶ Ce = 0.09 + 0.009Absλ

using the Freundlich isotherm for the activated carbons A, 
B, and C. The results show that at low concentrations of 
methylene blue and ferric chloride salts, there is a greater 
removal, but the available sites are occupied as the con-
centration increases. In addition, results show that acti-
vated carbon B has high adsorption efficiency of methyl-
ene blue and ferric chloride in the concentration ranges of 
50–100 mg/L and 50–200 mg/L, respectively.

The adsorption kinetics parameters for fitting the adsorp-
tion behavior of methylene blue and ferric chloride to Lang-
muir, Freundlich, and Temkin isotherms were calculated by 
linear regression as shown in Eqs. (6), (8), and (9). The coef-
ficients of determination (R2) for the Freundlich isotherms 
are close to 1, and these are greater than the coefficients 
reported for the Langmuir and Temkin isotherms (Table 4).

Similarly, the sum of squared errors (SSE) parameter of 
the adsorption tests for methylene blue and ferric chloride 
shows minimum values for the Freundlich model, followed 
by the Langmuir and Temkin models, respectively. Thus, 
the Freundlich isotherm shows a better fit to the experimen-
tal adsorption data of methylene blue and ferric chloride, 
which suggests that monolayer and multilayer adsorption 
occurred on the surface of activated carbons. The results of 
the maximum adsorption capacity (qmax) of the Langmuir 
model show that the removal of methylene blue is greater, 
compared to the ferric chloride salt, in the three activated 
carbons. On the other hand, the n values for Freundlich iso-
therms suggest that there exists a greater affinity between 
methylene blue and the three activated carbons than to the 

Fig. 9   Adsorption behavior 
of ferric chloride in activated 
carbons: a adsorption capacity 
(qe); and b percent removal 
efficiency (% RE)
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ferric chloride salt. Furthermore, the equilibrium constants 
of the Freundlich and Temkin models show that the adsorp-
tion rate is higher for methylene blue.

The results show that the conditions selected with the 
factorial experimental design allow high performance of the 
dehydrating character of H3PO4 and the decomposition reac-
tions of the carbonaceous structure of the cocoa shell. There-
fore, these characteristics produce activated carbons with 
new pores that increase the surface area and textural prop-
erties. In general, the thermochemical treatment employed 
produces mesoporous activated carbons.

The chemical modification of the activated carbons 
revealed an increase in the oxygen content present in func-
tional groups associated with carboxylic acids and phenols. 
The content of these functional groups produced significant 
changes in the physical properties of the material and the 
adsorption capacity of adsorbents such as methylene blue 
and ferric chloride. The results obtained from the charac-
terization of synthesized activated carbons show consistency 
with the results reported by other researchers (Giraldo et al. 
2008; Hesas et al. 2013; Bazan et al. 2016; Priya et al. 2020). 
The chemistry of the surface depends on the presence of 
functional groups, and therefore, their nature is fundamental 
to the adsorption capacity. According to the methodology 
proposed in this work, activated carbon B which presents 
greater effectiveness in adsorption capacity is determined. 
This property to the content of functional groups reported 
and the textural properties such as surface area, volume, and 
pore size is attributed. Likewise, the adsorption capacity 
depends on the nature of the adsorbate.

Conclusion

Cocoa shell-based activated carbons were synthesized with 
surface areas between 970 and 1200 m2/g, and the best con-
ditions of temperature, impregnation ratio acid/cocoa shell 
precursor, and reaction time were 480 °C, 1.5, and 30 min, 
respectively.

Cocoa shell-based activated carbons, obtained with 
the phosphoric acid activation method, presented signifi-
cant amounts of functional groups R–OH, R–COOH, and 
R–OCO, among others, possibly associated to substances 
such as phenols, carboxylic acids, lactones, ethers, and 
esters. Therefore, the high adsorption capacity of activated 
carbons against the methylene blue and ferric chloride salts 
is due to the texture of the material and its chemical nature. 
From the adsorption results, it was evidenced that, for con-
centrations of methylene blue and ferric chloride in the 
range of 50–100 mg/l, and 50–250 mg/l, respectively, the 
efficiency of the three activated carbons follows the order 
of B > C > A.

In general, considering the adsorption kinetics param-
eters obtained in the adsorption curves using the Freun-
dlich method, the abundance of the functional groups OH, 
C = O, and -CO, and the surface area of 1217 m2/g, the car-
bon activated B has higher adsorption kinetics compared 
to the methylene blue and ferric chloride salts under study. 
Therefore, with the methodology proposed in this work, it 
was possible to synthesize activated carbons with excellent 
chemical and textural properties.
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