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Abstract
Various landslide susceptibility models can be available in the literature, and each model has its unique advantages and 
limitations. Previous studies have shown that no single model performs best across diverse geoenvironmental conditions. 
To seek better prediction accuracy and reliability, this study proposes three different ensemble methods to take advantage of 
multiple landslide susceptibility models: qualitative matrix ensemble method, semi-quantitative partition ensemble method, 
and quantitative probability-weighted ensemble method. To illustrate the effectiveness of the three ensemble methods pro-
posed, a case study is carried out in Fengjie County in the Three Gorges Reservoir Region, China. First, with the support of 
geographic information system, a total of 1550 historical landslides and the associated 12 conditioning factors are compiled, 
which are used for the training and validation of four selected single landslide susceptibility models, including two statistical 
approaches (i.e. frequency ratio and fuzzy assessment) and two machine learning approaches (i.e. backpropagation neural 
network and support vector machine). Then, the three ensemble methods are applied to integrate the outcomes of the four 
single models. Finally, an extensive comparative analysis is performed between the ensemble methods and single models 
using the receiver operating characteristics curve and information entropy. The results demonstrate that all the three ensemble 
methods achieve higher overall prediction accuracy (> 80%) than the four single models (< 80%), and the matrix ensemble 
method provides the best improvement. Besides, the ensemble methods can also enhance reliability by reducing the statisti-
cal discrepancy between distinct single models.

Keywords Landslide susceptibility mapping · Geographic information system · Ensemble methods · Information entropy · 
Three Gorges Reservoir Region

Introduction

Landslides are one of the major geological disasters. The 
frequent occurrence of landslides has caused huge economic 
losses and casualties to society (Pourghasemi et al. 2018; 
Tang et al. 2019; Gong et al. 2021). Landslide susceptibility 
assessment deals with “where” landslides are most likely 
to occur (Guzzetti et al. 2005), which is a preliminary and 
imperative task for landslide prevention and control. The key 
content of this task is to select suitable landslide susceptibil-
ity models. It is known that landslide susceptibility assess-
ment is based on the general assumption that slope failure in 
the future will be more likely to occur under those conditions 
which led to landslides in the past (Gemitzi et al. 2011). 
Thus, in landslide susceptibility modelling, the input should 
be a set of landslide conditioning factors which are impor-
tant attributes to slope instability, while the output should 
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be a landslide susceptibility zonation map that delineates the 
spatial incidence of landslides.

There are extensive studies on landslide susceptibility 
modelling and mapping in the past few decades. Accord-
ing to the difference in model principles and evaluation 
bases, landslide susceptibility models in the existing studies 
could be categorized into empirical approaches, statistical 
approaches, machine learning approaches, and others (Mel-
chiorre et al. 2008). The empirical models usually combine 
engineering information with disaster prevention experi-
ence, based on which the evaluation standard of landslide 
susceptibility is formulated (Pourghasemi et al. 2012). The 
statistical models carry out mathematical and statistical 
analysis on regional landslide database, and then establish 
the relationship between landslide susceptibility levels and 
conditioning factors (Goetz et al. 2015). The most common 
statistical models include information value model (Achour 
et al. 2017), weight evidence analysis model (Ilia and Tsan-
garatos 2016), fuzzy assessment model (Gemitzi et  al. 
2011), and frequency ratio model (Mohammady et al. 2012; 
Ozdemir and Altural 2013). Machine learning models input 
relevant geological data into computer programs and adopt 
algorithms to derive landslide susceptibility maps (Pham 
et al. 2016). In recent years, there is an increasing preference 
towards machine learning models for landslide susceptibil-
ity analysis. The well-established machine learning models 
include the support vector machine model (Micheletti et al. 
2014; Huang and Zhao 2018), decision tree model (Pradhan 
2013), logistic regression model (Budimir et al. 2015), and 
artificial neural network model (Pradhan and Lee 2010).

It is noted that all of the above landslide susceptibil-
ity models have their specific advantages and limitations 
(Reichenbach et al. 2018). Although empirical models take 
advantage of prior knowledge and experience, the analysis 
results might be quite different from the actual situations 
(Goetz et al. 2011). Statistical models are able to reflect the 
relationship between the input geoenvironmental factors and 
the output evaluation results, but the model structure is rela-
tively simple and prone to deviations (Shahabi and Hashim 
2015; Juliev et al. 2019). Machine learning models have the 
advantages of strong adaptability and generalization, but 
are subjected to the selection of model parameters and the 
size of the training dataset (Goetz et al. 2015; Zhou et al. 
2018). As a result, it can be found from previous studies 
that the performance of landslide susceptibility models var-
ies in different geoenvironmental settings, and no individual 
model proves to be superior across all conditions (Reichen-
bach et al. 2018; Pourghasemi et al. 2018). Nonetheless, the 
majority of previous studies related to landslide suscepti-
bility assessment implement only one single model, which 
might lead to unsatisfactory results (Vorpahl et al. 2012).

It is known that multi-model ensemble methods provide 
an efficient and practical tool to improve the results of single 

classification models by combining their outcomes. The trait 
of an ensemble method is the harnessing of collective intelli-
gence of diverse individual models (referred to hereinafter as 
base models). Thus, the effect of the ensemble method can 
surpass that of the best base model. In recent years, diverse 
ensemble approaches have been developed and shown great 
effectiveness in the spatial evaluation of various environ-
mental hazards, such as flood assessment (Mojaddadi et al. 
2017; Shahabi et al. 2020), groundwater contamination 
mapping (Barzegar et al. 2018), gully erosion assessment 
(Hembram et al. 2020), and landslide susceptibility mapping 
(Aghdam et al. 2016; Saha et al. 2020).

The focus of this study is placed on the use of multi-
model ensemble methods to combine the predictions made 
by individual base models to achieve high-accuracy and 
reliable prediction of landslide susceptibility. In this study, 
three ensemble methods are introduced and modified for 
landslide susceptibility mapping: matrix ensemble method 
(Wei et al. 2018; Ahmed et al. 2018), partition ensemble 
method (Hong et al. 2018b; Martinello et al. 2020), and 
probability-weighted ensemble method (Baldassarre et al. 
2009; Zhang et al. 2013). These ensemble methods adopt 
different ensemble strategies. To illustrate the effectiveness 
of the proposed ensemble methods, four of the most com-
monly used landslide susceptibility models are selected as 
base models for performing the ensemble methods through 
a case study of Fengjie County located in the Three Gorges 
Reservoir Region, China. This study was carried out in the 
Faculty of Engineering, China University of Geosciences, 
Wuhan, during July 2020 to May 2021.

Materials and methods

Framework for implementation of ensemble 
methods

This study proposes three different types of ensemble methods 
to seek better prediction accuracy and reliability of landslide 
susceptibility mapping, including the qualitative matrix ensem-
ble method, semi-quantitative partition ensemble method, and 
quantitative probability-weighted ensemble method. With the 
support of remote sensing and geographic information system 
(GIS) (Awais et al. 2021a, 2021b; Cheng et al. 2021; Shao et al. 
2021; You et al. 2021), the historical landslides and associated 
landslide conditioning factors in the study area are derived as 
basic inputs for landslide susceptibility modelling.

The four base models selected for ensembles in the case 
study include two typical statistical models, i.e. frequency 
ratio (FR) model and fuzzy assessment (FA) model, and two 
prevailing machine learning models, i.e. backpropagation 
neural network (BPNN) model and support vector machine 
(SVM) model. These four base models are chosen mainly for 
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the following two reasons. Firstly, the quality of base models 
directly affects the prediction performance of ensembles, and 
the four base models have proved to provide reasonably good 
performance in previous studies (Gemitzi et al. 2011; Bui et al. 
2012; Reichenbach et al. 2018; He et al. 2019; Shano et al. 
2021). Secondly, ensembles tend to yield better prediction 
performance when there is a significant diversity among the 
constituent base models (Kuncheva and Whitaker 2003), and 
the four base models are built on different modelling princi-
ples. It should be noted that the base models are not limited 
to the above four landslide susceptibility models, and the pro-
posed three ensemble methods are also suitable for other well-
established landslide susceptibility models.

Figure 1 shows a systematic framework for the application 
process of the three ensemble methods. Firstly, based on the 
geological and geomorphological settings of the study area 
(i.e. Fengjie County), a preliminary analysis of landslide con-
ditioning factors is conducted. Secondly, the selected four base 
models are well trained and validated to evaluate the land-
slide susceptibility in the study area within a GIS environ-
ment. Thirdly, the three ensemble methods are employed to 
combine the outcomes of the four base models. Finally, an 
extensive comparative analysis of the prediction accuracy and 
reliability between the proposed three ensemble methods and 
the four base models is performed to validate the effects of the 
ensemble methods.

Study area and database

This section first introduces the geological and geomorpholog-
ical settings of the study area, then presents a landslide inven-
tory database consisting of historical landslides and landslide 
conditioning factors, and finally performs a sensitivity analysis 
of landslide conditioning factors to highlight their importance 
in causing landslides.

Geological and geomorphological settings in Fengjie 
County

Fengjie County is located in the east of Chongqing, China, 
as well as in the hinterland of the Three Gorges Reservoir 
Region, as shown in Fig. 2. It covers an area of 4098  km2 
between latitudes 30°29′19″ to 31°22′33″N, and longitudes 
109°1′17″ to 109°45′58″E. Fengjie County belongs to the 
mountainous landform in the east of Sichuan Basin with 
undulating mountains and gullies. The elevation of the study 
area ranges from 175 to 2123 m above mean sea level. The 
terrain of Fengjie County is higher in the south-east, and 
lower in the middle and north-west. The river valley near the 
Yangtze River system in the middle of the county is relatively 
developed. The topography and geomorphology are crucial to 
the distribution of land coverage. Affected by topography and 
geomorphology, land coverage presents spatial differences in 

Fengjie County. With the increase in the elevation and slope 
degree, the exposed surface area gradually decreases and the 
vegetation coverage gradually increases.

Since Fengjie County is situated at the intersection of 
several fold belts, there exists complex geological struc-
tures mainly composed of folds. It has a humid subtropical 
monsoon climate with an average annual precipitation of 
1132 mm, and the temperature drops sharply due to the great 
height of the mountains and the immense depth of the valleys. 
The Yangtze River runs through Fengjie County, and there are 
49 reservoirs in the study area. Affected by the complex geo-
logical structures, continuous rainfalls, and periodic changes 
in reservoir water level, Fengjie County is saddled with fre-
quent geological disasters such as landslides and collapses.

Establishment and preliminary analysis of landslide 
database

The description of the spatial relationship between histori-
cal landslides and their conditioning factors is essential to 
landslide susceptibility modelling. Firstly, it is necessary 
to prepare the landslide inventory database regarding land-
slides and associated landslide conditioning factors. A total 
of 1,550 historical landslides occurred from 1950 to 2019 in 
Fengjie County have been well documented, each annotated 
with crucial information on occurrence time, geographical 
coordinates of landslide location, geological and geomorphic 
conditions, triggering factors, type, scale, and consequences. 
Rainfall is observed to be the predominant triggering factor 
of landslides in Fengjie County. For spatial landslide sus-
ceptibility mapping, this study emphasizes the effect of the 
conditioning factors which are the intrinsic attributes that 
govern the stability condition of slopes, regardless of the 
role of rainfall which is the external triggering factor with a 
relative yearly recurrence pattern.

Meanwhile, to assist in the training of landslide suscep-
tibility models, an equal number of non-landslide sample 
points are generated using the seed cell sampling strategy 
(Dagdelenler et al. 2016). To be specific, a total of 1550 
non-landslide sample points are randomly extracted from 
the undisturbed areas that are over 2000 m away from the 
landslide locations. The 1550 historical landslides and 1550 
non-landslide sample points are mapped out in the study 
area, which are, respectively, represented by the red and 
black dots as illustrated in Fig. 2.

Moreover, based on previous studies (Budimir et al. 2015; 
Wen et al. 2017; Hong et al. 2018a; Zhao and Chen 2020; 
Sun et al. 2020) and the local geoenvironmental conditions, a 
total of 12 key conditioning factors are determined: elevation, 
slope degree, slope aspect, terrain curvature, terrain rough-
ness index (TRI), lithology, distance to fold, distance to river, 
stream power index (SPI), topographic wetness index (TWI), 
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Fig. 1  Framework for implementation of ensemble methods
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normalized difference vegetation index (NDVI), and distance 
to road. These factors basically capture the overall intrinsic 
features of the slope with respect to topography, geology, 
hydrology, land use, and human activities.

Elevation, slope degree, slope aspect, terrain curvature, 
and TRI characterize the terrain features in the study area. 
Elevation is an important topographic factor, which has sig-
nificant influence on slope degree, terrain curvature, and 
other factors, and further affects slope stability (Pourgha-
semi et al. 2012; Zhou et al. 2018). Slope degree is a sig-
nificant geomorphological feature of the slope, and varying 
slopes lead to spatial differences in stress distribution, loose 
material accumulation, and weathering degree of rock strata 
(Moayedi et al. 2019). Slope aspect has a certain influence 
on illumination, soil texture, wind speed, and vegetation 
development, which could affect the spatial distribution of 
landslides (Bui et al. 2011). Terrain curvature reflects terrain 
structure and shape (Kalantar et al. 2018). TRI describes 
surface fluctuations and reflects the topographic and geo-
morphic conditions (Hong et al. 2018a). The distribution 
maps for elevation, slope degree, slope aspect, terrain curva-
ture, and TRI are produced from the digital elevation model 
(DEM) of Fengjie County (Fig. 3a–e). The DEM data, with 
a spatial resolution of 30 m, are derived from the Advanced 
Spaceborne Thermal Emission and Reflection Radiometer 
(ASTER) launched on NASA’s Terra satellite.

Lithology and distance to fold characterize geological 
conditions. Lithology determines rainfall erosion resistance 
and rock mass stability, and hence can strongly influence 
landslide occurrence (Roodposhti et al. 2014). The lithol-
ogy data of the study area are extracted from the geological 
map of China Geological Survey (CGS) in 1:1 million scale 
(Fig. 3f). The presence of folds exerts significant influence 
on the distribution characteristics of rock strata, groundwa-
ter, and geological activities such as collapse and earthquake 
(Kayastha et al. 2013). The distribution map of distance to 
fold is generated by the Euclidean distance function in Arc-
GIS software (Fig. 3g).

Distance to river, SPI, and TWI characterize hydrogeo-
logical conditions. Distance to river directly affects the rock 
erosion process due to water level change and rainfall in the 
Three Gorges Reservoir Region. Based on the river network 
database in Fengjie County, the distribution map of distance to 
river is generated by the Euclidean distance function in Arc-
GIS software (Fig. 3h). SPI represents the degree of regional 
erosion by water flow, and TWI indicates ground humidity 
(Park et al. 2018). SPI and TWI are jointly determined by the 
river network database and the DEM data (Fig. 3i–j).

NDVI reflects regional land use and land cover in terms 
of the degree of vegetation coverage, which has great influ-
ence on the soil and hydrological conditions, and further 
affects slope stability (Jaafari et al. 2014). Using the Moder-
ate-Resolution Imaging Spectroradiometer (MODIS) satel-
lite data, the NDVI map is generated from the Environment 
for Visualizing Images (ENVI) remote sensing image pro-
cessing platform (Fig. 3k). Distance to road shows the influ-
ence of human engineering activities, as the modification of 
slopes in the process of road construction could influence 
landslide occurrence to some extent (Sujatha et al. 2012; 
Meneses et al. 2019). According to the road network data-
base, the distribution map of distance to road is generated by 
the Euclidean distance function in ArcGIS software (Fig. 3l).

In Fig. 3, the whole study area is appropriately dis-
cretized into 4,861,338 square grids of pixels, and each 
pixel contains the data information of the 12 conditioning 
factors. Moreover, each conditioning factor is reclassified 
into five classes by the Jenks optimization method (Jenks 
1967), as illustrated in Table 1. The Jenks optimization 
method classifies the conditioning factors using natural 
breaks in data values. The best arrangement of values into 
various classes is determined by minimizing the squared 
deviations of the class means. Consequently, the spatial 
distribution maps and statistical database for all of the 12 
conditioning factors are constructed with their subclasses.

To establish the spatial relationship between the land-
slides and the conditioning factors, for each class of every 

Fig. 2  Location of the study 
area and spatial distribution of 
historical landslides
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conditioning factor, the corresponding percentage of 
landslides and percentage of covered area are calculated 
and summarized in Table 1. The results demonstrate that 
landslide occurrence decreases with increasing elevation, 
terrain curvature, distance to river, distance to fold, dis-
tance to road, SPI, TWI, and TRI. The historical landslides 
in Fengjie County predominantly occur in elevation of 
130–530 m, which is in line with the findings of Ercanoglu 

and Gokceoglu (2002) and Gemitzi et al. (2011). In addi-
tion, most landslides take place in slope degree between 
12° and 30° in Fengjie County, which is similar to the 
resulting 15°–35° of the study area in Sujatha et al. (2012).

Fig. 3  Spatial distribution maps of landslide conditioning factors in 
the study area: a elevation; b slope; c aspect; d terrain curvature; e 
terrain roughness index (TRI); f lithology; g distance to fold; h dis-

tance to river; i stream power index (SPI); j topographic wetness 
index (TWI); k normalized difference vegetation index (NDVI); l dis-
tance to road
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Sensitivity analysis of conditioning factors

A quantitative sensitivity analysis is performed to rank the 
importance of the 12 conditioning factors in causing land-
slides. The certainty factor is used to measure the relation-
ship between the landslide density of a subarea and that of 
the whole study area (Sujatha et al. 2012). For each class of 
every conditioning factor, certainty factor is quantified by 
Eq. (1), and the result is given in Table 1. A positive value 
of certainty factor means the landslide density of the class 
is greater than the average value of the whole study area. 
The greater the certainty factor, the higher the probability 
of landslide occurrence.

where  CFi and Di, respectively, denote the certainty fac-
tor and landslide density in the ith class of a specified 

(1)CF
i
=

{
Di−D

Di(1−D)
, D

i
≥ D

Di−D

D(1−Di)
, D

i
< D

Table 1  Statistics of landslide conditioning factors

Conditioning 
factors

Percentage 
of area (%)

Percentage of 
landslides (%)

CF value FR value

Slope (°)
< 12.63 18.92 19.29 0.02 1.02
12.63–21.21 27.90 36.77 0.24 1.32
21.21–29.89 26.62 27.94 0.05 1.05
29.89–40.41 18.99 13.03  − 0.31 0.69
≥ 40.41 7.58 2.97  − 0.61 0.39
Elevation (m)
< 531 15.96 36.45 0.56 2.28
531–861 24.78 35.61 0.30 1.44
861–1181 29.67 25.16  − 0.15 0.85
1181–1565 19.89 2.39  − 0.75 0.12
≥ 1565 9.70 0.39  − 1.00 0.04
Distance to river 

(m)
< 6678 27.56 39.42 0.30 1.43
6678–14,338 24.90 23.74  − 0.05 0.95
14,338–22,194 19.39 19.68 0.01 1.01
22,194–30,836 17.08 13.94  − 0.18 0.82
≥ 30,836 11.07 3.23  − 0.71 0.29
Distance to fold 

(m)
< 3265 48.64 52.84 0.08 1.09
3265–7837 25.60 39.81 0.36 1.55
7837–13,584 11.46 5.68  − 0.50 0.50
13,584–20,377 10.25 1.29  − 0.87 0.13
≥ 20,377 4.04 0.39  − 0.90 0.10
Distance to road 

(m)
< 2795 42.93 51.16 0.16 1.19
2795–6451 33.28 22.71  − 0.32 0.68
6451–11,611 13.40 12.58  − 0.06 0.94
11,611–18,277 5.81 9.94 0.42 1.71
≥ 18,277 4.57 3.61  − 0.21 0.79
Aspect
< 70.89° 19.00 18.26  − 0.04 0.96
70.89–144.19° 17.02 15.23  − 0.11 0.89
144.19–211.86° 21.79 24.58 0.11 1.13
211.86–285.16° 17.38 20.90 0.17 1.20
 ≥ 285.16° 24.80 21.03  − 0.15 0.85
Lithology
S1,  D2C 0.92 0.26  − 0.72 0.28
P2–3,  T1 0.92 0.19  − 0.79 0.21
T1–2 38.53 5.81  − 0.85 0.15
T2,  T3 34.61 47.42 0.27 1.37
J1,  J2,  J3 25.02 46.32 0.46 1.85
Terrain curvature
<  − 3.09 5.60 0.90  − 0.84 0.16
− 3.09 to − 0.83 25.08 17.35  − 0.31 0.69
− 0.83 to 0.83 41.60 65.42 0.36 1.57

Table 1  (continued)

Conditioning 
factors

Percentage 
of area (%)

Percentage of 
landslides (%)

CF value FR value

0.83–3.21 22.83 15.74  − 0.31 0.69
≥ 3.21 4.89 0.58  − 0.88 0.12
NDVI (%)
< 3 11.22 4.90  − 0.53 0.44
3–10 1.76 3.61 0.54 2.06
10–50 19.12 36.13 0.50 1.89
50–75 33.69 37.74 0.16 1.12
≥ 75 41.09 17.61  − 0.54 0.43
SPI
< 0.69 48.72 46.26  − 0.05 0.95
0.69–2.23 21.04 22.19 0.05 1.06
2.23–8.02 17.11 16.71  − 0.02 0.98
8.02–45.07 9.49 10.97 0.13 1.16
≥ 45.07 3.64 3.87 0.06 1.06
TWI
< 1.41 52.78 45.35  − 0.14 0.86
1.41–2.84 22.56 25.35 0.11 1.12
2.84–4.52 14.34 17.61 0.19 1.23
4.52–6.79 7.29 8.71 0.16 1.19
 ≥ 6.79 3.03 2.97  − 0.02 0.98
TRI
< 1.09 53.24 62.19 0.14 1.17
1.09–1.21 29.47 28.65  − 0.03 0.97
1.21–1.39 12.96 7.23  − 0.44 0.56
1.39–1.78 3.83 1.61  − 0.58 0.42
 ≥ 1.78 0.50 0.32  − 0.36 0.64
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conditioning factor; and D denotes the average landslide 
density in the study area.

The sensitivity index of a conditioning factor is defined 
by the maximum difference between the certainty factor val-
ues in various classes of this conditioning factor, as seen in 
Eq. (2). A large value of the sensitivity index is indicated as 
a strong correlation with landslide susceptibility.

where SI stands for the sensitivity index of a conditioning 
factor; and  CFmax and  CFmin, respectively, represent the max-
imum value and minimum value of certainty factor among 
the five classes of this conditioning factor.

The obtained sensitivity indexes of the 12 landslide 
conditioning factors are then sorted in descending order to 
highlight their roles in causing slope failures in the study 
area, as shown in Fig. 4. The result shows that elevation is 
of utmost importance in landslide susceptibility, followed 
by lithology, distance to fold, and terrain curvature. As the 
result suggests, terrain features and geological formations 
and structures have dominant influence on slope stability. 
In contrast, topographic wetness index, aspect, and stream 
power index have lower sensitivity index values, indicating 
these three factors exert relatively less influence on landslide 
occurrence in the study area.

Four base models selected for ensembles

The above analysis of the spatial correlations between land-
slide conditioning factors and landslide distribution pro-
vides the basis for landslide susceptibility modelling and 
mapping. In this section, four of the most commonly used 
landslide susceptibility models (i.e. FR model, FA model, 
BPNN model, and SVM model) are introduced as the base 
models for ensembles. Each one of the four base models has 
been well trained and validated before performing ensemble 
methods.

(2)SI = CFmax − CFmin

Frequency ratio (FR) model

Frequency ratio is simply defined by the ratio of the land-
slide occurrence percentage to the area occupation percent-
age for various classes of every conditioning factor, as for-
mulated in Eq. (3) (Samanta et al. 2018). A higher frequency 
ratio implies greater chances of landslides.

where  FRi stands for the frequency ratio of the ith class of a 
conditioning factor; Ni and Si, respectively, denote the num-
ber of landslides and the area size within the ith class of this 
conditioning factor; N is the total number of landslides in 
the study area; and S is the total study area.

The FR values of the 12 conditioning factors (each with 
five classes) are calculated and presented in Table 1. For 
every pixel in the study area, the overall FR value is obtained 
by aggregating the FR values of the 12 conditioning factors. 
The overall FR values of all pixels are then grouped into five 
intervals by the Jenks optimization method. The study area 
is subsequently demarcated into five landslide susceptibility 
zones for visual interpretation: very low, low, medium, high, 
and very high, as shown in Fig. 5a. Comparing the produced 
landslide susceptibility map to the landslide/non-landslide 
points, it is found that the high- and very high-susceptibility 
classes agree well with the historical landslides along the 
Yangtze River, and the low- and very low-susceptibility 
classes agree well with the non-landslide sample points at 
the southern end of the study area.

Fuzzy assessment (FA) model

The key of the fuzzy assessment model is to establish 
appropriate membership functions for assigning member-
ship values of landslide susceptibility to each pixel for every 
individual conditioning factor (Gemitzi et al. 2011). In this 

(3)FR
i
=

N
i

/
N

S
i

/
S

Fig. 4  Sensitivity index ranking 
of the 12 conditioning factors
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study, the membership function is expressed by Eq. (4). The 
membership values range between 0 and 1, reflecting the 
degree of certainty of membership.

where M(Ti) is the membership value; V is the value of a 
conditioning factor; and T1–T5 are the five control points of 
this conditioning factor derived by the natural breakpoint 
method. T1–T5 are corresponded to the five susceptibility lev-
els (i.e. very low, low, medium, high, and very high) accord-
ing to the certainty factor value of the five classes to which 

(4)

M(T1) =

⎧
⎪⎨⎪⎩

0, V > T2

−(V − T2)∕(T2 − T1), T1 < V ≤ T2

1, V ≤ T1

M(T
i=2,3,4) =

⎧
⎪⎪⎨⎪⎪⎩

0, V > T
i+1

−(V − T
i+1)∕(Ti+1 − T

i
), T

i
< V ≤ T

i+1

(V − T
i
)∕(T

i
− T

i−1), Ti−1 < V ≤ T
i

0, V ≤ T
i−1

M(T5) =

⎧
⎪⎨⎪⎩

1, V ≥ T5

(V − T4)∕(T5 − T4), T4 ≤ V ≤ T5

0, V < T4

T1–T5 belong (as seen in Table 1). Thus, for every condition-
ing factor in each pixel, the membership values correspond-
ing to the five susceptibility levels are determined. Subse-
quently, a 5 × 12 membership matrix is obtained for the 12 
conditioning factors in each pixel.

In addition, the importance weight vector is also obtained 
as the normalized sensitivity index values of the 12 condi-
tioning factors. Then through the product of the membership 
matrix and the importance weight vector, the weighted mem-
bership values of the five susceptibility levels are derived for 
each pixel. Finally, the susceptibility level of each pixel is 
recognized using the maximum membership principle. As 
shown in Fig. 5b, the resulting susceptibility map visually 
shows that most of the study area is predicted to be highly 
susceptible to landslides, and even some non-landslide sam-
ple points fall into the high- and very high-susceptibility 
classes.

Backpropagation neural network (BPNN) model

Backpropagation neural network is a multi-layer feedforward 
network trained by error backward propagation which is an 
optimization algorithm using gradient descent for supervised 

Fig. 5  Landslide susceptibility zonation maps generated by: a FR model; b FA model; c BPNN model; d SVM model; e matrix ensemble 
method; f partition ensemble method; g probability-weighted ensemble method
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learning of artificial neural networks (Pradhan and Lee 
2010). In this study, 1050 out of 1550 historical landslides 
and 1050 out of 1550 non-landslide sample points are ran-
domly selected as the training dataset, and the remaining 500 
landslides and 500 non-landslide sample points as the vali-
dation dataset. Then, the Bayesian regularization algorithm 
is applied to the BPNN model training, since this algorithm 
can achieve good generalization, fast convergence speed, and 
high learning accuracy (Bui et al. 2012). Meanwhile, the 
error backpropagation process is adjusted using the weight 
decay method to reduce the verification error.

Using the trained BPNN model, 72.14% of the training 
dataset and 85.10% of the validation dataset are success-
fully classified into the corresponding landslide susceptibil-
ity levels. It is noted that correct classifications include two 
circumstances: (1) historical landslides fall into the high- 
and very high-susceptibility classes, and (2) non-landslide 
sample points fall into the low- and very low-susceptibility 
classes. Finally, the landslide susceptibility zonation map of 
the study area is generated by the optimized BPNN model, 
as shown in Fig. 5c. It visually shows that the BPNN model 
has good performance in the north-west of the study area 
(where the densely distributed landslides fall into the very 
high-susceptibility classes) and at the south-east end of the 
study area (where the densely distributed non-landslide sam-
ple points fall into the very low-susceptibility classes).

Support vector machine (SVM) model

Support vector machine is a supervised nonlinear machine 
learning algorithm, which differentiates the classes with an 
optimal hyper-plane that maximizes the margin between the 
classes, and the data points closest to the hyper-plane are 
called support vectors (Vapnik 1995; Christianini and Shawe-
Taylor 2000). Same as the dataset division for the BPNN 
model training, 1050 out of 1550 historical landslides and 
1050 out of 1550 non-landslide sample points are randomly 
selected as the training dataset, and the remaining 500 land-
slides and 500 non-landslide sample points as the validation 
dataset. Then, the radial basis function (RBF) is employed 
as the kernel function to train the SVM model, since RBF 
kernel has been proved to produce the best prediction results 
in many studies (Pradhan 2013; Pourghasemi et al. 2013; He 
et al. 2019). The detailed description of underlying math-
ematics of applying the SVM model with RBF kernel to 
landslide prediction is presented in Pourghasemi et al. (2013).

Using the trained SVM model, 83.38% of the training 
dataset and 90.10% of the validation dataset are success-
fully classified into the corresponding landslide susceptibil-
ity levels. The resulting spatial prediction of landslide sus-
ceptibility in the study area is shown in Fig. 5d. It is found 
that the landslide and non-landslide points show satisfactory 

consistency with the detected very high- and very low-sus-
ceptibility classes, respectively.

Three types of ensemble methods proposed

Three different ensemble approaches, i.e. the matrix ensem-
ble method, partition ensemble method, and probability-
weighted ensemble method, are proposed to integrate the 
outcomes of the selected four base landslide susceptibility 
models mentioned above. The ensemble strategies and pro-
cesses are described in detail below.

Matrix ensemble method

The matrix ensemble method is a qualitative decision support 
tool that uses a decision matrix to integrate two sources of 
information and make a comprehensive decision (Wei et al. 
2018; Ahmed et al. 2018). In this study, a decision matrix is 
created to integrate landslide susceptibility results of different 
models, as shown in Table 2. The decision matrix is a two-
dimensional symmetric matrix listing all possible combina-
tions of landslide susceptibility levels (obtained from Model 
A and Model B) and the corresponding final susceptibility 
classifications. According to this decision matrix, for exam-
ple, if the susceptibility levels of a pixel derived by Model 
A and Model B are “very high” and “medium”, respectively, 
then the ensemble result should be “high”; if the two models 
result in the same susceptibility level for a pixel, then the 
ensemble result will remain unchanged.

The process of applying the decision matrix to ensem-
ble the four base models includes two steps, as illustrated 
in Fig. 6. First, the two statistical models (i.e. FR model 
and FA model) and the two machine learning models (i.e. 
BPNN model and SVM model) are ensembled separately 
according to the decision matrix. Then, the two sets of 
ensemble results obtained from the first step are ensem-
bled again by the decision matrix. Consequently, the 
final landslide susceptibility zonation map is produced 
as seen in Fig. 5e. The map shows that most of the his-
torical landslides fall into the predicted high- and very 
high-landslide-susceptibility areas such as the north-west 
region and the areas on both sides of the Yangtze River. 

Table 2  Decision matrix for ensembling two landslide susceptibility 
models

Model I 
Model II Very low Low Medium High Very high

Very low Very low Very low Low Low Medium

Low Very low Low Low Medium High

Medium Low Low Medium High High

High Low Medium High High Very high

Very high Medium High High Very high Very high
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The non-landslide sample points also agree well with the 
predicted low- and very low-landslide-susceptibility areas.

Partition ensemble method

The partition ensemble method firstly divides the study area 
into several subareas based on the regional topographic 
distribution characteristics, then selects the best evaluation 
results in each subarea, and assembles them together to gen-
erate a new landslide susceptibility map for the whole study 
area (Hong et al. 2018b; Martinello et al. 2020). Therefore, 
it is a semi-quantitative method. According to the presence 
of the main fold belts, the study area is partitioned into five 
subareas I–V as shown in Fig. 7. To compare the perfor-
mance of the four base models in each subarea, the success 
rate involving both historical landslides and non-landslide 
sample points is calculated as below.

where  SRi is the success rate of a base model in subarea i; 
ni_L is the number of historical landslides that fall into the 
high- and very high-susceptibility classes in subarea i; ni_NL 
is the number of non-landslide sample points that fall into 
the low- and very low-susceptibility classes in subarea i; 
and Ni_L and Ni_NL, respectively, denote the total number of 
historical landslides and the total number of non-landslide 
sample points in subarea i.

Table 3 shows the calculated success rates of the four base 
models in each subarea. The largest success rate is considered 
to be the best evaluation result for each subarea among the 
four base models, which is highlighted in bold in each col-
umn of Table 3. It is found that the FA model performs best 
in terms of success rate in subarea I, and the SVM model per-
forms best in the remaining four subareas. Consequently, the 
best evaluation results of landslide susceptibility in the five 
subareas are extracted to piece together the final landslide 
susceptibility zonation map, as shown in Fig. 5f. By selecting 
and combining the optimal result from the four base models 

(5)SR
i
=

n
i_L + n

i_NL

N
i_L + N

i_NL

in each subarea, the partition ensemble method yields better 
results than each base model.

Probability‑weighted ensemble method

The probability-weighted ensemble method assigns prob-
ability weights to the outputs of the base models (Zhang 
et al. 2013; Hong et al. 2018a; Martinello et al. 2020). In 
this study, the weighting factors of the four base models are 
determined by the overall success rate of historical land-
slides as well as non-landslide sample points in the whole 
study area. Then the normalized weights assigned to various 
base models are calculated as follows (Zhang et al. 2013).

Fig. 6  Operation steps of the 
matrix ensemble method

Fig. 7  Partition of the study area into five subareas
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where P(Mi|D) is the normalized posterior probability 
weight of the ith base model Mi; P(D|Mi) is the observation 
probability of Mi, which is equal to the overall success rate 
of historical landslides and non-landslide sample points in 
the whole study area obtained from Mi; P(Mi) is the prior 
probability weight of Mi, which is equally set to 0.25 for the 
four base models; D is the dataset consisting of the 1550 
historical landslides and 1550 non-landslide sample points; 
and K is the number of base models which equals four.

Table 4 presents the overall success rates and the resulting 
normalized weights of the four base models. For each pixel 
in the study area, the landslide susceptibility levels predicted 
by the four base models are weighted correspondingly by the 
normalized weights to determine the final landslide suscep-
tibility level of the pixel. Finally, the landslide susceptibility 
zonation map of the study area is produced using the proba-
bility-weighted ensemble method, as shown in Fig. 5g. This 
susceptibility map illustrates that most historical landslides 
fall into the high- and very high-susceptibility areas, and 
most non-landslide sample points fall into the low- and very 
low-susceptibility areas. A careful visual inspection reveals 
that the ensembled landslide susceptibility zonation maps 
obtained from the matrix and probability-weighted ensemble 
methods are very similar over the entire study area.

Results and discussion

To demonstrate the effectiveness of the proposed three 
ensemble methods for landslide susceptibility mapping, this 
section presents an extensive comparative analysis on the 
prediction performance of the three ensemble methods and 

(6)P
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M

i
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i
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four base models in a quantitative manner. Prediction perfor-
mance has two connotations: prediction accuracy and reli-
ability. In this study, prediction accuracy is examined by the 
two basic decision rules (used to define a high-quality land-
slide susceptibility zonation map) and the overall prediction 
accuracy (measured with the receiver operating characteris-
tics curve). Reliability is characterized by the magnitude of 
statistical discrepancy calculated by the information entropy. 
Additionally, a brief discussion is provided to explicate what 
makes this study different from previous studies related to 
landslide susceptibility mapping, reveal the reasons behind 
the different effects of the proposed three ensemble methods, 
and recommend the most preferable ensemble method based 
upon prediction performance as well as practical operability.

Comparative analysis between the ensemble 
methods and base models

Two basic decision rules of a high‑quality landslide 
susceptibility zonation map

In order to quantitatively evaluate and compare the prediction 
performance of the three ensemble methods and four base mod-
els, the percentage of landslide occurrence and the percentage 
of area occupation in each landslide susceptibility level are 
obtained from the produced landslide susceptibility zonation 
maps. The detailed statistical results are presented in Fig. 8.

A high-quality landslide susceptibility zonation map is 
supposed to fulfil the two basic decision rules: (1) most of 
the historical landslides should be located in the predicted 
high-susceptibility zones; (2) the high-susceptibility classes 
should cover small areas (Sujatha et al. 2012). In other 
words, the predicted highly susceptible zones are better to 
enclose more historical landslides and cover smaller areas. 
Based on the statistical results in Fig. 8, the percentage of 
landslide occurrence and the percentage of area occupation 
are calculated within the high- to very high-susceptibility 
classes for the three ensemble methods and four base mod-
els. The results are shown in Table 5.

In the high- and very high-susceptibility classes obtained 
from the matrix ensemble method, partition ensemble 
method, and probability-weighted ensemble method, the 
percentages of landslide occurrence (i.e. success rate of his-
torical landslides) are 96.00%, 90.26%, and 96.39%, respec-
tively, and the percentages of area occupation are 54.71%, 

Table 3  Comparison of the 
success rate between the four 
base models in each subarea

Base models Subarea I Subarea II Subarea III Subarea IV Subarea V

FR model 0.7081 0.8971 0.7748 0.5745 0.8444
FA model 0.7632 0.9383 0.7919 0.5804 0.8370
BPNN model 0.6794 0.9348 0.7748 0.6588 0.7439
SVM model 0.7536 0.9451 0.7935 0.7843 0.9259

Table 4  Overall success rate and normalized weight of the four base 
models

Base models Overall success rate Normalized weight

FR model 0.7771 0.2436
FA model 0.7945 0.2490
BPNN model 0.7635 0.2393
SVM model 0.8555 0.2681
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35.85%, and 51.43%, respectively. Based on the two basic 
decision rules, it manifests that the matrix and probability-
weighted ensemble methods produce relatively close results 
and perform better than the partition ensemble method in 
terms of success rate of historical landslides. The partition 
ensemble method yields smaller highly susceptible areas 
than the other two ensemble methods.

Among the four base models, the FA model has the high-
est success rate of historical landslides (95.23%) but also 
covers the largest areas (63.83%), while the SVM model 
covers the smallest highly susceptible areas (36.76%) but 
meanwhile encloses the least historical landslides (86.19%). 
The statistical results of the percentage of landslide occur-
rence and the percentage of area occupation in the high- to 
very high-susceptibility classes derived from the FR model 
and BPNN model are between that of the FA model and 
SVM model. The results demonstrate that none of the four 
base models can synchronously satisfy the above-mentioned 
two basic decision rules very well. Compared with the FA 
model, the matrix and probability-weighted ensemble meth-
ods perform better because they achieve not only higher 
success rate of historical landslides but also cover smaller 
highly susceptible areas. Compared with the SVM model, 

the partition ensemble method performs better because it 
achieves not only smaller highly susceptible areas but also 
higher success rate of historical landslides. The results show 
that the proposed three ensemble methods could better sat-
isfy the two basic decision rules than the four base models, 
and thus are encouraging in improving the quality of the 
landslide susceptibility map for the study area.

It should be noted that although the two basic decision 
rules are widely used for directly assessing landslide sus-
ceptibility model performance (Sujatha et al. 2012), they 
only emphasize the classification accuracy and efficiency 
of landslide prone areas, and neglect the fitting goodness 
between the non-landslide sample points and the predicted 
stable zones, which might lead to limited insight into the full 
model performance. Moreover, the two basic decision rules 
could not identify the best ensemble method.

Overall prediction accuracy measured by the receiver 
operating characteristics curve

The receiver operating characteristics (ROC) curve is a 
standard tool for statistically measuring the overall predic-
tion accuracy of landslide susceptibility models and the 

Fig. 8  Statistical results of the 
three ensemble methods and 
four base models: a percentage 
of landslide occurrence in each 
landslide susceptibility level; b 
percentage of area occupation 
in each landslide susceptibility 
level
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associated zonation maps by considering both landslides and 
non-landslides (Reichenbach et al. 2018). The ROC curve 
plots the true positive rate (sensitivity) on Y-axis and the 
false positive rate (1-specificity) on X-axis. The area under 
the curve (AUC) measures the probability of correct clas-
sification and thus characterizes the global accuracy of a 
model. An AUC value close to 1 indicates high accuracy. In 
this study, the ROC curve is acquired to further compare the 
overall prediction accuracy of the proposed three ensemble 
methods versus the four base models by comparing the sus-
ceptibility zonation maps to the 1550 historical landslides 
and 1550 non-landslide sample points.

Figure 9a depicts the ROC curves of the four base models. 
The FR model, FA model, BPNN model, and SVM model 
achieve AUC of 65.74%, 74.34%, 70.98%, and 78.60%, 
respectively. The AUC values are less than 80%, indicating 
the overall prediction accuracy of the four base models is not 
desirable. Nonetheless, the SVM model performs best among 
the four base models in terms of overall prediction accuracy. 
Figure 9b depicts the ROC curves obtained from the three 
ensemble methods. The matrix ensemble method, partition 
ensemble method, and probability-weighted ensemble method 
achieve AUC of 83.78%, 80.09%, and 82.61%, respectively. 
The ROC plots confirm that all the three ensemble methods 
have high performance (AUC > 80%) compared with the four 
base models (AUC < 80%). The matrix ensemble method 
provides the best improvement of overall prediction accuracy 
over the base models, followed by the probability-weighted 
ensemble method and partition ensemble method.

Statistical discrepancy quantification using information 
entropy

Reliability measures the consistency of results, which can 
be reasonably identified by the magnitude of statistical 

discrepancy (Karagrigoriou 2012). The smaller the observed 
discrepancy, the more consistent the evaluation results and 
the higher the reliability. There are various approaches to 
examine statistical discrepancy such as McNemar test (Kav-
zoglu et al. 2015), Friedman test (Zhou et al. 2018), Wil-
coxon test (Sahin 2020), and information entropy theory 
(Grunwald and Dawid 2004).

In this study, information entropy theory is adopted to 
measure the discrepancy of landslide susceptibility mapping 
results. The map of information entropy provides a direct 
visualization of the discrepancy distribution in each pixel of 
the study area, and the average information entropy charac-
terizes the overall statistical discrepancy in the whole study 
area. The information entropy in each pixel and the average 
information entropy in the whole study area, denoted as E(i) 
and EA, respectively, are formulated as follows (Wellmann 
and Regenauer-Lieb 2012; Zhao et al. 2021).

where  Pl(i) is the probability of each landslide suscepti-
bility level l in the pixel i; L is the set of the total five sus-
ceptibility levels; and |S| denotes the cardinality of the set S 
(herein |S| is equal to the total number of pixels). The infor-
mation entropy in a pixel is 0 when the three ensemble meth-
ods or the four base models produce the exact same result of 
landslide susceptibility level, while the information entropy 
is the highest (i.e. equal to 1) when the methods/models result 
in completely distinct landslide susceptibility levels.

Figure 10 illustrates the information entropy distribu-
tion map of the four base models and the three ensemble 

(7)E(i) = −
∑
l∈L

P
l
(i) log P

l
(i)

(8)EA = −
1

|�|
∑
i∈S

E(i)

Table 5  Statistical results of the four base models and three ensemble methods

Method/model type Two basic decision rules Overall prediction 
accuracy (AUC 
value)

Statistical discrepancy 
(average information 
entropy)Percentage of landslide occur-

rence in the high- to very high-
susceptibility classes (success 
rate of landslides) (%)

Percentage of area occupation 
in the high- to very high-
susceptibility classes (%)

Base models
FR model 90.19 42.58 65.74 0.4937
FA model 95.23 63.83 74.34
BPNN model 93.68 48.81 70.98
SVM model 86.19 36.76 78.60
Ensemble methods
Matrix ensemble 96.00 54.71 83.78 0.2991
Partition ensemble 90.26 35.85 80.09
Probability-weighted ensemble 96.39 51.43 82.61
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methods. It is shown that the pixels with high entropy 
(the areas in red colour) in the information entropy map 
of the three ensemble methods are remarkably reduced 
compared to that of the four base models. Besides, the 
calculated average information entropies of the four 
base models and the three ensemble methods are 0.4937 
and 0.2991, respectively, with a significant decrease of 
average information entropy after ensembles. The result 
indicates that the discrepancy of landslide susceptibility 
mapping results is effectively decreased by applying the 
proposed ensemble methods, even though their ensem-
ble strategies are quite different. Hence, the uncertainty 
in landslide susceptibility mapping introduced by model 
diversity can be reduced through multi-model ensembles. 
From this point of view, the proposed ensemble meth-
ods can enhance the reliability of landslide susceptibility 
mapping in addition to increasing the prediction accuracy.

Discussion

The vast majority of previous studies related to landslide 
susceptibility mapping were carried out to develop opti-
mized models for high prediction accuracy. For example, 
one of the most recent studies conducted by Sun et al. 
(2020) aimed to develop optimized random forest model 
involving hyper-parameter optimization using the Bayes-
ian algorithm. Different from previous studies, this study 
adopts three different ensemble strategies to combine 
multiple well-developed landslide susceptibility models 
for an increase in prediction accuracy and higher reli-
ability as well, and therefore is a systematic optimization 
research for landslide susceptibility mapping. Another 
merit of this study is that in addition to comparing the 
overall prediction accuracy, the reliability of the ensemble 

Fig. 9  ROC test results: a four 
base models; b three ensemble 
methods

Fig. 10  Information entropy 
plots: a four base models; b 
three ensemble methods
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methods is further verified by measuring and comparing 
the statistical discrepancies between the methods/models.

As the evaluation results show, the proposed three 
ensemble methods exhibit different effects in improv-
ing the quality of landslide susceptibility mapping. The 
reason behind that is their different ensemble units and 
principles. As mentioned previously, the basic ensem-
ble unit of the matrix and probability-weighted ensemble 
methods is the pixel, much finer than the subarea used 
in the partition ensemble method. As for the ensemble 
principles, the matrix and probability-weighted ensemble 
methods can fully integrate the outcomes of the four base 
models and produce comprehensive evaluation results. In 
other words, each base model contributes to the ensemble 
results. The partition ensemble method directly selects 
the result of a single base model with local optimum 
among the four base models. Therefore, the matrix and 
probability-weighted ensemble methods perform superior 
to the partition ensemble method.

Overall, among the three ensemble methods proposed, 
the matrix ensemble method is the most effective to 
improve the overall prediction accuracy of landslide sus-
ceptibility mapping. Besides, as it adopts a rather simple 
qualitative ensemble rule without complex calculation, 
this method is well universal and operable. To summa-
rize, the matrix ensemble method has the best prediction 
performance as well as the strongest practical operability, 
and thus is the most preferable for regional landslide sus-
ceptibility mapping.

Conclusion

Each existing landslide susceptibility model has its spe-
cific strengths and limitations, which leads to the fact that 
there is no universal model that fits all geoenvironmental 
conditions. To improve the prediction accuracy and reli-
ability of landslide susceptibility mapping, three different 
ensemble approaches for combining multiple susceptibility 
models are investigated in this paper, including the matrix 
ensemble method, partition ensemble method, and proba-
bility-weighted ensemble method. Within a GIS environ-
ment, a case study of Fengjie County located in the Three 
Gorges Reservoir Region, China, is conducted to illustrate 
the effectiveness of the proposed ensemble methods. Four 
of the most commonly used landslide susceptibility mod-
els are selected as base models for ensembles, including 
frequency ratio, fuzzy assessment, backpropagation neural 
network, and support vector machine models. The follow-
ing conclusions can be drawn from this study.

1. The three ensemble methods proposed can effectively 
improve the overall prediction accuracy of landslide 

susceptibility mapping by taking advantage of the base 
models. Compared to the four base models, the three 
ensemble methods better satisfy the two basic decision 
rules used to define a high-quality landslide suscepti-
bility map. Moreover, the ensemble methods achieve 
higher overall prediction accuracy (AUC > 80%) than 
the four base models (AUC < 80%). In particular, the 
matrix ensemble method provides the best improvement 
in the overall prediction accuracy.

2. The three ensemble methods proposed can also improve 
the reliability of landslide susceptibility mapping. The 
reliability of the ensemble methods is reasonably inter-
preted by the magnitude of statistical discrepancy of 
the landslide susceptibility mapping results which is 
measured by information entropy. The calculated aver-
age information entropy of the three ensemble methods 
is 0.2991, which is significantly smaller than that of the 
four base models (i.e. 0.4937). The results demonstrate 
that the proposed three ensemble methods could pro-
duce more consistent and reliable results. Therefore, the 
proposed multi-model ensemble methods are powerful 
tools for improving not only prediction accuracy but also 
reliability in landslide susceptibility mapping.

3. Comparison between the three ensemble methods 
demonstrates that the matrix ensemble method is most 
advantageous in both prediction accuracy and practi-
cal operability, followed by the probability-weighted 
ensemble method and partition ensemble method. The 
final landslide susceptibility zonation map produced by 
the matrix ensemble method more accurately portrays 
the spatial likelihood of landslides occurring in Fengjie 
County. The percentages of area occupation in the very 
high-, high-, medium-, low-, and very low-landslide sus-
ceptibility classes are 34.42%, 20.30%, 10.90%, 8.74%, 
and 25.64%, respectively. This refined landslide hazard 
map can better facilitate local land planning, early warn-
ing, landslide mitigation, and other practical applica-
tions.
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