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Abstract
Remotely sensed data play an essential role in environmental analysis and crop management. The arid agriculture region 
of Thal, Pakistan, is the major chickpea-growing region of the world. It was important to analyze the chickpea growth rate 
and yield with modern growing technology for better production in the changing climate. This study compared unmanned 
aerial vehicle (UAV) and Landsat imagery to monitor the crop growth and environmental parameters throughout the growing 
season. Twelve plots (2 × 2 m) were established in the field to monitor seven environmental parameters (plant height, number 
of pods and plant density, and final yield) for chickpea crop growth. A UAV drone mounted with Zenmuse X3 camera with 
four spectral was flown over the chickpea field on a biweekly basis to capture images with a spatial resolution of 1.86 m. The 
Landsat imagery (30 m spatial resolution) was also obtained, having the same UAV flight date. In spatio-temporal analysis, 
various vegetation indices, i.e., normalized difference vegetation index (NDVI) and soil-adjusted vegetation index (SAVI), 
were derived from UAV and Landsat imageries. The environmental impact parameters for crop growth were compared with 
the estimated final yield of chickpea crop. A coefficient of correlation (r2 = 0.67; p ≤ 0.05) between observed chickpea crop 
yield and UAV-derived SAVI was significant (p ≤ 0.05). In comparison, a non-significant coefficient (r2 = 0.21; p ≥ 0.05) was 
found between NDVI derived from Landsat imagery with yield. The chickpea crop yield was analyzed by estimating simple 
linear regression between NDVI and actual yield of chickpea crop during 30–40 days before the harvesting period. The 
average difference between actual yield and predicted yield through SAVI-D and NDVI-L was 558.42, 553.12, 556.84 kg/
ha, respectively.
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Introduction

The remote sensing imagery (e.g., Landsat and Sentinel) 
has been extensively used in the agricultural analysis. 
However, it has temporal, spectral, and spatial resolution 
limitations. Crop monitoring through UAV-based sensors 
is now commonly used technology and an actual, fast, and 
beneficial method mostly in precision agriculture. Landsat 
satellite provides better results to estimate pre-harvesting 
crop yield. UAV is an emerging technology for the agri-
culture sector that helps to increase crop production and 
farm efficiency. Drones provide a quick and high-resolu-
tion image format view of crop fields to farmers for water 
stress, diseases, plant growth, plant health, and fertilizer 
monitoring. Unmanned aerial vehicle system has been rec-
ognized as an excellent tool to monitor crop temporal and 
spatial pattern throughout the growing season.

Satellite remote sensing using optical sensors helps 
to study the growth of plants and to calculate vegetation 
indices. NDVI calculated from different spatial resolu-
tions (sub-5 cm to 30 m and 250 m) varies with scale. 
Aggregated NDVI values 30 m and 250 m were compared 
with Landsat 30-m products collected from a commer-
cial vineyard in Victoria (Wang et al. 2017). Remotely 
sensed data provide an accurate estimation of crop yield. 
A comparison of two methods, (I) spatial yield estimation 
and (II) Landsat-based estimates, shows an error of 2.3%, 
while single field results show the accuracy of 13% by 
using satellite information.

Satellite-based method of estimating crop yield can be 
applied to other regions of the same crops, while hyperspec-
tral sensors have more significant potential to show better 
results for early crop yield estimation (Bach 1998). Satellite-
based spectral data and crop yield data of a small area of 
multiple variations are useful to estimate large-area crop 
yield estimation of any crop before its harvesting. Remote 
sensing satellite IRS-1B-LISS-II and crop yield data have 
been used for early crop yield estimation of Rohtak, Dis-
trict India, during 1995–1996 (Singh et al. 2002). Remotely 
sensed products like Landsat7 ETM + provide a better tool to 
estimate pre-harvest crop yield production at a small scale, 
even at the district level. Crop yield estimation (rice crop) 
using remotely sensed Landsat7 ETM + data was done using 
NDVI and RVI (ratio vegetation index) indices, and strong 
relationship of R2 = 0.92 was found between observed and 
predicted values (Siyal et al. 2015). Accurate and timely 
information about any crop is important for farmers and pol-
icymakers. Manual collection of field data for the pre-har-
vesting forecast is expensive, and it takes time, whereas, by 
using remotely sensed data the timely and précised informa-
tion was collected through efficient way. Study emphasized 
the use of MODIS-derived vegetation index for estimating 
wheat yield before 6 weeks of harvesting wheat crop in the 
Punjab Province of Pakistan.

The world population is increasing continuously day by 
day, and the agriculture sector is facing problems (labor cost, 
irrigation cost, diseases, applications of fertilizers) (Shaheen 
and Iqbal 2018). The drone is an emerging technology in 
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the agriculture sectors and has the potential to solve signifi-
cant challenges. Bird controls, crop monitoring, irrigation, 
and soil analysis are the major applications of drone (UAV) 
technology (Ahirwar et al. 2019). Innovative technologies, 
especially UAV, make inordinate input in the improvements 
of agriculture. The study elaborates on the applications of 
UAV in agriculture. Using UAV DJI Phantom3 digital mod-
els, analysis and projections were derived (Hovhannisyan 
et al. 2018). The use of drones from the military, industry, 
and agriculture sectors is increasing due to the development 
of high-quality sensor technology in the market. Research 
work aimed to achieve and highlight the beneficial usage and 
implementation of drones in agriculture for deep observa-
tion, crop monitoring, and prevention of crop damages from 
any diseases or water stress (Puri et al. 2017).

The use of UAV for rapid image acquisition is rising. 
The workflow of the image acquisition completes in three 
phases: (I) preflight planning, (II) UAV flight and image 
acquisition, (III) image pre-processing. The image pro-
cessing method was done and then NDVI was applied to 
the acquired images of UAV. Due to high spatial resolu-
tion, the difference between bare soil and vegetation can 
be efficiently observed in results (Torres-Sánchez et al. 
2013). Commonly, high-resolution UAV imagery is used 
to study crop variations. UAV imagery provides a better 
solution for precision agriculture to monitor crops (Zhang 
and Kovacs 2012). Unmanned Aerial Imagery (UAI) is a 
reliable source to monitor crops and to calculate vegetation 
indices. UAV-based remote sensing for crop monitoring is a 
well-built method for crop yield prediction. High-resolution 
UAV imagery was used to access the vegetation traits and 
associate the link between yield and canopy NDVI. A high 
correlation (R2 = 0.49) was found between UAV-NDVI and 
Grain Yield under full irrigation while (R2 = 0.14) under 
limited irrigation (Hassan, 2019). UAV-based image analy-
sis is an optimistic tool to monitor crop phenotyping at the 
crop’s growing stage. High-resolution UAV imagery was 
used to access the crop emergence pattern. Results show that 
tomato crop emergence pattern through RGB imagery taken 
from UAV was highly correlated R2 = 0.96 with the results 
of crop emergence pattern (Li et al. 2019). Drones are the 
best and low-cost image acquisition instruments that pro-
vide quick, high resolution for crop evaluation. A study was 
conducted to highlight the cheapest method of crop health 
monitoring and vegetation stress by accretion through UAV 
drone. NDVI was applied to the drone data for vegetation 
health monitoring (Mahajan and Bundel 2017). Using UAV 
for precision agriculture, ten varieties of wheat crops in the 
south west of France were monitored. Derived vegetation 
indices were relevant to vegetation analysis and established 
a relationship between LAI and NDVI (Lelong et al. 2008). 
UAV is a time-saving approach in remote sensing for crop 
monitoring and yield assessment. UAV technology mounted 

with different sensors provides the best way to predict crop 
yield prediction. Rice yield estimation was done by UAV 
imagery, at a height of 300 m using UAV B, G, R and NIR 
band imagery (Zhou 2017). Real-time feedback of crops is 
possible through UAV providing excellent quality imagery 
with good spatial and temporal resolution. The present study 
emphasizes the potential use of UAV for crop canopy cover 
and NDVI during the growing season (Putra et al. 2021). 
Plant height, LAI, and NDVI were correlated on weekly 
basis. Coefficient of determination was R2 = 0.72 between 
LAI obtained from ceptometer and canopy cover estimated 
from UAV imagery (Enciso, 2019). UAV technology has 
flexibility to capture high-resolution imagery by utilizing 
lesser time. Crop nutrients contamination, crop growth 
monitoring, diseases, and pests monitoring are carried out 
using UAV imagery (a wide and quick application of remote 
sensing). UAV technology has a wide range of perspectives 
in the agriculture sectors (Jia et al. 2016).

Remotely sensed data provide valuable information for 
crops. Using vegetation indices, comparison of Sentinel-2 
imagery and UAV imagery was done for the vineyard field. 
NDVI results obtained from Sentinel-2 satellite and UAV 
imagery showed that UAV imagery showed greater vari-
ability within the fields than the Sentinel-2 dataset (Khaliq 
et al. 2019). Agriculture monitoring and early harvesting 
crop yield estimation through remote sensing are an efficient 
tool, and it depends upon the resolution and scale of the 
remotely sensed data—satellite data used especially for peri-
odic monitoring of crops. A study was conducted to compare 
the crop pattern through Landsat and UAV imagery. Cor-
relation between Landsat and UAV indices varies within a 
range of R2 of 0.5–0.7. UAV imagery provides better spatial 
resolution results within the fields for variable rate applica-
tions (Lukas et al. 2016). Tattaris et al. (2016) used a low-
flying UAV and satellite-based remote sensing techniques, to 
compare crop temperature and NDVI for crop improvement 
(Tattaris et al. 2016). Precision agriculture is a better option 
for the appropriate results of crop production. The study 
emphasizes the use of UAV for precision agriculture. Com-
paring Landsat8 datasets and drone imagery shows different 
results for both datasets because of small-scale and large-
scale areas with low and high spatial resolution. However, 
agriculture monitoring through UAV for large-scale crops is 
difficult but saves time (Murugan et al. 2017). NDVI is a bet-
ter tool to detect yield variations within the field. The yield 
compared with the NDVI coefficient of correlation obtained 
between NDVI and yield was 0.71 and 0.67 (Gallego et al. 
2015). High-resolution UAV images were used to estimate 
LAI and compare it with WorldView-2 imagery (WV2). 
Three indices (Av, Vs, Sc) were calculated using UAV and 
WV2 to predict the plot level (10 × 10 m) LAI. Results show 
the highest precision of WV2 AvNDVI (R2 = 0.77) whereas 
ScNDVI UAV(R2 = 0.81) (Tian et al. 2017).
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The main objective of the study was to use advanced tech-
nology (UAV imagery) in crop yield and crop health analy-
sis during the growing season of chickpea crop. This is the 
pioneer study for chickpea crops using UAV (remote sensing 
technique), as drones provide quick use and easy access for 
small sections of crops with a different combination of sen-
sors. Previously, different studies for other crops have used 
UAV imagery generally for yield monitoring. In agriculture, 
UAV images are useful for acquiring knowledge about agri-
cultural production and tracking agricultural conditions. The 
visible light and near-infrared remote sensing images are 
captured in the experiment using a high-definition optical 
camera and a multi-spectral camera. UAV remote sensing 
is a useful tool for gathering knowledge about agricultural 
conditions. However, this study represents the use of UAV 
imagery and other real-time crops physical and climatic vari-
ables throughout the field and for different plots based on 
variations to monitor crop yield spatially within selected 
fields of chickpea, which is an innovative technique in this 
area. Crop yield was estimated using both UAV and Land-
sat imagery, and its comparison was made in the sense of 
yield. Vegetation indices are such that NDVI and SAVI were 
applied to the UAV and Landsat imagery. A detailed correla-
tion between yield (dependent variable) and NDVI, SAVI, 
pH, soil temperature, number of plants, number of pods, 

and plant height (independent variables) was performed to 
observe trend and efficiency with each independent variable. 
This is the first novel study of its kind for chickpea crop 
yield estimation using UAV (remote sensing technique) with 
related agro-climatic variables.

Materials and methods

Study area

The study area lies in Bhakkar district (31° 37′ 22.8″ N, 
71° 3′ 45.36″ E), which is part of the greater Thal desert 
(Fig. 1). The River Indus flows on the district’s western 
side, but a very small area is irrigated through the canal 
system, while most of the area is rainfed. The majority of the 
soils (Shaheen et al. 2019) are sandy with dunes and rolling 
topography. The farmers mostly grow pulses and wheat in 
the Thal desert.

The climate of the area is arid with extremely hot summer 
(45–50 °C). The maximum, minimum, and average tempera-
ture of the region is 46 °C,10 °C, and 28 °C, respectively. 
The maximum, minimum, and average rainfall of the region 
is 186 mm,2 mm, and 92 mm, respectively. The area receives 
most of the rainfall in February and March, corresponding 

Fig. 1   Study area map showing plot areas in the Mankera district
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to the pulses and wheat crops (Fig. 2). Pulses are sown in 
mid-November which corresponds to the driest period of the 
growing season. So conservation of soil moisture is one of 
the most critical determinants of crop success.

Chickpea crop cultivation

Chickpea is the most important crop for food and medicine 
(Rocchetti et al. 2020). The chickpea (Cicer arietinum L.) 
belongs to the Leguminosae family and is considered the 
most important region’s most important economic crop. It 
is sown in mid of November and harvested at the end of 
March or early April. The chickpea has an 84.8–87.8% pro-
tein content (Boye et al. 2010; Paredes‐López et al. 1991). 
Chickpea comes at a high rank in the worldwide production 
of pulse and legumes. Its starch and protein components add 
to nutritious and dynamic functionality. The chickpea crop 
young leaves and grains are used as a vegetable; the broken 
grain and stalks after harvest are used as fodder for animals 
(Bessada et al. 2019). The traditional management practices 
(fertilizer application, pest and insect control, etc.) were used 
to raise the crop throughout the growing season. The chick-
pea crop growth and yield are highly dependent upon the 
rainfall in this dry region. The average chickpea crop yield 
in the study area is ranged from 400 to 700 kg ha−1. Annual 
crop yield data were collected from the Pakistan Bureau of 
Statistics department.

Drone and satellite imagery acquisition 
and processing

Aerial photographs and satellite images have proven to be 
successful in the efficient restoration and management of 
vegetation. The hybrid use of remote sensing and the drone 
has reduced the use of herbicides in agriculture with a chal-
lenge in improving plant health and cope with environmental 
threats while preserving output yield and quality of crops 
(Burggraaff, 2019). There were very few initiatives to reveal 

the potential of drone images. However, species-level map-
ping of chickpea was rarely conducted so far.

Unmanned aerial vehicle (UAV)

A DJI Matrice 100 with Zenmuse X3 camera (blue = 450 nm, 
green = 550 nm, red = 660 nm & near-infrared = 850 nm 
bands) was flown over the study area (25.5 ha) at an alti-
tude of 53 m on February 26, 2019, to record high-resolu-
tion (1.86 m) imagery (Fig. 3). Raw images were captured 
around noon with no clouds with a wind speed of less than 
10 km/h. The detailed specification of the drone flight is 
given in Table 1.

A total of 778 raw images were collected using an iPad 
DJI Go application (https://​apps.​apple.​com/​us/​app/​dji-​go/​
id943​780750) to conduct an automatic flight mission with 
an overlap of > 70%. Images were mosaic using SfM (Struc-
ture from motion) software (Maes et al. 2017). The inbuilt 
GPS in the UAV helps in the mosaicing of raw images. The 
software Structure from motion (SfM) software uses fea-
ture detection and feature matching algorithms to perfectly 
mosaic the images. Finally, after mosaicing, various vegeta-
tion indices were calculated. The detail of the image pro-
cessing is highlighted in Fig. 4.

Satellite imagery (Landsat)

The Landsat satellite imagery with 30 m spatial resolution 
having was downloaded from the USGS site (https://​earth​
explo​rer.​usgs.​gov/). These images were used for compari-
son with the drone imageries. The acquisition time of the 
satellite imagery was Feb 20, 2019. The combination of 
two bands (red band 0.63–0.69 µm) 30 m and (near-infrared 
(0.77—0.90 µm) 30 m was used in the study area for chick-
pea crop indices. With crop NDVI peak value for crop yield 
applications, they were fitted to quantify the model crop 
reporting difference (Roy and Yan 2020).

Three different approaches have been used in this study 
that includes high-resolution UAV, medium-resolution 
Landsat data, and field survey data. High-resolution UAV 
imagery has been used to check the crop variation pattern 
and for crop yield estimation. Landsat (30 × 30 m) data-
set has been used to monitor the chickpea crop growth 
for the entire season. NDVI and SAVI applied to both 
Landsat and UAV imagery (Maddikunta et al. 2021), and 
correlation was applied to these NDVIs and SAVIs and 
the samples collected through the ground survey. Crop 
yield estimation was derived by using UAV-based SAVI 
and Landsat-based NDVI of the study area. The complete 
workflow of the entire study is given in Fig. 5. A modi-
fied technique was used to minimize the soil brightness 
effect of spectral vegetation indices using red and NIR 
wavelengths (Huete 1988). SAVI was calculated from the 

Fig. 2   Annual, monthly average temperature and rainfall in the study 
area

https://apps.apple.com/us/app/dji-go/id943780750
https://apps.apple.com/us/app/dji-go/id943780750
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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reflectance measurements with values ranging from −1 
to + 1. SAVI as in Eq. (1). To monitor the field’s vigor, 
SAVI was used (Messina et al. 2020).

*where L is the soil brightness correction factor L = 0.5
To transform the ratio between red and NIR wavelength, 

NDVI was calculated using following Eq. 2. NDVI was used 
to assess the condition of sugarcane (Rahman et al. 2004). 
Basically, NDVI was calculated to compare the results of 

(1)SAVI = (NIR − RED)∕NIR + RED + L) × (1 + L)

SAVI obtained through UAV images. NDVI ranges from 
−1 to + 1.

(2)NDVI = (NIR − RED)∕NIR + RED)

Fig. 3   Chickpea field, DJI drone 
and its operation over the study 
area

Table 1   Drone Matrice 100 specification and other detail of data cap-
ture in the field

S. No UAV data specifications Values

1 Drone type DJI Matrice 100
2 Camera type Zenmuse X3
3 Acquisition date 20 Feb 2019
4 Acquisition time 1:30PM
5 Spectral bands RGB & Converted NIR
6 Overlapping  > 70%
7 Flying altitude 53.3(m)
8 Field of View (FOV) 940

9 Flight time 60(min)
10 Coverage area 25.5 (ha)

Fig. 4   Flowchart to represent pre-processing of drone imagery
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Field survey for crop monitoring

Twelve plots with 2 × 2 m dimensions were randomly laid 
down in the selected field to accommodate variability in crop 
growth due to rolling topography. The chickpea crop growth 
variability may be induced by the availability of soil mois-
ture to crop due to different aspects of the landscape (sum-
mit, shoulder, toe slope, etc.). Each plot had about 70–105 
plants. Data on plant height, numbers of plants, numbers 
of pods, soil pH, and temperature, were recorded at the end 
of the growing season. Chickpea crop yield was recorded 
for each plot at the end of the growing season. Field survey 
through soil-moisture meter and GPS is shown in Fig. 6.

At the end of the growing season, data on numbers of 
plants, plant height, and numbers of pods per plot were col-
lected. Chickpea crop yield was recorded per plot by taking 
the grains from the pods as depicted in Fig. 7.

Chickpea grain yield estimation from UAV(SAVI) 
and Landsat (NDVI)

Based on the combined use of a UAV and a multispectral sen-
sor, it is determined that there is scope for yield prediction. The 
vegetation index, when paired with the red and near-infrared 
bands, was found to be a strong predictor of chickpea yield. 
The findings lay a theoretical foundation for using a multi-rotor 
UAV platform to track crop growth and investigate a scientific 
approach for improving yield estimation precision (Fu, 2020). 
The SAVI and NDVI indices stood out for their ability to fore-
cast yield, with the highest values of these indices resulting 

in the highest yield observed in the sector (Ashapure, 2020). 
Balaghi et al. (2008) predicted wheat yield by using NDVI, 
rainfall, and temperature datasets in Morocco. By using regres-
sion Eqs. (3) and (4), crop yield for the whole study area was 
estimated for SAVI (UAV) imagery (da Silva et al. 2020). The 
crop yield estimation was also analyzed using NDVI (Tiwari 
and Shukla 2020).

Predicted Yield = 1028 kg/ha.
While the actual calculated average yield for this study area 

is given by the following.
Actual Yield = 700 kg/ha.
Difference in Yield = Predicted Yield-Actual Yield.
1028–700 = 328 kg/ha.
Regression equation to predict crop yield for NDVI (Land-

sat) imagery is given by following

Predicted Yield = 711 kg/ha.
While the following gives actual calculated yield for this 

study area.
Actual Yield = 700 kg/ha.
Difference in Yield = Predicted Yield-Actual Yield.
711–700 = 11 kg/ha.

(3)Y = ax + b

Y = (5596.1 × Raster [SAVI]) + (93.57)

(4)Y = ax + b

Y = (2272.9 × Raster [NDVI]) + (223.99)

Fig. 5   Complete methodology 
flowchart of the study area col-
lected from each plot
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Results and discussion

Vegetation indices (NDVI, SAVI) derived from UAV and 
Landsat satellite imageries were used to study the chickpea 
crop growth variability and seasonal growth trend. Land-
sat image shows aggregate response, while UAV imagery 

shows a single-pixel response. The high-resolution data 
were used to explore the vegetation biodiversity accu-
rately. Chickpea crop variability trend within the plots 
using SAVI (UAV) and NDVI (Landsat) imagery is ana-
lyzed in multiple plot levels. There was a great difference 
between both the coefficient variation of UAV images and 

Fig. 6   Samples taken from the plots with the red color flag on the borders and collection of samples through GPS and soil-moisture meter within 
the field

Fig. 7   Pods collection from 
the bundles of chickpea plants 
collected from each plot and 
final yield
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that of satellite images when measuring the spectral reso-
lution of the three spectral platforms, taking into account 
the bandwidth and resolution (Crusiol 2020).

Soil‑adjusted vegetation index (SAVI) obtained 
from UAV

SAVI was analyzed to minimize the soil response in the 
imagery. As vegetation indices articulate the spectral 
response from pixels, so in this case, sand dunes affect 
the spectral response of vegetation due to high-resolu-
tion imagery. Both indices NDVI and SAVI were ana-
lyzed for UAV-based imagery. SAVI results were better 
than NDVI derived from drone imagery, so SAVI was 
used for relative comparison (Kopačková-Strnadová et al. 
2021). The reddish and green color in the SAVI image 
(range 0–0.54 SAVI) analysis shows the soil and vegeta-
tion response. Higher SAVI values are generally related 
to the healthy plant’s canopy; SAVI values will be high 
where plant canopy will be high and vice versa for low 
SAVI values. Twelve chickpea plots with SAVI indices 
are shown in Fig. 8. The study demonstrates successful 
UAV use for chickpea crop and comparison of Landsat-
based calculated indices with UAV-based generated 
indices for chickpea crop. UAV imagery showed more 
accurate results than Landsat imagery because of high 
spatial resolution, including wavelength precision, better 

spectral response, and low atmospheric interruption. UAV 
remote sensing advantages include minimization of labor 
cost, provides better results with high spatial resolution, 
less time consumption, and controlling operational cost. 
Samples of chickpea plots were selected based on their 
health (disease free) and height variation representation 
within the plots.

Normalize difference vegetation index (NDVI) 
obtained from Landsat

NDVI values were obtained from the Landsat imagery 
from plot to plot with the crop’s growth stages as shown in 
Fig. 9. Vegetation indices show the same trend as the crop 
has greenery. The value of NDVI indices is high where 
leaves are high and it is low where plant leaves are gradu-
ally low. The highest NDVI value is 0.35 and the lowest 
NDVI value is 0.07 for the whole of the chickpea plot. The 
NDVI values of whole samples are given by above, which 
varies with the above, which varies with the plot to plot 
for UAV and Landsat imagery (Dutta and Mitra 2021). 
High-resolution imagery for crop monitoring is suitable 
for those areas which are fully covered with canopy in the 
field. The decametric resolution satellite imagery indicated 
some restrictions in presenting accurate information about 
the status of chickpea plots.

Fig. 8   Results obtained from UAV imagery along with 12 sample points showing SAVI
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Graph of (NDVI Landsat) and (SAVI) UAV

The highest SAVI value was obtained from plot number 12, 
while the lowest value from plot number 11. The average 
sum of all pixels response is very low due to dunes. The 
below graph represents that Points P1, P5, and P12 have the 
highest SAVI values. Limitations especially in spectral reso-
lution affect the accuracy of crop growth monitoring, espe-
cially in high variation areas. The P1, P6, and P12 have the 
highest NDVI value. Graph of chickpea plots values derived 

from NDVI and SAVI indices is given in Fig. 10. The highest 
correlation was found between UAV(SAVI) and actual yield 
(r2 = 0.6775), while the correlation between Landsat (NDVI) 
and actual yield was less (r2 = 0.2126) (Shaheen and Baig 
2011). The correlation was due to different spatial resolu-
tions between Landsat (30 × 30 m) and UAV(1.86 m)-based 
imagery. Landsat satellite image has coarse resolution and 
showed fewer details than the UAV image, which has very 
high spatial resolution with more details (the single plant 
was detected). Landsat images provide wall to wall coverage 

Fig. 9   Results obtained from Landsat imagery along with 12 sample points showing NDVI

Fig. 10   Graph of NDVI and 
SAVI values for each chickpea 
plot
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for the large areas, while drone covers small areas with deep 
information (CHO et al. 2020). UAV technology is the most 
efficient method because of its properties and functions and 
it also deals with challenges, like ground-based crop reports, 
human errors, and many other logistical complaints regard-
ing data collection (Meivel and Maheswari 2021).

Chickpea crop growth seasonal trend

In the arid area of Thal, chickpea is grown at the start of 
November in winter. The spectral response of the chick-
pea crop shows its peak on Feb. On Feb chickpea shows 
maximum greenery. The spectral response curve of chickpea 
increases, from Nov to Feb–March, and then starts decreas-
ing slowly as the crop gown at its mature stage. NDVI value 
of chickpea is low because of the desert and rainfed area. 
The overall seasonal trend of chickpea crop 2019 is given 
in Fig. 11. Seven separate NDVI and SAVI values were 
computed concerning the evaluation and comparison of the 
effectiveness of satellite and UAV-based imagery in identify-
ing and assessing the variation within and between chickpea 
plots. The close relationship between the satellite image and 
the map extracted from the UAV imagery, considering only 
the inter-row pixels, verified this effect with correlation coef-
ficients. SAVI ranged between numerous mediums, growing 
the quality from higher-resolution (UAV) imagery to those 
with the lowest resolution. While there were different index 
ranges in the satellite and UAV maps (Messina et al. 2020), 
there were some correlations in the diffusion of vitality in 
the chickpea region.

Pixel‑based and RGB Indices‑based comparison

The pixel size of Landsat satellite imagery was 30 × 30 m, 
while the pixel size of UAV imagery was 1.83 m (Fig. 12). 

To compare both results, the same area was selected for 
both. Within the sample points the same area with different 
pixel counts shows variability. Below picture on the right 
side shows Landsat imagery results, while on the left side it 
was showing results generated by UAV imagery.

True color NGB and false color NIR-GB were generated 
to clear visualization. Finally, the NDVI product was derived 
from the software SfM. Clear parallel lines showing paths of 
tractor and empty rows during the drill. Brownish parts in 
the results imagery show soil response due to dunes patches 
present in the field. Comparison of raster imagery with dif-
ferent bands combination is given in Fig. 13.

Regression analysis of crop growth variables 
with vegetation indices

Two vegetation indices NDVI and SAVI are used in Fig. 14. 
The highest r2 = 0.68 was found between SAVI and yield, 
having SAVI as an independent variable and yield-depend-
ent variable compared to NDVI-based r2 = 0.21. r2 = 0.098 
was derived between elevation and yield, which means when 
elevation increases yield decreases. In simple, elevation and 
chickpea yield are inversely proportional to each other in the 
Thal area. Because of the desert area, the soil temperature 
difference was low, so r2 = 0.005 was derived from soil tem-
perature and yield. r2 = 0.0067 was also low between pH and 
yield. Simultaneously r2 = 0.11,0.36 and 0.56 were derived 
from yield as a dependent variable and plant height, number 
of pods and number of plants as an independent variable 
here derived from yield as dependent variable (Fig. 15) and 
plant height pods and number of plants were independent 
variables. Regression analysis is given in graphs of all these 
variables (Figs. 14, 15). Chickpea canopy cover, number 
of plants, and plants height are also important factors to 
determine the relationship between SAVI, NDVI, and crop 

Fig. 11   Seasonal growth trend 
of chickpea crop (2019)
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yield. The maximum sand dune elevation difference is 3,4 m, 
which can be removed by leveling the dunes into large fields 
using technology “laser land leveling.”

Correlation matrix of all variables

A simple correlation matrix of all variables shows that the 
highest correlation coefficient was between SAVI and yield, 
while the lowest correlation coefficient was between eleva-
tion and yield (Guan 2019). The correlation matrix of all 
these variables is given in Table 2. The correlation between 
plant height and yield was (r2 = 0.1137), and some pods with 
yield show (r2 = 0.565). Correlation between dune eleva-
tion and yield was very low with (r2 = 0.0985) shown in 

Fig. 14c), which is a major factor for the plant growth and 
grain size of chickpea crop (Thapa et al. 2019). However, 
while there were different index ranges in the satellite and 
UAV maps, there were some correlations in the distribu-
tion of vigor in the chickpea region. It provides a quick 
and useful method to monitor crop homogeneity to check 
the fertilization, monitor disease, and implement irrigation 
techniques.

Yield estimation of chickpea grains

The final estimated yield was validated with the actual 
ground-based collected yield of chickpea crop of the whole 
study area, Fig. 16. Although UAV provides better results 

Fig. 12   Pixel-level comparison 
of RGB from UAV a and Land-
sat imagery, b with same grid 
size, while c, d representing 
SAVI and from UAV and NDVI 
from Landsat imagery simulta-
neously. The red box represents 
the boundary of plots, which 
is there presents the boundary 
of plots, which is the same for 
all plots, and the red dot is the 
center of all plot P1

Fig. 13   Comparison of raster 
imagery representing composi-
tion of a RGB (true color), b 
NIR-RGB (false color), and c 
NDVI raster imagery
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and reduces labor cost, it contains some limitations, espe-
cially for extensive field coverage because monitoring 
phenology for large fields through UAV is difficult. High-
resolution imagery can solve existing problems (Dash et al. 
2017) like diseases and water stress as plot numbers 3 and 
10 have a low spectral response, which is due to vegetation 
stress. It also has considerable potential for vegetation map-
ping and monitoring, crop species knowledge, plant height, 
bio-physical characteristics of canopies, and plant biomass. 
Therefore, high spatial resolution remote sensing for agri-
culture sectors is needed to explore the potential use of UAV 
imagery (Dunaeva 2017).

Crop yield comparison

The average observed yield for each plot is 554.5 kg ha−1, 
while the average yield derived from NDVI(L) and 
SAVI(D) is 546.8, 539.2 kg ha−1, respectively, which are 
near to average observed yield value. Yield derived for 
each plot from NDVI(D) is very high 1266 kg ha−1, while 
derived from indices SAVI(L) it is very low 422 kg ha−1. 
The average observed yield for the whole of the study area 

is 558 kg ha−1, while yield derived from indices NDVI(D), 
NDVI(L), SAVI(D), SAVI(L) is 1672, 711, 1028, and 
463 kg ha−1. Comparison of derived yield between aver-
aged of 12 plots is shown in Fig. 16. The accurate and 
successful use of UAV remote sensing for agriculture is 
possible by carefully considering the following things: 
protection, safety, suitability, sensor mount, battery tim-
ing, sensor characteristics, spatial spectral resolution, a 
field of view, flight height, and flight time (Tassi and Viz-
zari 2020). By increasing the use of UAV technology in 
the field of agriculture of Pakistan, it can be expected that 
it is going to be an emerging step for agriculture devel-
opment. By using drone technology (UAV) future of the 
agriculture sector is gleaming, which is the best tool to 
monitor crop health, production, disease detection, and 
canopy cover (Martín-Béjar et al. 2020). NDVI and SAVI 
measured using UAV-based platforms with high-resolution 
imagery, which increased the accuracy of results. The most 
important advantage of UAV is that images are acquired 
according to the desired temporal and spatial demand. 
The acquired image has a spatial resolution of 1.86 m/
pixel. UAV is a profitable and low-cost technology for big 

Fig. 14   The regression between a NDVI, b SAVI, c elevation, d soil temperature and yield kg/ha
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farmers, but it is not affordable and useful for small-scale 
farmers. SAVI ranged between various channels, increas-
ing the quality from higher-resolution (UAV) imagery to 
those with the lowest resolution. Further studies can be 
carried out on how these datasets can be further improved 
and results will be used to improve the productivity of 
chickpea crops using modern technology. The results indi-
cate that SAVI derived from UAV imagery is very useful 
as compared to the NDVI derived from Landsat imagery.

Conclusion

The results described that the UAV mounted with 
Zenmuse  × 3 camera may be used to check crop growth at 
any stage of the crop and predict crop yield before harvest-
ing. This article also describes the comparison of imagery 
acquired from UAV and satellite, low and high resolution. 
The comparison was based on the spatial resolution and the 
yield within each and the whole plot. Across the vegetation 

Fig. 15   Regression between a pH, b plants height, c number of pods, d number of plants and yield kg/ha

Table 2   Correlation matrix for all variables representing the highest correlation between drone-based SAVI and yield kg/ha

Yield (Kg/ha) No of Plants Plant Height No of Pods pH Soil Temp(°C) Drone SAVI Elevation(m)

Yield (Kg/ha) 1.00
No of Plants 0.61 1.00
Plant Height 0.34 0.43 1.00
No of Pods 0.75 0.64 − 0.08 1.00
pH − 0.08 0.15 − 0.48 0.31 1.00
Soil Temp(°C) 0.07 0.32 0.44 0.09 0.32 1.00
Drone SAVI 0.82 0.69 0.12 0.68 0.16 0.00 1.00
Elevation(m) − 0.31 0.14 − 0.46 0.05 0.70 − 0.31 0.05 1.00
Landsat NDVI 0.46 0.19 0.14 0.21 0.04 0.34 0.58 − 0.36
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indices SAVI and NDVI, NDVI was positively correlated 
(r2 = 0.6775) with the yield. It was concluded that UAV 
(with different sensors) is the best approach to monitor, 
detect disease, and predict yield before harvesting. It was 
analyzed that spatial resolution by using MicaSense Red-
edge™ Sensor can be increased instead for Zenmuse X3. So, 
this method is recommended to check crop growth monitor-
ing to check vegetation stress and disease. Machine learning 
approaches may also be used to throw out phenotyping more 
accurately, to draw critical decision making for field condi-
tions and automated identification of diseases. Chickpea crop 
depends upon the rainfall; if there is less rainfall in the early 
growing season (Oct–Nov), there will be a drastic impact 
on chickpea crop yield. Crop yield can also be increased by 
introducing leveling, drip irrigation, and artificial rainfall to 
this rainfed area. Usage of drones for agriculture is a newly 
operated technology, especially in Pakistan, which can play 
a dynamic role in expanding the agriculture industry. High 
gram crop production improves the living standard of people 
of the “Thal Area” community because gram is the most 
cultivated crop in this area, especially in Bhakkar District. 
By increasing yield and quantity, a huge amount of revenue 
can be generated through exports. Gram crop production 
depends upon rainfall, soil temp, soil moisture, seed, and 
leveling of plots (dunes) in this study area.
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