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Abstract
The present study describes the application of artificial intelligence-based modeling approach to predict trihalomethanes in 
drinking water supplies. The samples were collected from five major water utilities located in five different states across India 
for two seasons to establish the baseline. Trihalomethane formation was correlated with various operation parameters and 
exceeded the prescribed guideline value of the World Health Organization and the Bureau of Indian Standard. Chloroform 
was found to be the most predominant compound > 90% contribution to total trihalomethanes. The seasonal variation assess-
ment revealed that the trihalomethanes level was relatively 1.12 ± 0.074 times higher in pre-monsoon than post-monsoon. 
The correlation analysis confirmed, total organic carbon followed by dissolved organic carbon is a major organic precursor 
responsible for trihalomethane formation. Monitoring these compounds is essential to ensure public safety but cannot be 
regularly determined due to the involvement of sophisticated instruments and the procedure. The artificial intelligence-
based modeling approach could prove to be a good tool for instant prediction of trihalomethanes with better accuracies. An 
artificial neural network and support vector machine was employed using Python® and MATLAB® respectively, whereas, 
for multivariate linear regression, SPSS® was used. The value of coefficient and comparison of performance data indicated 
that artificial neural networks gave the most promising results, followed by support vector machine and multivariate linear 
regression. The study could prove to be very useful for regulatory agencies to manage and control trihalomethanes’ levels 
in drinking water supplies.

Editorial responsibility: Lifeng Yin.

 *	 S. K. Gupta 
	 sunil@iitism.ac.in

1	 Department of Environmental Science and Engineering, 
Indian Institute of Technology (ISM), Dhanbad, Jharkhand, 
India 826004

http://orcid.org/0000-0002-3085-3827
http://crossmark.crossref.org/dialog/?doi=10.1007/s13762-021-03392-1&domain=pdf


5276	 International Journal of Environmental Science and Technology (2022) 19:5275–5288

1 3

Graphic abstract

Keywords  Artificial neural network · Disinfection by-products · Natural organic matter · Support vector machine

Introduction

As one of the fastest developing countries, India grips only 
4% of global potable water resources, supporting around 
17% of the earth’s population (Chakraborty 2017). The 
major sources of drinking water supply in India are the 
surface reservoir, making it even more challenging to pro-
vide potable water due to microbiological contamination 
(Mahato and Gupta 2020; Marais et al. 2019). Chlorine 
is a predominant disinfectant used to date, which results 
in the formation of trihalomethanes (THMs) via reacting 
with natural organic matter (NOM) (Fig. 1) (Al-Tmemy 
et al. 2018; Mahato et al. 2019; Hur et al. 2014; Hong et al. 
2008). These compounds include chloroform (CHCl3) 

(CF), bromoform (CHBr3) (BF), dibromochlorometh-
ane (CHBr2Cl) (DBCM), and bromodichloromethane 
(CHBrCl2) (BDCM), are of great concern as they were 
classified as potential human carcinogens (Padhi et al. 
2019; Li and Mitch 2018). Previous findings showed 
that the concentration range of THMs (231–511 μg/l) in 
the Indian drinking water distribution system is greatly 
influenced by the seasonal and spatial variations (Kumari 
and Gupta 2015, 2018; Mishra and Dixit 2013; Thacker 
et al. 2002). Similarly, in other countries like Pakistan 
(575–595 μg/l) (Abbas et al. 2015), Japan (378 μg/l) (Imo 
et al. 2007), Canada (137.8–141 μg/l) (Milot et al. 2000; 
Rodriguez et  al. 2003a), Turkey (96–102  μg/l) (Uyak 
et al. 2005), and China (92.77 μg/l) (Ye et al. 2011), wide 

Fig. 1   Reaction mechanism of CHCl3 formation in chlorinated drinking water
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fluctuations in THMs levels were recorded in their water 
supplies.

These changes were also arisen due to the variation in 
their precursor concentration (NOM) and other operational 
parameters (pH, residual chlorine [RC], temperature) (Padhi 
et al. 2019; Kumari and Gupta 2015; Rathbun 1996). The 
Bureau of Indian Standard (BIS) (BIS 2012) set the permis-
sible limit for individual THMs, i.e., CF (200 μg/l), BDCM 
(60 μg/l), DBCM (100 μg/l), and BF (100 μg/l), which is 
similar to that of proposed by the World Health Organi-
zation (WHO) except CF (200 μg/l) (Cotruvo 2017). The 
United States Environmental Protection Agency (USEPA) 
also established the guideline value (80 μg/l) only for total 
THMs (TTHMs) (USEPA 2018).

Monitoring of THMs all through the treatment process 
is vital for the management of quality control and to ensure 
the compliance of regulatory standards. The development 
of predictive models was proven to be a more effective and 
instant approach (Rodriguez et al. 2000). Usually, the predic-
tive models establish the empirical and mechanistic relation-
ship between the level of THMs and the operational param-
eters (Ye et al. 2011; Di Cristo et al. 2013), whereas some 
of the models are based on statistical regression equations 
and described the formation of THMs kinetics (Rathbun 
1996; Rodriguez et al. 2000; Elshorbagy et al. 2000; Sadiq 
and Rodriguez 2004; Milot et al. 2000; Amy et al. 1987). 
Previous findings demonstrated that the artificial intelli-
gence (AI)-based modeling approach can provide greater 
set prediction accuracies even in low quantities of data than 
the conventional multiple linear regression (MLR) model 
(Peleato et al. 2018; Kulkarni and Chellam 2010; Uyak 
et al. 2005). However, the application of artificial neural 
network (ANN) and its comparative assessment with support 
vector machine (SVM) and MLR model to predict THMs 
in drinking were not explored earlier. It was also noticed 
that most of the studies are done on laboratory-generated 

simulated water, which differs from the actual drinking 
water utilities (Ye et al. 2011; Milot et al. 2000). Hence, 
our study’s emphasis is to generate models based on the 
real water collected from different water treatment plants 
(WTPs) located in India’s various regions. The objective of 
the study includes (1) develop the AI-based THMs models 
from filed scale real data (2) the comparative assessment of 
these machine learning approach with conventional MLR 
model and (3) investigate the correlation of various opera-
tional parameters on THMs formation.

The above study was carried out during pre-monsoon 
(PrM) (April to June) and post-monsoon (PoM) (October to 
December) seasons in the year 2016–2018 in five different 
states of India, i.e., Jharkhand, Utter Pradesh Chhattisgarh, 
Orissa, and West Bengal.

Materials and methods

Sampling protocol

Five major drinking water utilities from the city of four dif-
ferent contiguous states of Jharkhand were considered for 
this study, i.e., (1) Water Treatment Plant, Belatand, Dhan-
bad, Jharkhand (DWTP), (2) Water Treatment Plant, Bhelu-
pur, Varanasi, Utter Pradesh (VWTP), (3) Water treatment 
plant Ravanbhata, Raipur, Chhattisgarh (RWTP), (4) Water 
Treatment Plant Palasuni, Bhubaneshwar Orissa (BWTP), 
and (5) Indira Gandhi Water Treatment Plant, Barrackpore, 
West Bengal (IGWTP). Triplicate samples of raw (intake) 
and treated water (supply water) from these WTPs were col-
lected during PrM and PoM seasons in the year 2016–2018. 
A total of 150 samples were first analyzed to establish 
THMs levels. The description and location details of the 
study area are illustrated in Table 1 and Fig. 2, respectively. 
These utilities follow conventional water treatment processes 

Table 1   General characteristics of utilities under the study

MLD Million litter per day, PACl Poly aluminum chloride

Name of water 
utility

Latitude and longitude Source river Plant capacity 
(MLD)

Coagulant used Disinfectant used

VWTP 25°17′54.81″N
82°59′43.51″E

Ganga River 125 Alum and PACl Chlorine gas

DWTP 23°50′36.62″N
86°26′27.96″E

Barakar River 77 Alum and Lime Chlorine gas

RWTP 21°12′59.43″N
81°37′50.07″E

Kharoon River 277 Alum, and PACl Chlorine gas 
and bleaching 
powder

BWTP 20°18′15.72″N
85°51′48.98″E

Kuakhai River 41 Lime, Alum, and PACl Chlorine gas

IGWTP 22°47′2.18″N
88°20′35.79″E

Hooghly River 916 Alum Chlorine gas
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comprised of coagulation–flocculation, sedimentation, sand 
filtration, and chlorination.

Analytical method

The monitoring of physicochemical parameters was done 
as per the standard protocols of APHA, 2012. Total organic 
carbon (TOC) and dissolved organic carbon (DOC) (sam-
ple filtered through a 0.45 μm filter) were analyzed by a 
TOC analyzer (TOC-L CSH; Make: Shimadzu, Japan). 
Specific ultraviolet absorption (SUVA), which is an indi-
cator of the aromatic character of NOM, was determined 
by the ratio of UV254 and DOC concentration, expressed as 
L mg−1 m−1. The concentration of THMs was determined by 
USEPA method 552.1 using a combination of liquid–liquid 
extraction and gas chromatograph electron capture detector 
(GC-ECD) (Thermo Fisher, CERES 800 plus) (Hodegeson 
1990). The GC-ECD conditions used for analysis are given 
in Table 2.

Quality assurance and quality control (QA/QC)

As to ensure the consistency of the analytical results, the 
blank sample was prepared and analyzed to determine the 
presence of background contamination. Sample injection 
was performed in triplicate for the precision of measure-
ment, and the average value was considered the final value. 
In case the relative percent difference between the two 

samples tends to surpassed ± 10%, the instrument was con-
sidered out of calibration and recalibrated.

Modeling approach

For this study, two machine learning techniques, viz., 
ANN and SVM were employed for the prediction of THMs 
formation and compared with the conventional MLR 
model. A set of five water quality parameters, namely pH, 
temperature, RC, TOC, and UV254, were used as inde-
pendent variables and total THMs (TTHMs) as depend-
ent variables. For maintaining the measurement accuracy, 
triplicated samples were collected each time during sample 
collection. The average of the three sample readings was 

Fig. 2   Location details of drinking water utilities selected for the study

Table 2   Operating conditions for analysis of THM through the GC

Item Condition

GC CHEMITO CERES-
800 PLUS with Ni63 
ECD

Column Packed column
Oven temperature 40 °C
Injector temperature 200 °C
Detector temperature 250 °C
Carrier gas Nitrogen
Carrier gas flow 60 (ml/min)
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reported as a single observed value for each parameter. 
A total of 150 observations from various WTPs included 
triplicate samples that were averaged and confined to 50 
observations, which were considered input data for the 
models’ development and validation, wherein, for the mod-
eling 60% of the data set and validation 40% of the data set 
were used, i.e., subsets of input and output data had the 
dimensions of 30 samples × 5 independent variables × 1 
dependent variable, and 20 samples × 5 independent vari-
ables × 1 dependent variables, respectively. To meet the 
required algorithm and facilitate network learning, data 
normalization is essential before starting the training pro-
cess. There are many methods for normalizing the input 
data, like external normalization, along channel, across 
channel, and mixed channel. In the present work, the input 
data were normalized using the min–max normalization 
method as stated in Eq. (1). This method has the advan-
tage of preserving exactly all relationships in the data. It 
actually normalizes the raw values in the range of 0–1 for 
better prediction.

where L is the raw value, Max and Min are the maximum 
and minimum of raw values, respectively.

The ANN is based on complex biological neural 
systems of the human brain, having certain theoretical 
advantages over the conventional modeling approach 
(MLR). It arises from the field of artificial intelligence 
and consists of several layers of processing elements with 

(1)Normalized data = (L−Min)/(Max −Min)

their nodes (neuron) (Rodriguez et al. 2003b; Singh and 
Gupta 2012). These neurons are arranged in an input layer 
that receives a signal input, one or many hidden layers 
that process the information actively, as well as an out-
put layer that responds to the network (Fig. 3). Elements 
of different layers are highly interconnected by weighted 
links through which information may pass. The number 
of these elements in the input and output layer mainly 
depends on the number of input and output variables used 
in the specific problem to be solved. In the present work, 
a three-layer ANN was implemented with backpropaga-
tion algorithm in Python (3.7.1) by using Jupyter Note-
book integrated development environment (IDE) with 
Sklearn library. The backpropagation algorithm has dem-
onstrated several advantages to having the potential for 
determining networks with arbitrary mapping projections 
(Cook and Wolfe 1991; Rodriguez et al. 2003b). Hence, 
this algorithm was used to supervise the learning algo-
rithm by changing the hyperparameters, viz., learning rate 
(LR) and momentum term (MT) to yield the best conver-
gence. Moreover, the logistic relu activation function was 
used to activate the hidden and output layer. The number 
of nodes in the hidden layer for the optimal neural net-
work was determined by optimization of hyperparameters 
using trial and error methods (Azadi and Karimi-Jashni 
2016). The input layer consists of five nodes, i.e., pH, 
Temp., RC, TOC, and UV254, whereas the output layer has 
one node – TTHMs. The practical applications of ANNs 
require the correct selection of LR and MT to separate the 
noisy data and avoid over-fitting problems. The degree of 

Fig. 3   Basic structure of the 
ANN model
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correlation (R2) and MSE at various LR and MT is given 
in Table 3. A maximum of 10,000 iterations was per-
formed to achieve the optimum network. In-depth theory 
and mathematical details of learning and estimation of the 
parameter are broadly explained in the previous literature 
(Peleato et al. 2018; Singh and Gupta 2012).

SVM is a well-known supervised machine learning 
technique based on structural risk minimization (SRM), 
the theory of statistical learning (Singh and Gupta 2012; 
Vapnik 2013). It acts as a binary classifier to find the 
maximal margin (hyperplane) between two classes. In this 
approach, the original data points from the input space are 
mapped into a high or even infinite-dimensional feature 
space using a suitable kernel function (class of algorithms 
for pattern analysis), where the hyperplane is constructed. 
It can deal with a large number of features to find the 
optimal hyperplane from which the distance to all the data 
points is minimum and reduce the model dimensions and 
estimated errors: the theory and mathematical concept 
of the SVM model described in detail by Haykin (1999). 
The implementation of SVM was performed in MATLAB 
(9.5).

MLR is a relatively advanced concept of simple linear 
regression, used in various research fields to establish 
the strength of a linear relationship between a set of inde-
pendent variables and dependent variables (Rodriguez 
et al. 2003b). This relationship can be described by fol-
lowing equation form (Rodriguez et al. 2003b).

where Y and Xi represent the dependent and independent 
variables, respectively, with m denoting the number of inde-
pendent variables considered, βo and βi are the intercept and 
partial slope coefficients, respectively, providing prediction 
for the value of Y. In this approach, predictor variables were 
classified first according to their statistical significance and 
then including one variable at a time at different steps. The 
MLR model works on the ordinary least squares (OLS) 
method, which minimized the vertical distances of the sum 
of squared from the observed data points to the line (Neter 
et al. 1990). The SPSS (IBM, 21.0) was used to perform the 
implementation of the MLR model.

(2)Y =
∑
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m∑
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Sensitivity analysis

Sensitivity analyses were carried out using various statisti-
cal metrics, that is, R2 (predicted vs. observed), root means 
square error (RMSE), means absolute percentage error 
(MAPE), and Index of Agreement (IA) to evaluate the per-
formance of developed models. The equation for the deter-
mination of MAPE, RMSE, and IA is indicated in Eqs. (3) 
(4) and (5), respectively,

where Yi and Ŷi are the observed and predicted value of 
TTHMs, and n is the number of samples.

where Oi and Pi are observed and predicted TTHMs con-
centration and N is the number sample tested. Om and Pm 
represent the means of the observed and predicted total tri-
halomethane concentration.

Results and discussion

Concentration range of THMs species at five water 
utilities

The descriptive statistics of all the THMs species under the 
present study are given in Table 4. During this investigation, 
the highest concentration of TTHMs was found in VWTP for 
both the season. This may be attributed to the difference in 
THMs precursor content, RC, temperature, and other opera-
tional parameters (Padhi et al. 2019; Rathbun 1996). It may 
also be greatly affected by the geographical distribution and 
climatic conditions of the WTPs. The investigated range of 
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i

Y
i

|
||||

(4)RMSE =

√√√
√1

n

n∑

i=1

(
Ŷ
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Table. 3   Degree of correlation 
and MSE at various MT and LR

MT-0.9 LR-0.01 MT-0.7 LR-0.02 MT-0.5 LR-0.03

R2 0.962 0.954 0.952
MSE 28.36 34.83 35.35
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TTHMs is consistent with the results obtained by Kumari 
and Gupta (2015) during their study of various water utilities 
situated in the Eastern part of India. Similarly, the higher 
concentration range of TTHMs was also monitored in other 
countries like Pakistan (575–595 μg/l) (Abbas et al. 2015) 
and Japan (378 μg/l) (Imo et al. 2007). Throughout the study, 
it was also noticed that the CF was the predominant com-
pound among all four THMs species, which surpassed the 
WHO (300µg/l) and BIS (200µg/l) drinking water guideline 
value. The other two (BDCM and DBCM) were found well 
within the BIS and WHO standards, i.e., 60 and 100 μg/l, 
respectively. The BF was not detected in any of the water 
utilities because bromide ions were found below the detect-
able limit (BDL) (<0.1 mg/l). Source water with BDL bro-
mide ions forms more chlorinated THMs than brominated 
THMs (Barrett et al. 2000; Nikolaou et al. 1999; Chowd-
hury et al. 2011; Imo et al. 2007; Lebel and Williams 1995), 
which can also be seen in the present study.

The percentage distribution of THMs species in various 
utilities and GG chromatograms (Fig. 4a, b) illustrates that 
CF shared more than 90% of TTHMs, followed by BDCM 
and DBCM. More than 90% of the THMs in the chlorinated 
drinking water supplies typically consisted of CF, while 
BDCM and DBCM contribute up to 2.1–14%. The observa-
tion of the present study was good in line with Zhang et al. 
(2011), where they reported that CF’s contribution was up 
to 94% to that of other THMs compound in 13 WTPs of 
China.

Periodic fluctuations of THMs and their precursors 
in processed water

Assessment of periodic fluctuations in TTHMs and their 
precursors observed in all the water utilities are shown in 
Fig. 5a–d. There was substantial variation observed in the 
mean value of these species. The concentration range of 

Table 4   Descriptive statistics of 
THM species at five utilities

THM species (µg/L)

Water utilities Pre-monsoon Post-monsoon

CF BDCM DBCM TTHMs CF BDCM DBCM TTHMs

VWTP
Min 376 16 14 411 321.8 13.8 8 348
Max 385 20 18 419 330.5 19.5 17.5 367
Mean 380.85 18.25 15.52 414.62 325.97 16.92 13.14 356.03
SD 3.18 1.39 1.56 2.82 3.37 1.72 3.02 6.63
DWTP
Min 354 15 8.3 381 283.50 15.00 8.00 310.00
Max 367 20 16 395 291.40 20.90 16.70 328.38
Mean 360.17 16.9 12.33 389.4 287.80 18.39 13.78 319.97
SD 4.53 1.61 2.47 4.06 2.81 2.21 2.86 6.87
RWTP
Min 314 20 10 345 290.70 16.00 6.00 320.00
Max 329.7 23.7 18.2 370 299.70 23.40 18.60 338.25
Mean 324.26 21.71 14.22 360.19 295.94 20.13 13.92 329.99
SD 5.33 1.32 3.09 8.75 2.79 2.21 4.21 7.32
BWTP
Min 312 18 5 342 301.40 19.00 10.20 334.00
Max 324 22 11 355 313.70 23.00 12.60 348.00
Mean 319.72 20.33 8.45 348.6 308.08 21.46 11.71 341.25
SD 4.02 1.33 1.77 5.14 3.93 1.15 0.75 4.48
IGWTP
Min 344 17 10 375 305.00 18.40 11.70 340.50
Max 360 20.7 13.6 391 319.90 22.20 15.00 357.00
Mean 353.08 18.83 12.13 384.08 313.69 20.53 13.80 348.02
SD 5.17 1.26 1.26 5.54 4.49 1.41 1.22 5.78
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Fig. 4   a Percentage distribution of THMs species and b representative chromatogram of THMs of VWTPs

Fig. 5   Box and whisker plot of periodic fluctuations of a TTHMs, b TOC, c UV254 and d temperature at various utilities
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TTHMs was spotted 1.12 ± 0.074 times higher in PrM than 
PoM. The TTHMs were in the order of VWTP followed by 
DWTP, IGWTP, RWTP, and BWTP for PrM, while in PoM, 
it was again VWTP followed by IGWTP, BWTP, RWTP, 
and DWTP. Organic content (TOC, UV254) and the tempera-
ture were also appeared to be higher during the PrM, which 
may favor the higher THMs formation (Nikolaou et al. 
1999). According to Rodriguez and Serodes (2001), rates 
of chlorine decay are high at elevated temperatures. Hence, 
it required higher doses of chlorine for treatment this sea-
son, which ultimately reacts with available NOM, thus pro-
viding more THMs (Uyak et al. 2008) in processed water. 
Besides, high organic content in water will also require a 
higher chlorine dose (Rodriguez and Serodes 2001). Tem-
perature and NOM in water during PoM observed slightly 
lower, resulting in lesser chlorine demand (Rodriguez et al. 
2003b); thus, comparatively lower THMs formed in this 
season. The observation in the present study is good in 
line with the finding of Wei et al. (2010), Rodriguez et al. 
(2004), and Toroz and Uyak (2005) for the drinking water 
distribution system.

Correlation analysis

In order to investigate the effects of NOM and other oper-
ational parameters on THMs formation, the Pearson cor-
relation matrix was established (Kumari and Gupta 2015) 
(Table 5a, b).

Effect of NOM (TOC, DOC, and UV254)

TOC, DOC, and UV254 are essential surrogate measures of 
NOM, act as a key precursor for THMs formation (Padhi 
et al. 2019; Li and Mitch 2018; Sung et al. 2000). The Pear-
son correlation test confirmed that all these surrogates are 
strong and significantly correlated with TTHMs and each 
other. The THM formation rate is equal to that consumption 
of TOC, thus increasing in organic content of water, upswing 
the formation of THMs (Chang et al. 2001); Hasani et al. 
2010; Arora et al. 1997). It was being reported previously 
that a water sample with high TOC can produce more THMs 
if enough RC is available (Babcock and Singer 1979). DOC 
constitutes approximately 83–98% of TOC in water and gen-
erally more representative of the soluble organic carbon than 
TOC (Owen et al. 1993). The strong and significant correla-
tion between TOC and DOC under the study also supports 
this observation. Thus, concerning THMs formation, DOC 
follows the same trend parallel to TOC (Westerhoff et al. 
2000; Müller 1998). UV254 is another essential key surro-
gate of NOM after TOC and DOC, provides an insight into 
the nature of organic content, and liable to form the THMs 
(Edzwald et al. 1985). The correlation coefficients of TOC 
with TTHMs were slightly higher than the DOC and UV254, 
indicating TOC as more influential parameters. Moreover, it 
was also noticed that a slow reaction between chlorine and 
NOM results in the formation of THMs under second-order 
reaction to TOC, especially for the long-term (Draper and 

Table 5   Pearson correlation 
matrix of variables with 
TTHMs

*Correlation is significant at the 0.05 level (2-tailed)
**Correlation is significant at the 0.01 level (2-tailed)

pH Temp Alkalinity RC TOC DOC UV254 TTHMS

(a) Pre-monsoon
pH 1 .525** .415**  − .395** .180 .130 .150 .406**
Temp 1 .597**  − .199 .594** .508** .510** .584**
Alkalinity 1  − .028 .711** .704** .664** .733**
RC 1 .546** .585** .555** .471**
TOC 1 .977** .973** .949**
DOC 1 .963** .929**
UV254 1 .927**
TTHMs 1
(b) Post-monsoon
pH 1 .076 .766** .342* .608** .581** .725** .513**
Temp 1  − .237  − .328* .425** .436** .199 .572**
Alkalinity 1 .306* .321* .303* .441** .636**
RC 1 .597** .550** .739** .373*
TOC 1 .935** .931** .815**
DOC 1 .872** .781**
UV254 1 .719**
TTHMs 1
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Smith 1998). Thus, it is a multistage process that operates 
through an initial reaction of TOC with residual chlorine 
followed by many possible pathways to produce THMs. 
The second step is found to be rate determining through 
which the reactive chlorinated intermediates are formed in 
the initial step (Trussell and Umphres 1978). With respect 
to NOM, DOC and UV254 were found second and third most 
influential parameters after TOC responsible for THMs 
formation, respectively. A similar investigation was also 
reported by Hua et al. (2015).

Effect of pH and alkalinity

In the present investigation, pH and alkalinity have shown 
a moderate and statistically significant correlation with 
TTHMs, respectively (Table 5a-b). pH showed a positive 
correlation with THMs; in other words, increasing in pH 
formation of THMs also increases (Roccaro et al. 2014; 
Hong et al. 2013; Kim et al. 2003). The oxidation process 
of chlorine is more prevalent in alkaline pH required more 
chlorine may support the greater THMs formation. In con-
trast, acidic pH lowered the reactivity of the chlorine path-
way and strongly disfavored the THMs formation (Navalon 
et al. 2008). Besides, during the chlorination process, when 
chlorine comes in contact with water leads to the formation 
of hypochlorous acid (HOC1) and a hypochlorite ion (OC1-). 
The formation of these two species is pH-dependent, as in 
acidic conditions, HOC1 is found to be dominated, whereas 
in alkaline pH OC1- (Uyak et al. 2005). Many researchers 
also widely accepted that base-catalyzed reactions play a 
major role in THM formation (Reckhow et al. 1990). In 
this regard, pH, and alkalinity seems to be an important 
operational parameter in controlling the THMs formation. 
The observation of the present study was well supported by 
the finding of Kim et al. (2003) and Oliver and Lawrence 
(1979).

Effect of temperature

THMs formation is proportional to the temperature; the 
higher the temperature greater the formation (Hua and 
Reckhow 2008). It was observed that every 10°C increase 
in the temperature doubles the rate, enhancing the activation 
energy of the reaction between organic matter and residual 
disinfectant (Engerholm and Amy 1983; Chowdhury and 
Champagne 2008). During the period of study, moderate 
relation was obtained between temperature and TTHMs. 
This observation is also good in line with the result of sea-
sonal variation where PrM gives rise to the greater formation 
of THMs than PoM due to variation in temperature. Krasner 

(1999) also reported that the formation of THMs was higher 
during summer when there was high temp.

Effect of RC

The elevated range of RC present in treated water con-
sequently increased the formation of chlorinated THMs 
(Chowdhury and Champagne 2008). However, the avail-
ability of organics beyond the chlorination breakpoint is so 
less than the THMs were not found to increase significantly 
after that point (Sung et al. 2000; Chowdhury and Cham-
pagne 2008). Pearson correlation test in this study indicated 
that RC has positively correlated with TTHMs. Hence, the 
THMs yield attains higher value due to the greater avail-
ability of RC (El-Dib and Ali 1995). This result appeared to 
be inconsistent with the finding of Al-Tmemy et al. (2018), 
Uyak et al. (2005), and Wei et al. (2010). Pearson correlation 
matrix of variables with TTHMs during PrM was found to 
exhibit similar trends as PoM.

A seasonal modeling approach for THMs formation

Modeling plays a very crucial role in predicting THMs 
formation in water supply systems. The study emphasizes 
the use of both conventional and models based on artifi-
cial intelligence to explore their accuracy and feasibility. 
The traditional modeling approach is based on multilinear 
regression, while machine language employs ANN and SVM 
to model the THMs formation in drinking water. At first, 
data of PrM season were utilized for model development 
and PoM data for validation studies. But, surprisingly, all 
the three models failed by giving significantly lower values 
of R2 = 0.5619 (ANN), R2 = 0.5678 (SVM), and R2 = 0.5670 
(MLR) (Fig. 6a–c). This indicates that the model developed 
from the PrM season cannot predict THMs in PoM owing 
to the seasonal variation in water quality parameters, espe-
cially the change in temperature, which largely influences 
the rate of THM formation (Rodriguez et al. 2003b; Hua and 
Reckhow 2008). To overcome the lacunae, separate models 
were developed to predict THMs during both PrM and PoM 
seasons (Fig. 7a–f). The performance data indicated that 
out of all the three models, ANN gave the most promising 
results with R2 = 0.9621, followed by SVM (R2 = 0.9554) 
and MLR (R2 = 0.9553). The applicability of ANN can fur-
ther be justified by significantly lower values of RMSE and 
MAPE than other models (Table 6). Moreover, the observed 
value of IA, closer to unity (0.99), also confirmed the bet-
ter compliance of ANN than SVM and MLR models. This 
may be attributed to the higher generalization capacity of 
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ANN and its increased tolerance to noisy data (Rodriguez 
et al. 2003b; Milot et al. 2002; Hashem and Karkory 2007). 
Ye et al. 2011) also modeled DBPs in the drinking water of 
China using artificial neural networks and reported that the 
performance of the ANN model was excellent (r > 0.84). 
Significantly higher correlation for ANN in our study may 
be attributed to the precise calculation in neural network-
ing, which eliminates the chances of any biased prediction 
on account of uneven distribution of modeling and testing 
data sets.

SVM and MLR models were also used in the study to 
model THMs in drinking water. The results dictated poor 
performance wrt ANN; however, close linearity between 
observed and predicted values was obtained for both 
SVM (R2 = 0.9554) and MLR (R2 = 0.9553). The values 
corresponding to MAPE and RMSE (Table 6) were also 
comparatively higher for SVM and MLR, indicating lesser 
suitability of these models than ANN. The variation in 
the models’ performance may be due to the application of 
different prediction algorithms in machine language-based 

models. Hong et  al. (2016) have developed an MLRs 
model for predicting THMs in the water distribution net-
work of China, where they observed this regression model 
exhibited good accuracy and precision, as well as 86–97 % 
of the calculated fell within ±25% of the measured values. 
However, it is essential to note that the developed models 
were site-specific, and the predictive capabilities may vary 
according to the changes in environmental conditions.

Conclusion

The study established the concentration range of THMs 
and their precursors in drinking water utilities of five 
different Indian states. The study highlighted the need 
to adopt effective control measures for bringing down 
the high concentration of THMs to their permissible 
limit. THMs concentration showed a strong correlation 
with temperature followed by pH and NOM. Conclusive 

Fig. 6   Model plots of TTHMs using various approach a ANN, b SVM, and c MLR
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Fig. 7   a–f Season-wise validation model plots of TTHMs using various approach ANN, SVM, and MLR

Table 6   Descriptive 
performance of ANN, SVM, 
and MLR for both the season

ANN SVM MLR

PrM PoM PrM PoM PrM PoM

R2 0.9621 0.933 0.955 0.876 0.955 0.870
IA 0.99 0.889 0.981 0.808 0.981 0.804
RMSE 5.33 8.16 6.53 11.01 6.54 11.21
MAPE 1.07 2.12 1.32 2.88 1.32 2.93
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evidence from the analysis of performance data of vari-
ous models dictated that the prediction of THMs through 
AAN was found relatively more precise than SVM and 
MLR models, hence, can be invariably adopted for quality 
control in drinking water supplies.
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