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Abstract
In this study, in the first step, three scenarios with different input combinations are created to implement a sensitivity analysis 
for hourly  NO2 prediction in Columbus City, Ohio. Three classes of inputs including concentration-related data  (NO2 con-
centration at previous time steps and  NO2 concentration in the suburban monitoring station), meteorology (wind speed, wind 
direction, and temperature), and traffic-related data (traffic count, hour of the day, and day of the week) are applied to create 
three scenarios. Also, the support vector regression methodology is employed to perform the sensitivity analysis. Dominant 
variables determined in the sensitivity analysis are applied as inputs to three models called feed-forward neural network, 
support vector regression, as well as classification and regression tree. In the last step, ensemble techniques including simple 
linear averaging, weighted linear averaging, and nonlinear support vector regression ensemble are proposed to improve the 
performance of sole models. The results indicate that, in the urban area, in addition to  NO2 variations in the previous time 
step, other variables such as hourly traffic count in freeway loop, suburban  NO2 concentration, and hour of the day can affect 
the  NO2 concentration. Further, the values of determination coefficient for the individual models, namely classification and 
regression tree and feed-forward neural network, are 67 and 81% that the ensemble technique as a post-processing approach 
enhances the performance of them up to 19% and 5% in the verification steps, respectively.

Keywords Air pollution modelling · Traffic-related pollutant · Support vector regression · Feed-forward neural network · 
Classification and regression tree · Columbus City

Introduction

Air pollution is a serious challenge worldwide, especially 
in highly populated areas such as metropolises with heavy 
traffic flows. Due to the development of transportation and 
urbanization, the number of vehicles has increased tremen-
dously and traffic-related pollution has become one of the 
major concerns. The role of traffic in producing pollutants 

such as nitrogen oxides  (NOx), carbon monoxide (CO), and 
aromatic hydrocarbons in urban environments is undeni-
able, and people living in metropolitan areas are facing pro-
gressive health effects (Gilbert et al. 2005). Atmospheric 
emissions of  NO2 are mainly due to combustion processes 
including vehicle exhaust, coil, oil, and natural gas. Scien-
tific evidence has shown that short-term exposure to  NO2 
can aggravate asthma symptoms, and in some cases, hos-
pitalization or receiving emergency treatment is necessary 
(U.S. EPA 2016).  NO2 as a gas in the atmosphere can be 
decomposed into nitric acid effecting both marine and soil 
environment and also leads to the ozone formation in sun-
light. Thus, estimation of the spatiotemporal variations in air 
pollutants such as  NO2 is crucial in determining whether air 
pollution may cause adverse health outcomes or not. Reli-
able modelling also provides advanced information at an 
early stage based on which the government could take meas-
ures to control air pollution. On the other hand, Kambezidis 
et al. (2015) have shown that tropospheric  NO2 impacts the 
incoming solar radiation; they have provided a relationship 

Editorial responsibility: Parveen Fatemeh Rupani.

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s1376 2-020-03002 -6) contains 
supplementary material, which is available to authorized users.

 * V. Nourani 
 vnourani@yahoo.com

1 Center of Excellence in Hydroinformatics and Faculty 
of Civil Engineering, University of Tabriz, Tabriz, Iran

2 Faculty of Civil and Environmental Engineering, Near East 
University, via Mersin 10, 99138  Nicosia, N Cyprus, Turkey

http://orcid.org/0000-0002-6931-7060
http://crossmark.crossref.org/dialog/?doi=10.1007/s13762-020-03002-6&domain=pdf
https://doi.org/10.1007/s13762-020-03002-6


2704 International Journal of Environmental Science and Technology (2021) 18:2703–2722

1 3

between the flux of the diffuse solar radiation and  NO2 con-
centration over the over Athens.

With cities expanding rapidly, estimation of pollutants 
produced from stationary and mobile sources becomes more 
complex. Highways and vehicular traffics as line sources of 
air pollutants are responsible for virtually all of the CO and 
 NOx emitted to the atmosphere near highways (Hamilton 
and Harison 1991). Assessing the impact of emitted pol-
lutants’ impacts becomes more complex by the fact that air 
pollutants could be transported far from their sources and 
are not confined to one location or even one region. Thus, 
consideration of the leading factors to explain pollutants’ 
variations in a region depends on local meteorology and 
surrounding traffic patterns.

In an urban environment, determining the efficiency of 
every parameter contributing to air quality is a key issue in 
air pollution modelling. Thus, sensitivity analysis might be 
a major tool for investigating such effects. Such an analysis 
helps in not only identifying the most important parame-
ters, but also in determining some alternate optimal deci-
sion. Sensitivity analysis based on artificial intelligence 
(AI) is a reliable tool to assess the efficiency of all involved 
parameters. In this regard, Mehdipour and Memarianfard 
(2019) performed sensitivity analysis using support vector 
regression (SVR) to examine the impacts of photochemi-
cal precursors and metrological parameters on tropospheric 
ozone. They found that  PM2.5,  PM10, CO, and  NO2 had great 
importance in this regard. Radojević et al. (2019) examined 
the sensitivity of artificial neural network (ANN) to periodic 
parameters alongside meteorological variables for predict-
ing daily average concentrations of sulphur dioxide  (SO2) 
and  NOx. They observed that the models based on periodic 
parameters outperformed other models that use only mete-
orological variables as inputs. Elangasinghe et al. (2014) 
analysed the sensitivity of meteorological variables and 
determined the wind speed and wind direction as the most 
effective parameters for predicting  NO2 concentration near 
a major highway in Auckland, New Zealand. Optimization 
methods contributing to cost-effective and time-efficient 
models constitute the core aim of researchers when conduct-
ing sensitivity analysis. Reporting major variables involved 
in the air pollution field is an advantage to future researchers 
intending to simulate pollution trend in municipal areas with 
distinct geographical and urban road networks.

On the other hand, the application of various spatiotem-
poral variables (fixed air quality station data, satellite-based 
information, traffic count, meteorological data, land-used 
predictors, and periodic variables such as hour of the day) 
which are accessible and able to explain output variation 
is a way to develop more accurate air pollution models. 
Alimissis et al. (2018) applied ANN for the estimation of 
 NO2 concentrations at each of 13 monitoring sites located 
in Athens considering a specific site as target and using 

concentrations at remaining monitoring sites as independ-
ent variables. Results showed a wide range of determination 
coefficients (DCs) from 0.23 to 0.74 at the monitoring sites 
in the suburban and urban areas. Yeganeh et al. (2018) inves-
tigated the application of satellite-based  NO2, traffic, mete-
orological, and land-used predictors in adaptive neuro-fuzzy 
interface system (ANFIS) to propose monthly  NO2 predic-
tions. Modelling the  NO2 variation could be conducted for 
hourly, weekly, and monthly values, but when it is needed 
to predict its concentration in hourly intervals, some limita-
tions may arise in data accessibility. For instance, satellite-
based  NO2 measurements don’t cover 24-h records and are 
limited to a special range of time in a day (Bechle et al. 
2013). Moreover, implementation of real hourly traffic as a 
predictor is a controversial issue in air pollution modelling. 
That’s because the permanent automatic traffic recording 
stations, which provide hourly intervals, are mostly placed at 
highways in contrast to short-term traffic counts collected in 
a large number of road segments (Leduc 2008). Video image 
detection as non-intrusive method has also been applied 
to determine hourly traffic flow in multiline intersections 
(Jamal et al. 2015). Kamińska (2019) applied a random for-
est partition modelling to predict hourly  NO2 concentration 
using vehicle count obtained from a video camera at an 
intersection together with meteorological data. The results 
showed that the traffic flow had the greatest impact on both 
upper and lower values of  NO2 concentration. Elangasinghe 
et al. (2014) employed hour of the day, day of the week, and 
month of the year for representing  NO2 time variation emis-
sion in the ANN model.

AI models have been used in many fields of engineering 
as well as air pollution modelling (e.g. Agirre-Basurko 
et al. 2006; Azid et al. 2014; He et al. 2015; Feng et al. 
2015; Perez and Gramsch, 2016; Cabaneros et al. 2017; 
Murillo-Escobar et al. 2019). Machine learning algorithms 
including ANN (Mishra and Goyal 2015; Bai et al. 2016) 
and SVR (Osowski and Granty 2007; Moazami et al. 2016) 
have recently shown reliable abilities in air quality model-
ling. Linear models such as decision tree and random for-
est with implementing pre-processing and post-processing 
approaches have also illustrated fairly successful flexibility 
for pollutant concentration forecasting (Kamińska 2019; 
Shang et al. 2019). Although different black-box models 
have been used in the atmospheric science, these methods 
may lead to different performances at different situations, 
and therefore, it seems that combining distinct models 
outputs by means of ensemble techniques may produce 
slightly better results. The overall idea of ensemble mod-
els is that instead of relying on an individual model or 
selecting the best model among a number of them, com-
bining AI-based models outputs from linear and/or non-
linear models may capture almost all input information. In 
a real case, it rarely happens that an environmental time 
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series is solely linear or nonlinear. Thus, different aspects 
of fundamental patters can be taken from assembling dis-
tinct models. The concept of combining outputs has been 
discussed in different engineering fields including rainfall 
runoff models (Shamseldin et al. 1997), seepage analysis 
(Sharghi et al. 2018), river water quality (Elkiran et al. 
2019), and vehicular traffic noise (Nourani et al. 2020). As 
a novel ensemble technique, one part of the present study 
has been allocated to the implementation of the ensemble 
concept in the air pollution field for the prediction of  NO2 
concentration.

The main aim of this paper is to analyse  NO2 variations 
(from 1 January 2019 to 15 March 2019) in the station 
located almost close to the downtown in Columbus City. 
Because of the high population density in the urban area, 
predicting and investigating  NO2 variations in a city are 
far more important than in other places such as suburban 
areas. Highways and freeways, which provide access to 
several suburbs surrounding a city, heavily contribute to 
air pollution. Although the impact of highways on  NO2 
concentration is smaller beyond 100 or 200 m, the num-
ber of people living beyond 100 or 200 m from highways 
may be greater than that of people living in the immediate 
vicinity of highways (Gilbert et al. 2007). Thus, in this 
study, the hourly concentration of  NO2 in the suburban 
station  (Cs(t)) is considered as a secondary input for pre-
dicting the hourly concentration of  NO2 in the urban sta-
tion  (Cu(t)) (as main target). The proposed process can be 
summarized in three steps: first, the SVR model is applied 
to perform single and class sensitivity analysis to deter-
mine the dominant variables and the important classes of 
data for predicting  Cs(t) and  Cu(t). Three classes of data are 
considered as inputs including concentration-related data 
(CR), meteorological data (M), and traffic-related data 
(TRE) to create three scenarios with different input com-
binations. In the second step, the SVR model is proposed 
for  Cs(t) prediction applying the dominant inputs. Then, 
three machine learning models, called feed-forward-neural 
network (FFNN), SVR, and classification and regression 
tree (CART), are developed for predicting  Cu(t) using the 
dominant inputs determined in the sensitivity analysis as 
well as the values of  Cs(t) generated from the SVR model. 
In this case, each of the FFNN, SVR, and CART models is 
denoted as integrated model because of applying the SVR-
generated values of  Cs(t) instead of the observed values. 
The FFNN as the most common model among AI mod-
els, the SVR as an almost new approach comparing other 
traditional ANNs, and CART as the linear model were 
considered for this study. In the last step, three ensembling 
techniques of simple linear averaging (SA), weighted lin-
ear averaging (WA), and nonlinear support vector regres-
sion ensemble (SVRE) are implemented on the outputs 

of FFNN, SVR, and CART models to enhance the overall 
performance of the modelling.

Materials and methods

Study area and data

Columbus is the most crowded city in the US State of 
Ohio. Transportation in this city is based on the inter-
state highway system, which is a crucial component of 
the transportation system in the USA. The Beltway as a 
well-known place on the highway system encircles the 
city to streamline the inner-city traffic flow. In Columbus 
City, Interstate 270 is the beltway freeway loop, which 
provides access to several suburbs surrounding Columbus 
(Fig. 1). Regarding the air pollution monitoring system, 
two fixed air quality monitoring stations were considered 
in this study, one located in the urban area and the other in 
the vicinity of the beltway. Atmospheric concentrations of 
nitrogen dioxide  (NO2) are measured indirectly by photo-
metrically measuring the light intensity, at wavelengths 
greater than 600 nm, resulting from the chemilumines-
cent reaction of nitric oxide (NO) with carbon monoxide. 
Figure 1 indicates the locations of air quality stations, the 
traffic counter, and the weather station in the city. From 1 
January 2019 to 15 March 2019,  Cu(t) and  Cs(t) were col-
lected from the EPA (https ://www.epa.gov/), resulting in 
1681 instances. Traffic count in the north part of the free-
way loop (TR) and M were also gained from Ohio Depart-
ment of Transportation (https ://www.dot.state .oh.us/pages 
/home.aspx) and the Ohio State University (https ://oardc 
.osu.edu/), respectively. In addition, parameters such as 
hour of the day (H) and day of the week (D) were consid-
ered as inputs in order to represent the emission rate of 
 NO2 from industrial and manufactural sources. Emission 
inventory reports explain all air pollution emissions from 
sources within a specific area over a specific time interval. 
In such reports, the North American Industry Classifica-
tion System (NAICS) is used to describe what kind of eco-
nomic activity is occurring in the facility. The Columbus 
Emission inventory point source report is available in by 
the Ohio Environmental Protection Agency (https ://www.
epa.ohio.gov/) and among 16 facilities discharging NOx 
to the atmosphere in Columbus; the first five facilities with 
the most emissions are presented in Table 1.

NOx emissions from traffic and point sources must be 
controlled since this pollutant is one of the main factors 
participating in tropospheric ozone formation. Tropo-
spheric or ground-level ozone is one of the criteria air pol-
lutants that is not emitted directly into the air but is formed 
when  NOx and volatile organic compounds react in the 
presence of sunlight; it can even reach high levels during 

https://www.epa.gov/
https://www.dot.state.oh.us/pages/home.aspx
https://www.dot.state.oh.us/pages/home.aspx
https://oardc.osu.edu/
https://oardc.osu.edu/
https://www.epa.ohio.gov/
https://www.epa.ohio.gov/
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colder months. In 3 August 2018, Columbus City was des-
ignated as a nonattainment area [any area that does not 
meet the national primary or secondary ambient air quality 
standard for a National Ambient Air Quality Standards 

(NAAQS)] under the 2015 ozone standard (EPA 2018). 
This city was also classified as marginal area based on the 
Clean Air Act Amendments where marginal areas have 
up to three years from designation to attain the NAAQS 

Fig. 1  Study area and data collection sites
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(EPA 2018). In other words, EPA has set 3-year deadline 
for Columbus City as a “marginal nonattainment” to come 
into compliance with Clean Air Act Standards. As such, 
consideration of measuring the traffic and industrial emis-
sions can be efficient for predicting NO2 concentration as 
well as tropospheric ozone reduction.

In this study, wind speed (WS), wind direction (WD), 
temperature (T),  NO2 concentration at the suburban station 
at previous time step  (Cs(t-1)),  NO2 concentration at the urban 

station at previous time step  (Cu(t-1)),  Cu(t),  Cs(t), TR, H, and 
D were used in different steps of modelling in this study. 
Variables such as  Cs(t),  Cs(t-1),  Cu(t), and  Cu(t-1) are denoted 
as CR because of their relation to pollutants’ concentration. 
TR, H and D, WS, WD, and T were also considered as TRE 
and M, respectively. In the process of constructing the mod-
els, collected data were divided into two parts, of which the 
first 80% applied for training and the rest 20% were used 
for the model verification purpose. Table 2 summarizes the 
statistics of the used data.

Table 2 shows that the peak value of  Cu(t) is higher than 
 Cs(t). The maximum and minimum traffic counts reported in 
Table 2 indicate the number of vehicles this freeway han-
dles ranging between 248 and 15,218 vehicles per hour; 
nevertheless, the pattern of the traffic may give information 
about peak hours on the days of a week. Figure 2 compares 
the temporal variations in the traffic pattern in the eastern 
and western parts of the beltway with that in the north. The 
pattern of traffic variation is almost the same on the three 
sides (north, east, and west) of the beltway in a week (from 

Table 1  Five facilities with the most  NOx emissions in Columbus for the year 2018 (https ://www.epa.ohio.gov/)

Facility name NAICS Stack/point (Ton)

MPLX terminals LLC—Columbus terminal Petroleum bulk stations and terminals 160
Anheuser-Busch Columbus Brewery Breweries 97.44
Ross products—division of abbott Dry, condensed, and evaporated dairy product manufactur-

ing
22.8136

Columbus Southerly Wastewater Treatment Plant Sewage treatment facilities 13.92
Georgia Pacific Chemicals LLC All other basic organic chemical manufacturing 12.279

Table 2  Statistics of the used data

NO2 concen-
tration (ppb)

Traffic count Urban weather 
station

Cs(t) Cu(t) TR (veh/h) WS (m/s) T (°C)

Max 48 53 15,218 17 23
Min 1 1 248 0 − 21
Average 11.53 12.08 5879 4.35 − 0.5
Standard deviation 8.87 8.95 4185 2.6 7.1

Fig. 2  Recorded traffic counts in the beltway freeway loop in the period 1 January 2019—15 March 2019

https://www.epa.ohio.gov/
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5 to 12 in January); this pattern has almost repeated for the 
other weeks. Further, the wind rose plot using WS and WD 
gives a concise but information-laden view of how WS and 
WD are distributed in a specific location. As revealed by 
the wind rose plot (Fig. 3), the prevailing wind direction 
from January to March is from west to east in the Columbus 
weather station. Such information is important to interpret 
the distribution of pollution over the region.

Proposed methodology

The main aim of this study was to model  Cu(t) in Columbus 
City. In the proposed modelling framework of this study, 
firstly the SVR model was developed and trained to perform 
left-out sensitivity analysis for both suburban and urban sta-
tions. Single and class sensitivity analyses were considered 
to determine the optimized classes of data and important 
inputs in the modelling of  NO2 concentration. Note that 
other machine learning models such as ANNs could be 
used to perform sensitivity analysis, but the SVR model 
was applied at this step because of its better performance. 
In the class sensitivity analysis, three scenarios with differ-
ent combinations of classes were created to determine the 
importance of CR, TRE, and M. For the single sensitivity 
analysis in each scenario, the dominant inputs were deter-
mined and the best combination was selected to be used in 
the modelling. In the second step,  Cs(t) was predicted by 
applying the SVR model to historical data. Next, three mod-
els of FFNN, SVR, and CART were used to predict  Cu(t) 
based on the determined dominant inputs determined from 

the sensitivity analysis as well as the generated values of  Cs(t) 
by the SVR model as an exogenous parameter. In this regard, 
each model of FFNN, SVR, and CART was denoted as an 
integrated model because of applying the SVR-generated 
values instead of the observed ones of  Cs(t). Since the SVR 
model was implemented using historical data from the sub-
urban station, this model is also able to model future values 
or missing real ones consequent on measurements. Hence, 
the advantage of the integrated model can be attributed to 
predicting  Cu(t) from forecasted values of  Cs(t) using the SVR 
model. In the last step, three ensemble techniques based on 
outputs of FFNN, SVR, and CART were formed to improve 
the overall performance of the single models. Figure 4 pre-
sents the schematic of the proposed methodology. According 
to Fig. 4, initially, 8 inputs  (Cs(t),  Cu(t-1), TR, H, D, WS, T, 
and WD) were fed to the SVR model to perform the sensi-
tivity analysis for determining the important inputs for  Cu(t) 
prediction. Since  Cs(t) was determined as a dominant input, 
an SVR model was also developed for  Cs(t) prediction using 
3 dominant inputs  (Cs(t-1), TR, and H) resulting from the 
sensitivity analysis. Afterwards, the values of  Cs(t) predicted 
from the SVR model were applied as input for  Cu(t) predic-
tion. In the second step, 4 inputs  (Cu(t-1), TR, H, and gener-
ated  Cs(t)) were used as inputs to models of SVR, FFNN, 
and CART. In the third step, three ensemble techniques (SA, 
WA, and SVRE) were implemented to combine the outputs 
of the models of SVR, FFNN, and CART models. Sensitiv-
ity analysis and ensembling technique were implemented 
on inputs and the outputs of diverse models, respectively, 
to reduce defects that may arise in environmental issues. 

Fig. 3  Wind rose plot in the 
weather station for the period 1 
January 2019—15 March 2019
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For example, there are several factors involved in modelling 
the concentration of  NO2 that may vary from one region to 
another; even in one region, the concentration of the pollut-
ant may be more sensitive to some factors. Therefore, per-
forming a sensitivity analysis on inputs is a method to define 
the dominant variables, which can explain the  NO2 varia-
tion regarding the geographical condition and urban road 
network. On the other hand, by ensembling diverse models, 
the problem of choosing a suitable model can be handled, 
because, in real-world cases, it is difficult to define a time 
series as solely linear or nonlinear. As a result, assigning an 
AI model to a complex environmental time series may not 
seem reliable. Previous studies such as Zhang (2003) have 
proved this point that there is no unique model to define the 
process perfectly. To investigate this concept in  NO2 time 
series modelling, linear CART and nonlinear AI models 
were applied to detect and capture the linear and nonlin-
ear portions of  NO2 time series; the obtained results from 
ensembling techniques were compared with the individual 
model outcomes.

Sensitivity analysis

In this study, AI-based (here SVR) left-out method (Nou-
rani et al. 2019) was used for determining every variable 
efficiency. In the left-out method, one of the variables was 
left out and the SVR model was trained with the rest of 
the variables; afterward, the left-out input was switched for 
every input used in the model. In this way, contributions of 
all parameters were evaluated and it is clear that the more 
efficient the variable is, the greater reduction in the model’s 
accuracy occurs. In other words, when the left-out variable 
is switched for an important input, the model performance 
abruptly reduces because an important input is extracted and 
switched for a less important variable (here left-out vari-
able). In addition, in the process of training for a distinct 
combination of inputs, to find the best fit and tuning the SVR 
parameters, the grid search approach using cross-validation 
was applied (Hsu et al. 2003). In this approach, different 
values of the parameters were examined and the one with 
the best cross-validation accuracy was selected (Hsu et al. 
2003). This method is time-consuming and seems naive, 

Fig. 4  Schematic of the proposed methodology
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but it is still more straightforward over several advanced 
methods; the drawback of being time-consuming can be 
handled by using a coarse grid to identify “better” region 
on the grid and then constructing a fine grid on the bet-
ter region, so using a coarse grid first and then a finer grid 
search on that region can be used to investigate the best SVR 
model parameters (Hsu et al. 2003). Other AI models such 
as ANN and CART could be used for the sensitivity analysis 
process. If an ANN model was applied instead of the SVR, 
the problem of tuning the SVR parameters would turn into 
determining the best architecture for the ANN model. In 
the present paper, in order to investigate single and class 
sensitivity analysis, three scenarios were considered based 
on different classes of data. The main goal of creating three 
scenarios was to investigate the efficiency of every class of 
data as well as every single variable in the modelling of  NO2 
concentration. Because of the importance of CR such as  Cs(t) 
and  Cu(t-1) in the urban station and  Cs(t-1) in the suburban 
station, they were applied as common class of data in all 
three scenarios, and then, other classes of data were included 
in each scenario. That way, the importance of every class 
of data was revealed in the modelling of  NO2 variation. It 
should be noted that for both urban and suburban stations, 
the necessity of applying additional  NO2 times series of pre-
vious time steps including  Cu(t-2),  Cu(t-3),  Cu(t-4), and  Cu(t-5) in 
the urban station and  Cs(t-2),  Cs(t-3),  Cs(t-4), and  Cs(t-5) in the 
suburban station was examined and it was concluded that 
using only  Cu(t-1) and  Cs(t-1) as inputs was appropriate for 
reaching the best performance of the modelling in the urban 
and suburban stations, respectively.

Scenario 1

In this scenario, 2 classes of data including CR and M were 
taken into account for hourly  NO2 prediction in both urban 
and suburban stations as:

where WS, WD, and T represent the wind speed, wind direc-
tion, and temperature, respectively; f stands for the predic-
tor model, which can be SVR, FFNN, or CART;  Cu(t) and 
 Cu(t-1) denote the concentration of  NO2 in the urban station 
in the current and previous time step in the urban station, 
respectively, and  Cs(t),  Cs(t-1), respectively, but in the subur-
ban station.

(1)Cu(t) = f
(
Cu(t - 1), Cs(t),WS,WD, T

)

(2)Cs(t) = f
(
Cs(t - 1),WS,WD, T

)

Scenario 2

Scenario 2 was similar to scenario 1 in terms of CR. This 
scenario was created by keeping the CR fixed and replacing 
M with TRE. In other words, for  NO2 concentration predic-
tion in both urban and suburban stations, the CR and TRE 
classes of data were used as:

where TR, D, and H present the traffic counts, day of the 
week, and hour of the day, respectively.

Scenario 3

In the third scenario, which is a combination of scenarios 
1 and 2, three classes of data were considered for  NO2 pre-
diction in both urban and suburban stations. Thus, CR, M, 
and TRE were applied in  NO2 concentration modelling as:

Support vector regression (SVR)

SVM was first proposed and developed by Vapnik (1995) 
based on statistical learning theory and has been prior-
itized for considering to solve various pattern recognition 
problems among many available supervised learning meth-
ods (Li et al. 2020). SVR is a new and promising approach 
that employs the structural risk minimization principals. 
In this approach, instead of minimizing the error between 
the observed and computed values, the operational risk 
as the objective function is considered to be minimized. 
In SVR, first a linear regression is fitted to the data, and 
then, the outputs go through a nonlinear kernel to catch 
the nonlinear pattern of the data. The SVR principles for 
regression are as follows. Given a dataset of N elements 
{ 
(
xi, di

)
i = 1, 2,…N} , ( xi is the input vector, di is the 

actual value, and N is the total number of data points); the 
general SVR function is written as Eq. (7) (Wang et al. 
2013):

where �
(
xi
)
 represents feature spaces, non-linearly mapped 

from the input vector x; w and b are the weight vector and 

(3)Cu(t) = f
(
Cu(t - 1), Cs(t), TR,D,H

)

(4)Cs(t) = f
(
Cs(t - 1), TR,D,H

)

(5)Cu(t) = f
(
Cu(t - 1), Cs(t),WS,WD, T, TR,D,H

)

(6)Cs(t) = f
(
Cs(t - 1),WS,WD, T, TR,D,H

)

(7)y = f (x) = w�
(
xi
)
+ b
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adjustable factor which both can be determined by allocat-
ing positive values for the slack parameters of � and �∗ and 
minimizing the error function [Eq. (8)] (Wang et al. 2013):

With the constrains:

where 
(
1∕2

)
∥ w ∥2 is the weights vector norm and C is 

referred to the regularized constant determining the trade of 
the empirical error and the regularized term. � is called the 
tube size and is equivalent to the approximation accuracy 
placed on the training data points. Mentioned optimization 
problems can be changed to a dual quadratic optimization 
problem by defining Lagrange multipliers �i and �∗

i
 . The 

vector w in Eq. (7) can be computed after solving the quad-
ratic optimization problem as:

So the final form of SVR can be expressed as (Wang 
et al. 2013):

where �
i
 and �∗

i
 are Lagrange multipliers, K

(
x, xi

)
 is referred 

to kernel function, which is capable of nonlinearly map-
ping into feature space, and b is the bias term. One of the 
most used kernel functions is the radial basis function (RBF) 
which is written as follows:

where � is the kernel parameter.

(8)Minimize ∶
1

2
∥ w ∥2 +C

(
N∑
i

(�i + �∗
i
)

)

⎧
⎪⎨⎪⎩

wi�
�
xi
�
+ bi − di ≤ � + �∗

i

di − wi�
�
xi
�
+ bi ≤ � + �∗

i

�i, �
∗
i

i = 1, 2, 3…N

(9)w∗ =

N∑
i=1

(
�i − �∗

i

)
�
(
xi
)

(10)f (x, �i, �
∗
i
) =

N∑
i=1

(
�i − �∗

i

)
K
(
x, xi

)
+ b

(11)K
(
x1, x2

)
= exp

(
−𝛾 ∥ x1 − x2 ∥

2
)

𝛾 > 0

The generalization capacity of the SVR model is highly 
dependent on the good tuning of the kernel parameter (γ) 
in Eq. (11) and tuning parameters C and ɛ in Eq. (8). A 
characteristic SVR structure is displayed in Fig. 5. For tun-
ing these parameters in this study, the grid search approach 
using cross-validation was applied (Hsu et al. 2003).

Feed‑forward neural network (FFNN)

ANNs as a black box tool have been widely used in dif-
ferent fields of engineering. Feed-forward neural network 
(FFNN) as an ANN model is the first and simplest type of 
neural network in which information moves forward through 
the input layer, hidden layers, and output layer, sequentially 
(Fig. 6). Multi-layer feed-forward neural networks, trained 
with a back-propagation learning algorithm, are the most 
popular neural networks. The multi-layer neural-network 
performance can be considered in two modes: training and 
prediction. Training and test datasets are used for the train-
ing and prediction modes. The training mode starts with 
arbitrary values of the weights and proceeds iteratively. Each 
iteration of the complete training set is called an epoch. In 
each epoch, the network adjusts the weights in the direction 
that reduces the error (back-propagation algorithm). As the 
iterative process of the adjustment continues, the weights 
gradually converge to the locally optimal set of values. Many 
epochs are usually required before training is completed. 
Researches indicate that a three-layer FFNN, which consists 
of an input layer, hidden layer, and output layer, has the 
capability of sufficient performance in the environmental 
modelling (ASCE 2000; Nourani 2017). The explicit equa-
tion to determine the output value of a FFNN is obtained by 
Eq. (12) (Nourani et al. 2015):

(12)ŷj = fj

[
m∑
h=1

wjh × fh

(
n∑
i=1

whixi + whb

)
+ wjb

]

Fig. 5  Structure of SVR Fig. 6  Structure of FFNN
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where i, h, j, b, and w represent the input, hidden, and output 
layer bias, and the applied weight (or bias), respectively; fh 
and fj stand for the activation function of the hidden and 
output layers, respectively; xi , m, n show, respectively, the 
input layer variable, the number of input, and the number of 
hidden neurons; and y, ŷj denote the observed and computed 
values of the output neuron, respectively. The hidden and 
target layer weights are different from each other and should 
be estimated within the training phase.

Classification and regression tree (CART)

Decision tree is one of the non-parametric classification meth-
ods which can introduce a pattern classification of observa-
tions utilizing a simple technique. Normally, decision tree is 
drawn from top to the down in which the root is placed at 
the top. The end of a chain which comprises of root, branch, 
and node is named as leaf. Each node can be split into two 
branches. Each node is related to a certain characteristic 
(input parameter), and branches are described a specific range 
of input parameters (Liang et al. 2016). Figure 7 schemati-
cally shows the structure of a decision tree. The main concept 
of CART algorithm, developed by Breiman et al. (1984), is 
to recurrently split the input space into dual subsets until the 
output becomes more homogenous. Given a dataset of train-
ing samples { 

(
xi, yi

)
i = 1, 2,… .l) } where xi ∈ Rm is the ith 

input vector and yi ∈ R is the corresponding output. CART 
begins with the root nod, which contains the whole training 
samples. The next step is to calculate the first split, in which 
for a regression problem, the split is to minimize the expected 
sum variances for two resulting subsets (Shang et al. 2019):

(13)min
j,c

1

l

(∑
k∈SL

(
yk − yL

)2
+

∑
k∈SR

(
yk − yR

)2
)

where SL and SR are the sets of training indices going to left 
child node and right child node, yL and yR denote the mean 
values of the output of samples in the two subsets.

The children of the root node are recursively split in the 
same manner until some stop criterion is satisfied. By mov-
ing from the root to the terminal node (leaf), each sample 
is assigned to a unique leaf, in which the mean value of 
samples in a leaf is chosen as the predicted value (Shang 
et al. 2019).

Efficiency criteria

In this study, a training set was employed to build the predic-
tive model, and a test set was used to examine the trained 
model. The Determination Coefficient (DC) and root mean 
square error (RMSE) efficiency criteria were applied in this 
paper to evaluate the performance of the models as (Nourani 
2017). The value of DC represents the percentage of the 
square of the correlation between the predicted and actual 
values of the target variable (Armaghani and Asteris 2020). 
RMSE represents the standard deviation of the fitted error 
between the predicted and observed values (Zhou et al. 
2020). The calculation formulas of the evaluation indica-
tors are presented as follows:

⎧
⎪⎨⎪⎩

s.tSL =
�
i�xij ≤ c, i = 1,… , l

�
,

SR =
�
i�xij > c, i = 1,… , l

�
,

j ∈ {1,… ,m}

(14)DC = 1 −

∑n

i=1

�
CN obsi

− CN comi

�2
∑n

i=1

�
CN obsi

− CN obs

�2

Fig. 7  Structure of decision tree
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where n, CN obsi
 , CN obs , and Ocomi

 are the number of data 
points, the observed  NO2 data, the average value of the 
observed data, and the calculated values, respectively. DC 
ranges between − ∞ and 1, with perfect score of 1.

Ensembling unit

Ensembling techniques as post-process approaches have 
shown the ability to improve model’s prediction by com-
bining various model outputs. It has been proved that it is 
less risky to use a combination of relatively simple models 
than to use a single model, which is more complex and 
expensive (Makridakis and Winkler 1983). In this paper, 
three ensembling techniques were applied for combining 
the outputs of the FFNN, SVR and CART models. The 
first two linear ensemling techniques including SA and 
WA were implemented according to Eqs. (16) and (17) 
(Sharghi et al. 2018).

where Cui
(t) is the output of the ith individual model (here, 

outputs of FFNN, SVR, and CART), Cu(t) is the output of 
the simple linear ensemble model and M is the number of 
single models (here 3).

where wi is the applied weight on the ith model which can 
be written as:

where DCi is the determination coefficient of the ith indi-
vidual model.

The third ensembling technique which is nonlinear 
averaging is implemented by the SVR model using out-
puts of three models, namely the SVR, FFNN, and CART. 
It should be noted that the training dataset was used for 
both computation of  Wi in Eq. (18) and training the SVR 
ensembling technique. In this part, other AI models such 
as FFNN could be used for ensembling, but the SVR model 
as an almost new model in machine learning approaches 
was considered to combine the outputs of three models.

(15)RMSE =

�∑n

i=1
(CN obsi

− CN comi
)2

n

(16)Cu(t) =
1

M

M∑
i=1

Cui
(t)

(17)Cu(t) =

M∑
i=1

wiCui
(t)

(18)wi =
DCi∑M

i=1
DCi

Results and discussion

The results of this study consist of three parts presented in 
three sections separately as follows:

Results of the sensitivity analysis

At the first step of the modelling, single and class sensitivity 
analysis were performed based on the SVR model for both 
suburban and urban stations. Table 3 presents the results of 
the  NO2 sensitivity analysis for all 3 scenarios in the urban 
station.

In scenario 1, one of the meteorological variables (T) 
was left out, where SVR model was trained and verified by 
the rest of the inputs. According to Table 3, the first row of 
each scenario is the first step of sensitivity analysis; one of 
the variables was left out and the SVR model trained by the 
rest of the inputs. The last row in each scenario is related to 
the applying of all classes of data based on the specific sce-
nario. The rest of the rows in Table 3 represent the process 
of sensitivity analysis that the left-out variable switches for 
each input. For instance, the fourth row in scenario 1 shows 
the switching of T for  Cs(t) comparing the first row. So, the 
percentage of change in DC value in the verification step is 
17% (0.84–0.67 = 17%).

By replacing T with WS and WD parameters, no remark-
able changes were observed in DC; in contrast, replacing T 
with  Cs(t) and  Cu(t-1) led to an abrupt reduction in the model 
performance by up to 17% and 7% in the verification step, 
respectively. As such,  Cu(t) is more sensitive to the  Cs(t) com-
pared to  Cu(t-1). This outcome confirms that the  NO2 time 
series is not an autoregressive process and applying addi-
tional variables in previous time steps such as  Cu(t-2) may 
not seem reasonable.

In scenario 2, D was first left out, similar to scenario 1 
the SVR model was developed and the related parameters 
were tuned to perform the sensitivity analysis. The results 
presented in Table 3 indicated that  Cs(t) and  Cu(t-1) are still 
the most sensitive variables, which can affect the model per-
formance by up to 17% and 11%, respectively. Further, by 
replacing D with TR, the model performance was reduced 
by up to 9% in the verification step. This means that  Cu(t) is 
sensitive to TR. Freeways with a large volume of vehicles 
(here 5879 vehicles per hour on average) seem to influence 
 NO2 variations beyond the adjacent region. Gilbert et al. 
(2007) reported this issue by implementing land-use regres-
sion in 55 locations with different distances from the nearest 
highway (the maximum distance from the nearest highway 
was 5.264 km). Their research revealed that by excluding 
locations less than 200 m, the  NO2 concentration was still 
significantly associated with traffic count in the nearest high-
way. They also reported that the upwind/downwind location 
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of sampling sites relative to nearest highways was not deter-
mined, and therefore, it was impossible to compare the influ-
ence of highway between upwind and downwind locations. 
In other words, their research was conducted without con-
sidering meteorological parameters such as wind speed and 
wind direction. In the current study, the distance of the urban 
station from the northern part of the beltway was approxi-
mately 13.4 km. Also, to explain this sensitivity, the traffic 
counts in the eastern and western parts of the beltway were 
investigated; their distances were about 7.7 km and 10.5 km 
from the urban station, respectively. Figure 2 displays the 
time series of the traffic counts in the northern, eastern, 
and western parts of the beltway. The traffic patterns in the 
three parts of the beltway are very similar, and by replac-
ing the east traffic counts with northern ones, no changes 
were observed in the DC value of the SVR model. Hence, 
regarding this pattern similarity, the sensitivity of the  NO2 
concentration can be attributed to the eastern traffic counts, 
which has the lowest distance (~ 7.7 km) from the urban sta-
tion and with the same traffic pattern of the northern part. In 
addition, replacing D with H also showed a reduction in the 
modelling performance by up to 7% in the verification step. 
The main reason that H was considered as input to the  NO2 

modelling was that it could implicitly represent the point 
source emissions in a city. According to Table 1, the petro-
leum industry and brewery manufactory discharged about 
160 and 97.44 tons of  NOx and accounted for approximately 
70% of total point source NOx emissions in Columbus. The 
petroleum industry is located in the western part of the urban 
station where the prevailing wind direction is from west to 
east (Fig. 3). The brewery is located in the northern part of 
the urban station where the second most frequent wind direc-
tion is from north. It seems that considering the operating 
hours of the facilities and their locations can almost explain 
the model’s sensitivity to H. However, this result is for a 
specific time interval (from 1 January to 15 March) and may 
show less sensitivity in other seasons of the year; therefore, 
this issue requires further investigation.

In scenario 3, three classes of data were used altogether 
to compare the changes caused in every variable sensitivity. 
It was also examined that whether applying all related vari-
ables might improve the model performance in comparison 
with scenarios 1 and 2. The results in Table 3 indicate that 
replacing T with  Cu(t-1) did not lead to a specific change in 
the model’s performance. In other words, by applying both 
TRE and M, the output  (Cu(t)) was not sensitive to  Cu(t-1) 

Table 3  Results of the NO2 sensitivity analysis for all 3 scenarios in the urban station for modelling  Cu(t)

Row number Model variables SVR parameters DC RMSE (ppb)

�, c, � Training Verification Training Verification

Scenario 1
1 Cs(t),  Cu(t-1), WS, WD 0.12-20-0.08 0.89 0.84 4.88 3.6
2 Cs(t),  Cu(t-1), WS, T 0.13-20-0.06 0.88 0.83 4.95 3.63
3 Cs(t),  Cu(t-1), T, WD 0.13-20-0.07 0.87 0.83 4.99 3.62
4 T,  Cu(t-1), WS, WD 0.14-25-0.09 0.77 0.67 6.99 5.25
5 Cs(t), T, WS, WD 0.15-25-0.02 0.80 0.77 5.90 4.56
6 Cs(t),  Cu(t-1), WS, WD, T 0.14-25-0.09 0.8 0.82 5.88 3.7
Scenario 2
1 Cs(t),  Cu(t-1), TR, H 0.15-45-0.15 0.92 0.87 4.41 3.38
2 Cs(t),  Cu(t-1), TR, D 0.13-30-0.07 0.83 0.80 4.81 3.59
3 Cs(t),  Cu(t-1), D, H 0.12-30-0.25 0.80 0.78 4.89 3.84
4 D,  Cu(t-1), TR, H 0.11-25-0.06 0.72 0.70 5.99 5.33
5 Cs(t), D, TR, H 0.12-25-0.05 0.81 0.76 4.85 4.41
6 Cs(t),  Cu(t-1), TR, H, D 0.15-30-0.06 0.85 0.82 5.23 3.6
Scenario 3
1 Cs(t),  Cu(t-1), TR, D, H, WS, WD 0.12-20-0.05 0.856 0.84 4.89 3.32
2 Cs(t),  Cu(t-1), TR, D, H, WS, T 0.15-20-0.08 0.864 0.82 4.81 3.44
3 Cs(t),  Cu(t-1), TR, D, H, T, WD 0.12-10-0.08 0.849 0.83 5.03 3.43
4 Cs(t),  Cu(t-1), TR, D, T, WS,WD 0.13-20-0.07 0.842 0.84 5.07 3.32
5 Cs(t),  Cu(t-1), TR, T, H, WS,WD 0.13-20-0.07 0.845 0.83 4.98 3.39
6 Cs(t),  Cu(t-1), T, D, WS, WD,H 0.11-20-0.07 0.843 0.83 5 3.45
7 Cs(t), T, D,H, WS, WD, TR 0.16-35-0.009 0.85 0.81 5.02 3.61
8 T,  Cu(t-1), D, H, WS, WD, TR 0.14-20-0.07 0.743 0.71 6.58 4.78
9 Cs(t),  Cu(t-1), TR, D, H, WS, WD, T 0.16-30-0.08 0.85 0.82 5.04 3.58
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anymore. Thus, TR, WS, WD, T, H, and D could be replaced 
with  Cu(t-1), though  Cs(t) is still the most sensitive variable 
(similar to scenarios 1 and 2) affecting the model’s accuracy 
by up to 13%.

Overall, in terms of the single sensitivity analysis, it was 
concluded that the  NO2 concentration in the urban station 
could be sensitive to TR and H. This result reveals that 
depending on the urban road network and freeways, traffic 
counts should be considered and investigated in a city for 
modelling  NO2 variations. The same traffic pattern at the 
three sides of the beltway may also give a clue for future 
studies, in the case that traffic counts in a freeway are acces-
sible for a limited time interval in a city; other freeways or 
highways with a similar traffic pattern can be used as a surro-
gate. In addition, in the  NO2 modelling, the role of meteoro-
logical variables is so complex that even in one region domi-
nant meteorological parameters may differ from one season 
to another. This complexity is not limited by the seasons; 
changing dominant meteorological parameters may also dif-
fer for the high and low concentrations of  NO2. Kamińska 
(2019) developed two models for upper and lower values 
of  NO2 concentration and showed that the meteorological 
parameters influencing upper and lower values of  NO2 con-
centration are significantly different, although the hourly 
traffic count is the most important variable in both parts of 
the modelling. In the current study, every meteorological 
input (WS, WD, and T) did not show specific sensitivity to 
the  NO2 concentration modelling. This result was based on 
the considered time interval (1 January to 15 March), which 
may vary in other seasons of the year and requires more 

attentions. The last point gained from the single sensitivity 
analysis could be attributed to the importance of CR. The 
results for scenarios 1, 2, and 3 revealed that  Cs(t) is the most 
dominant parameter in all three scenarios. The sensitivity of 
 Cu(t-1) diminished in scenario 3, to the extent that it didn’t 
show specific sensitivity to  NO2 variations. On the contrary, 
by excluding  Cs(t), the model’s accuracy dropped by up to 
13%, even when all related classes of data (scenario 3) were 
used for the  NO2 concentration modelling. This may reveal 
the importance of suburban  NO2 variations in the prediction 
of urban  NO2 concentration.

Regarding the class sensitivity analysis presented in 
Table 3, the results for the class sensitivity analysis are 
bolded and the best combination of inputs in every sce-
nario is highlighted. It is clear that scenario 3 could not be 
a proper choice for  NO2 prediction among the three sce-
narios. This is because scenario 3 showed almost the same 
accuracy in the verification step (DC = 0.82) as scenario 
1 (DC = 0.82) and 2 (DC = 0.82) in the  NO2 prediction, 
while using more classes of data is not cost-effective. It 
was also found that applying all related parameters (sce-
nario 3) may not improve the modelling performance. 
Among scenarios 1 and 2, it could be seen that TRE was 
almost as efficient as M class of data when they were 
accompanied by  Cu(t-1) and  Cu(s) (bolded in Table 3). One 
combination of inputs should be selected for the next step 
of the  NO2 concentration modelling at the urban station. 
Thus, among different input combinations in scenarios 1 
and 2, the one with a better performance in the verifica-
tion step was selected as input to the  NO2 modelling in 
the next step. The results in Table 3 showed that 87% of 
the  NO2 variation could be explained by the variation in 4 

Table 4  Results of the  NO2 
sensitivity analysis for all 
3 scenarios in the suburban 
station for modelling  Cs(t)

Model variables SVR parameters DC RMSE (ppb)

Training Verification Training Verification

Scenario 1
Cs(t-1), WS, WD 0.13-20-0.07 0.851 0.79 4.34 3.27
Scenario 2
Cs(t-1), TR, H 0.15-20-0.8 0.892 0.835 3.94 3.11
Scenario 3
Cs(t-1), WS, WD, T, TR, H 0.19-25-0.9 0.803 0.786 5.13 4.12

Table 5  Results of the 
integrated models for the 
prediction of  Cu(t)

a In the SVR model a-b-c denote �, c, � . In the FFNN model a–b–c in the structure of FFNN represent the 
number of input layer, hidden layer and output layer neurons. In the CART model a–b refer to the mini-
mum number of samples at a leaf node and maximum depth of the tree

Model variables Model Model  parametersa DC RMSE (ppb)

Training Verification Training Verification

Cs(t),  Cu(t-1), TR, H SVR 0.15-45-0.15 0.923 0.870 3.38 4.41
Cs(t),  Cu(t-1), TR, H FFNN 4-10-1 0.85 0.813 3.69 5.27
Cs(t),  Cu(t-1), TR, H CART 1–6 0.778 0.672 4.89 6.76
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inputs, namely  Cs(t),  Cu(t-1), TR, and H. Thus, for the next 
step of the modelling, they were considered as inputs to 
the FFNN, SVR, and CART models as:

where the concentration of  NO2 at the urban station  (Cu(t)) 
could be considered as a function of its concentration in a 
previous time step  (Cu(t-1)),  NO2-concentration in the current 
time step at suburb station  (Cs(t)), the hourly traffic count in 
the northern section of the beltway (TR), and the hour of 
the day (H); f stands for the predictor model, which can the 
SVR, FFNN, and CART models.

Moreover, sensitivity analysis was also performed in the 
suburban station to determine the most important inputs 
to  NO2 prediction. The best input combinations of three 
scenarios for  Cs(t) prediction are presented in Table 4.

The results in Table 4 show that in the suburban station, 
the dominant variables contributing to  NO2 variation are 
similar to those for the urban station. Since the subur-
ban station is located in the vicinity of the beltway, it was 
expected that TR and H were selected as dominant inputs 
to  NO2 modelling. Thus, it could similarly be concluded 
that applying TR, H, and  Cs(t-1) could be the best choice 
for  NO2 prediction in the suburban station.

Results of the integrated modelling

At the second step, an integrated model was implemented 
to predict  Cu(t). In this model, instead of observed values of 
 Cs(t), the generated values from the SVR model were applied 
for  Cu(t) prediction. Table 5 presents the results for three 
models of SVR, FFNN, and CART as integrated models for 
prediction of the  NO2 concentration in the urban station.

For development of the integrated models, the SVR, 
FFNN, and CART models were trained and evaluated 
using efficient inputs selected in the previous step. In the 
SVR case, the model performance is highly depended on 
the selected parameters; for tuning C, � (SVR model) and 
� (RBF kernel function) grid search method was used (Hsu 

(19)Cu(t) = f
(
Cu(t - 1), Cs(t), TR,H

)

et al. 2003). In the FFNN case, considering the tangent sig-
moid as the activation function of the hidden and output 
layers, the FFNN was trained using the scaled conjugate 
gradient scheme of the back-propagation algorithm (Haykin 
1994). In addition, a proper architecture for the network 
including the number of hidden neurons in the hidden layer 
and optimal iteration epochs is important to prevent the 
training process from overfitting. Hence, the range of 1–15 
and 500–1000 for the number of neurons in the hidden layer 
and epoch number were examined, respectively, and the best 
network was obtained through the trial and error procedure. 
In the CART case, during the tree-building process, it was 
difficult to know when to stop the process as different parts 
of the tree may require markedly different depths (Lewis 
2000). Moreover, without defining some stop criteria, the 
tree-building process is continued until a maximal tree was 
created which is generally very overfitted (Lewis 2000). 
Thus, a minimum number of samples at a leaf node (here 
is 1) and maximum depth of the tree (here is 6) were set to 
create the best tree via the trial-and-error procedure.

Table 5 compares the results for the integrated models 
via DC values in the verification steps. The integrated SVR 
model with DC of 87% signifies that in case the records of 
the suburban station were missed for any reason in the real 
time, using generated  Cs(t) can be reliable enough to be used 
in prediction of  Cu(t). In addition, when the SVR model was 
created and trained using historical data of  Cs(t), this model 
can also be used to generate future values of  NO2 concentra-
tion. That way, the integrated model is capable of applying 
generated future values of  Cs(t) to produce future values of 
 Cu(t). Thus, the advantage of the integrated model can be 
revealed when future values are required in the urban station.

Results presented in Table 5 indicate that among various 
predicting models, SVR and FFNN led to more accurate 
results than CART. The DC values in the verification step 
for the SVR, FFNN, and CART are 87, 81, and 67%, respec-
tively. This lower accuracy of CART can be attributed to the 
linearity of the model and its shortcomings in modelling 
complex and nonlinear processes such as air pollution. In 
addition, Fig. 8 reveals each model’s advantages and disad-
vantages. For instance, the FFNN model is not as accurate 
as the CART and SVR models in the upper values of the 
 NO2 time series (Fig. 8). On the other hand, FFNN and SVR 

Fig. 8  Estimated  NO2 concentration (ppb) from the SVR, FFNN, and 
CART models

◂

Table 6  Results of the ensemble 
models for the prediction of 
 Cu(t)

a Parameters a–b–c in the weighted linear averaging refer to the constants applied to the outputs of the SVR, 
FFNN and CART models. Parameters a–b–c in the SVRE technique denote �, c, �

Ensemble model Model  parametersa DC RMSE (ppb)

Training Verification Training Verification

Simple linear averaging – 0.861 0.864 3.54 4.48
Weighted linear averaging 0.36-0.33-0.30 0.873 0.860 3.49 4.55
SVRE 0.013-45-0.3 0.884 0.866 3.23 4.45
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could explain the process more accurately in the lower val-
ues of the  NO2 time series comparing to CART. Hence, by 
combining FFNN, SVR and CART, the performance of the 
model in upper and lower  NO2 values might be improved via 
the ensemble technique.

Results of the ensemble techniques

In the last step of modelling, three ensemble techniques were 
established to investigate the ability to fill gaps in the  NO2 
time series from every single model. To accomplish this, three 
ensemblig techniques (SA, WA, SVRE) described in Sect. 2 were 

developed and applied for modelling. Table 6 indicates the results 
of ensemble techniques in the both calibration and verification 
steps.

The performance of the ensemble and integrated models can 
be evaluated by comparing the DC values (see Tables 5 and 6). 
The results indicate that all ensembling techniques may improve 
the individual model performance in both calibration and verifi-
cation steps. In the calibration step, this improvement was up to 
11% for the CART model; in the verification step, the ensemble 
techniques could enhance CART and FFNN predictions by up 
to 19 and 5%. As described previously, the major goal of ensem-
bling technique is to combine outputs in order to capture patterns 

Fig. 9  Comparison of three ensembling techniques with a SVR, b FFNN, c CART 
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not capable for each single model; this approach can be revealed 
visually by comparing the time series for both integrated and 
ensemble results. Figure 9a demonstrates that applying the SVRE 
technique caused the SVR model to perform almost better in 
capturing the upper values. Figure 9b shows that SA, WA, and 
SVRE could also improve the FFNN performance in the upper 
values. These improvements for the SVR and FFNN models can 
be attributed to the CART superior performance in the upper 
values, fact that enhances both FFNN and SVR predictions via 
the ensemble techniques. On the other hand, in Fig. 9c it can be 
seen that the better performance of FFNN and SVR in the lower 

parts has caused the CART model to overcome its shortcoming 
in the lower values.

Conclusion

This paper followed three main goals: firstly, single and class 
sensitivity analyses were performed based on SVR model in 
order to investigate variables and classes of data which could 
remarkably influence the  NO2 variations in the suburban 
and urban environments of Columbus City. Three scenarios 
based on different classes of data were created to investigate 

Fig. 9  (continued)
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every variable’s efficiency and dominant class of data. Sec-
ondly, the SVR model was used to predict  Cs(t), after which 
the predicted values were applied as one of the inputs for 
modelling  Cu(t). Three models (SVR, FFNN, and CART) 
were used for predicting the  Cu(t) values. Since generated 
values of  Cs(t) were considered as input the SVR, FFNN, 
and CART models, they were denoted as integrated mod-
els. In the last step, three ensemble techniques (SA, WA, 
and SVRE) were implemented to assess the ability of post-
processing techniques in the improvement in the integrated 
models’ performance (SVR, FFNN, and CART). The results 
of the sensitivity analysis showed that the combination of 
 Cs(t-1) TR, and H with DC value of 0.835 is the best choice 
for  Cs(t) prediction. In the urban station’s modelling, it was 

revealed that  Cs(t) is an important variable, and  Cu(t) was 
more sensitive to TR and H. Thus, four variables (TR, H, 
 Cs(t) and  Cu(t-1)) were selected as efficient ones. In the second 
step, three integrated models (SVR, FFNN, and CART) with 
DC values of 81, 87, and 67% showed a better performance 
than the CART model. Although CART model, as a linear 
model, showed a relatively weaker performance, it was able 
to capture peak values of the  NO2 time series better than 
the FFNN model. On the other hand, the FFNN and SVR 
performances were superior to that of CART in order to 
capture the lower values of the  NO2 time series. Regarding 
the performances of the integrated models, the SVR model 
with a DC value of 87% in the verification step indicated 
the reliability of generated values of  Cs(t) for application as 

Fig. 9  (continued)
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an input to  Cu(t) prediction. In the third step, three ensemble 
techniques (SA, WA and SVRE) led to the improvement in 
the CART and FFNN models up to 19 and 5%, respectively.

For future works, it is suggested to apply traffic-related 
particulate matter (PM) as input to investigate its sensitiv-
ity to  NO2 variations. It is also recommended to use other 
machine learning models for sensitivity analysis and non-
linear ensemble techniques and results were compared with 
the current study. Plus, the unavailability of hourly traffic 
count throughout the year in streets around the monitoring 
stations was the major limitation of this study that is recom-
mended for future work finding an alternative representing 
this traffic count. 

Acknowledgements This study was conducted using a grant received 
by the authors form Research Affairs of University of Tabriz. Also, 
authors would like to thank EPA, Ohio State University and Ohio 
Department of Transportation, for providing precious data for the study.

References

Agirre-Basurko E, Ibarra-Berastegi G, Madariaga I (2006) Regression 
and multilayer perceptron-based models to forecast hourly  O3 and 
 NO2 levels in the Bilbao area. Environ Model Softw 21(4):430–
446. https ://doi.org/10.1016/j.envso ft.2004.07.008

Armaghani DJ, Asteris PG (2020) A comparative study of ANN and 
ANFIS models for the prediction of cement-based mortar mate-
rials compressive strength. Neural Comput Appl. https ://doi.
org/10.1007/s0052 1-020-05244 -4

Alimissis A, Philippopoulos K, Tzanis CG, Deligiorgi D (2018) Spatial 
estimation of urban air pollution with the use of artificial neu-
ral network models. Atmos Environ 191:205–213. https ://doi.
org/10.1016/j.atmos env.2018.07.058

ASCE Task Committee on Application of Artificial Neural Networks 
in Hydrology (2000) Artificial Neural Networks in Hydrology. 2: 
hydrology applications. J Hydrol Eng 5(2):124–137. https ://doi.
org/10.1061/(ASCE)1084-0699(2000)5:2(124)

Azid A, Juahir H, Toriman ME, Kamarudin MKA, Saudi ASM, Has-
nam CNC, Aziz NAA, Azaman F, Latif MT, Zainuddin SFM, 
Osman MR, Yamin M (2014) Prediction of the level of air pollu-
tion using principal component analysis and artificial neural net-
work techniques: a case study in Malaysia. Water Air Soil Pollut 
225(8):1–14. https ://doi.org/10.1007/s1127 0-014-2063-1

Bai Y, Li Y, Wang X, Xie J, Li C (2016) Air pollutants concentrations 
forecasting using back propagation neural network based on wave-
let decomposition with meteorological conditions. Atmos Pollut 
Res 7(3):557–566. https ://doi.org/10.1016/j.apr.2016.01.004

Bechle MJ, Millet DB, Marshall JD (2013) Remote sensing of exposure 
to NO2: satellite versus ground-based measurement in a large 
urban area. Atmos Environ 69:345–353. https ://doi.org/10.1016/j.
atmos env.2012.11.046

Breiman L, Friedman JH, Olshen R, Stone CJ (1984) Classification and 
regression trees. Chapman and Hall, New York

Cabaneros SMS, Calautit JKS, Hughes BR (2017) Hybrid artificial 
neural network models for effective prediction and mitigation of 
urban roadside  NO2 pollution. Energy Procedia 142:3524–3530. 
https ://doi.org/10.1016/j.egypr o.2017.12.240

EPA (2018) Additional air quality designations for the 2015 Ozone 
National Ambient Air Quality Standards. Federal Regist 
83(107):25776–25848. https ://www.feder alreg ister .gov/docum 

ents/2018/06/04/2018-11838 /addit ional -air-quali ty-desig natio 
ns-for-the-2015-ozone -natio nal-ambie nt-air-quali ty-stand ards

Elangasinghe MA, Singhal N, Dirks KN, Salmond JA (2014) Devel-
opment of an ANN–based air pollution forecasting system with 
explicit knowledge through sensitivity analysis. Atmos Pollut Res 
5(4):696–708. https ://doi.org/10.5094/APR.2014.079

Elkiran G, Nourani V, Abba SI (2019) Multi-step ahead model-
ling of river water quality parameters using ensemble artificial 
intelligence-based approach. J Hydrol 577:123962. https ://doi.
org/10.1016/j.jhydr ol.2019.12396 2

Feng X, Li Q, Zhu Y, Hou J, Jin L, Wang J (2015) Artificial neural 
networks forecasting of  PM2.5 pollution using air mass trajectory 
based geographic model and wavelet transformation. Atmos Envi-
ron 107:118–128. https ://doi.org/10.1016/j.atmos env.2015.02.030

Gilbert NL, Goldberg MS, Beckerman B, Brook JR, Jerrett M (2005) 
Assessing spatial variability of ambient nitrogen dioxide in Mon-
treal, Canada, with a land use regression model. J Air Waste 
Manag Assoc 55(8):1059–1063. https ://doi.org/10.1080/10473 
289.2005.10464 708

Gilbert NL, Goldberg MS, Brook JR, Jerrett M (2007) The influence of 
highway traffic on ambient nitrogen dioxide concentrations beyond 
the immediate vicinity of highways. Atmos Environ 41(12):2670–
2673. https ://doi.org/10.1016/j.atmos env.2006.12.007

Hamilton RS, Harrison RM (1991) Highway pollution, Studies in envi-
ronmental science, 44th edn. Elsevier, Amsterdam

Haykin S (1994) Neural networks: a comprehensive foundation. Mac-
millan, New York

He HD, Lu WZ, Xue Y (2015) Prediction of particulate matters at 
urban intersection by using multilayer perceptron model based on 
principal components. Stoch Env Res Risk Assess 29(8):2107–
2114. https ://doi.org/10.1007/s0047 7-014-0989-x

Hsu C-W, Chang C-C, Lin C-J (2003) A practical guide to support 
vector classification. Technical report, Department of Computer 
Science and Information Engineering, University of National Tai-
wan. https ://www.csie.ntu.edu.tw/~cjlin /paper s/guide /guide .pdf

Jamal R, Manaa K, Rabee M, Khalaf L (2015) Traffic control by digital 
imaging cameras. In: Deligiannidis L, Arabnia HR (eds) Emerg-
ing trends in image processing, Computer vision and pattern rec-
ognition, Morgan Kaufmann, pp 231–247

Kambezidis HD, Melas LD, Kampezidou DH, Psiloglou BE (2015) 
Effect of tropospheric nitrogen dioxide on incoming solar radia-
tion. J Solar Energy Res Updat 2:14–17 https ://www.resea rchga 
te.net/profi le/Harry _Kambe zidis /publi catio n/30425 1256_Effec 
t_of_Tropo spher ic_Nitro gen_Dioxi de_on_Incom ing_Solar _Radia 
tion/links /576a9 5e008 aefcf 135bd 251d.pdf

Kamińska JA (2019) A random forest partition model for predict-
ing  NO2 concentrations from traffic flow and meteorological 
conditions. Sci Total Environ 651(Part 1):475–483. https ://doi.
org/10.1016/j.scito tenv.2018.09.196

Leduc G (2008) Road traffic data: collection methods and applications. 
JRC technical notes, working papers on energy, transport and, cli-
mate change, N.1. ftp://ftp.jrc.es/pub/EURdo c/JRC47 967.TN.pdf

Lewis RJ (2000) An introduction to classification and regression tree 
(CART) analysis. In: 2000 annual meeting of the society for aca-
demic emergency medicine, San Francisco, California. https ://
pdfs.seman ticsc holar .org/6d4a/347b9 9d056 b7b1f 28218 728f1 
b73e6 4cbba c.pdf

Li E, Zhou J, Shi X, Armaghani DJ, Yu Z, Chen X, Huang P (2020) 
Developing a hybrid model of salp swarm algorithm-based sup-
port vector machine to predict the strength of fiber-reinforced 
cemented paste backfill. Eng Comput. https ://doi.org/10.1007/
s0036 6-020-01014 -x

Liang M, Mohamad ET, Faradonbeh RS, Armaghani DJ, Ghoraba S 
(2016) Rock strength assessment based on regression tree tech-
nique. Eng Comput 32:343–354. https ://doi.org/10.1007/s0036 
6-015-0429-7

https://doi.org/10.1016/j.envsoft.2004.07.008
https://doi.org/10.1007/s00521-020-05244-4
https://doi.org/10.1007/s00521-020-05244-4
https://doi.org/10.1016/j.atmosenv.2018.07.058
https://doi.org/10.1016/j.atmosenv.2018.07.058
https://doi.org/10.1061/(ASCE)1084-0699(2000)5:2(124)
https://doi.org/10.1061/(ASCE)1084-0699(2000)5:2(124)
https://doi.org/10.1007/s11270-014-2063-1
https://doi.org/10.1016/j.apr.2016.01.004
https://doi.org/10.1016/j.atmosenv.2012.11.046
https://doi.org/10.1016/j.atmosenv.2012.11.046
https://doi.org/10.1016/j.egypro.2017.12.240
https://www.federalregister.gov/documents/2018/06/04/2018-11838/additional-air-quality-designations-for-the-2015-ozone-national-ambient-air-quality-standards
https://www.federalregister.gov/documents/2018/06/04/2018-11838/additional-air-quality-designations-for-the-2015-ozone-national-ambient-air-quality-standards
https://www.federalregister.gov/documents/2018/06/04/2018-11838/additional-air-quality-designations-for-the-2015-ozone-national-ambient-air-quality-standards
https://doi.org/10.5094/APR.2014.079
https://doi.org/10.1016/j.jhydrol.2019.123962
https://doi.org/10.1016/j.jhydrol.2019.123962
https://doi.org/10.1016/j.atmosenv.2015.02.030
https://doi.org/10.1080/10473289.2005.10464708
https://doi.org/10.1080/10473289.2005.10464708
https://doi.org/10.1016/j.atmosenv.2006.12.007
https://doi.org/10.1007/s00477-014-0989-x
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://www.researchgate.net/profile/Harry_Kambezidis/publication/304251256_Effect_of_Tropospheric_Nitrogen_Dioxide_on_Incoming_Solar_Radiation/links/576a95e008aefcf135bd251d.pdf
https://www.researchgate.net/profile/Harry_Kambezidis/publication/304251256_Effect_of_Tropospheric_Nitrogen_Dioxide_on_Incoming_Solar_Radiation/links/576a95e008aefcf135bd251d.pdf
https://www.researchgate.net/profile/Harry_Kambezidis/publication/304251256_Effect_of_Tropospheric_Nitrogen_Dioxide_on_Incoming_Solar_Radiation/links/576a95e008aefcf135bd251d.pdf
https://www.researchgate.net/profile/Harry_Kambezidis/publication/304251256_Effect_of_Tropospheric_Nitrogen_Dioxide_on_Incoming_Solar_Radiation/links/576a95e008aefcf135bd251d.pdf
https://doi.org/10.1016/j.scitotenv.2018.09.196
https://doi.org/10.1016/j.scitotenv.2018.09.196
ftp://ftp.jrc.es/pub/EURdoc/JRC47967.TN.pdf
https://pdfs.semanticscholar.org/6d4a/347b99d056b7b1f28218728f1b73e64cbbac.pdf
https://pdfs.semanticscholar.org/6d4a/347b99d056b7b1f28218728f1b73e64cbbac.pdf
https://pdfs.semanticscholar.org/6d4a/347b99d056b7b1f28218728f1b73e64cbbac.pdf
https://doi.org/10.1007/s00366-020-01014-x
https://doi.org/10.1007/s00366-020-01014-x
https://doi.org/10.1007/s00366-015-0429-7
https://doi.org/10.1007/s00366-015-0429-7


2722 International Journal of Environmental Science and Technology (2021) 18:2703–2722

1 3

Makridakis S, Winkler RL (1983) Average of forecasts: some 
empirical results. Manag Sci 29(9):987–996. https ://doi.
org/10.1287/mnsc.29.9.987

Mehdipour V, Memarianfard M (2019) Ground-level O3 sensitivity 
analysis using support vector machine with radial basis func-
tion. Int J Environ Sci Technol 16(6):2745–2754. https ://doi.
org/10.1007/s1376 2-018-1770-3

Mishra D, Goyal P (2015) Development of artificial intelligence 
based NO2 forecasting models at Taj Mahal, Agra. Atmos Pol-
lut Res 6(1):99–106. https ://doi.org/10.5094/APR.2015.012

Moazami S, Noori R, Amiri BJ, Yeganeh B, Partani S, Safavi S 
(2016) Reliable prediction of carbon monoxide using developed 
support vector machine. Atmos Pollut Res 7(3):412–418. https 
://doi.org/10.1016/j.apr.2015.10.022

Murillo-Escobar J, Sepulveda-Suescum JP, Correa MA, Orrego-
Metaute D (2019) Forecasting concentration of air pollutants 
using support vector regression improved with particle swarm 
optimization: case study in Aburrá Valley, Colombia. Urban 
Clim 29:100473. https ://doi.org/10.1016/j.uclim .2019.10047 3

Nourani V (2017) An emotional ANN (EANN) approach to mod-
eling rainfall-runoff process. J Hydrol 544:267–277. https ://doi.
org/10.1016/j.jhydr ol.2016.11.033

Nourani V, Alami MT, Vousoughi FD (2015) Wavelet-entropy data 
pre-processing approach for ANN-based groundwater level 
modeling. J Hydrol 524:255–269. https ://doi.org/10.1016/j.
jhydr ol.2015.02.048

Nourani V, Elkiran G, Abdullahi J (2019) Multi -station artificial 
intelligence based ensemble modeling of reference evapo-
transpiration using pan evaporation measurements. J Hydrol 
577:123958. https ://doi.org/10.1016/j.jhydr ol.2019.12395 8

Nourani V, Gökçekuş H, Umar IB (2020) Artificial intelligence based 
ensemble model for prediction of vehicular traffic noise. Environ 
Res 180:108852. https ://doi.org/10.1016/j.envre s.2019.10885 2

Osowski S, Garanty K (2007) Forecasting of the daily meteorologi-
cal pollution using wavelets and support vector machine. Eng 
Appl Artif Intell 20(6):745–755. https ://doi.org/10.1016/j.engap 
pai.2006.10.008

Perez P, Gramsch E (2016) Forecasting hourly  PM2.5 in Santiago de 
Chile with emphasis on night episodes. Atmos Environ 124(Part 
A):22–27. https ://doi.org/10.1016/j.atmos env.2015.11.016

Radojević D, Antanasijević D, Perić-Grujić A, Ristić M, Pocajt V 
(2019) The significance of periodic parameters for ANN mod-
eling of daily  SO2 and  NOx concentrations: a case study of 
Belgrade. Serbia Atmos Pollut Res 10(2):621–628. https ://doi.
org/10.1016/j.apr.2018.11.004

Shamseldin AY, O’Connor KM, Liang GC (1997) Methods for com-
bining the outputs of different rainfall-runoff models. J Hydrol 
197:203–229. https ://doi.org/10.1016/S0022 -1694(96)03259 -3

Shang Z, Deng T, He J, Duan X (2019) A novel model for hourly 
 PM2.5 concentration prediction based on CART and EELM. Sci 
Total Environ 651(Part 2):3043–3052. https ://doi.org/10.1016/j.
scito tenv.2018.10.193

Sharghi E, Nourani V, Behfar N (2018) Earthfill dam seepage anal-
ysis using ensemble artificial intelligence-based modeling. J 
Hydroinform 20(5):1071–1084. https ://doi.org/10.2166/hydro 
.2018.151

U.S. EPA (2016) Integrated science assessment for oxides of nitro-
gen. Health criteria. EPA/600/R-15/068. Research Triangle 
Park. https ://ofmpu b.epa.gov/eims/eimsc omm.getfi le?p_downl 
oad_id=52685 5

Vapnik V (1995) The nature of statistical learning theory. Springer, 
Berlin

Wang W-C, Xu D-M, Chau K-W, Chen S (2013) Improved annual rain-
fall-runoff forecasting using PSO-SVM model based on EEMD. 
J Hydroinform 15(4):1377–1390. https ://doi.org/10.2166/hydro 
.2013.134

Yeganeh B, Hewson MG, Clifford S, Tavasoli A, Knibbs LD, Moraw-
ska L (2018) Estimating the spatiotemporal variation of  NO2 
concentration using an adaptive neuro-fuzzy interface system. 
Environ Model Softw 100:222–235. https ://doi.org/10.1016/j.
envso ft.2017.11.031

Zhang GP (2003) Time series forecasting using a hybrid ARIMA and 
neural network model model. Neurocomputing 50:159–175. https 
://doi.org/10.1016/S0925 -2312(01)00702 -0

Zhou J, Qiu Y, Zhu S, Armaghani DJ, Khandelwal M, Mohamad ET 
(2020) Estimating TBM advance rate in hard rock condition using 
XGBoost and Bayesian optimization. Undergr Space. https ://doi.
org/10.1016/j.undsp .2020.05.008

https://doi.org/10.1287/mnsc.29.9.987
https://doi.org/10.1287/mnsc.29.9.987
https://doi.org/10.1007/s13762-018-1770-3
https://doi.org/10.1007/s13762-018-1770-3
https://doi.org/10.5094/APR.2015.012
https://doi.org/10.1016/j.apr.2015.10.022
https://doi.org/10.1016/j.apr.2015.10.022
https://doi.org/10.1016/j.uclim.2019.100473
https://doi.org/10.1016/j.jhydrol.2016.11.033
https://doi.org/10.1016/j.jhydrol.2016.11.033
https://doi.org/10.1016/j.jhydrol.2015.02.048
https://doi.org/10.1016/j.jhydrol.2015.02.048
https://doi.org/10.1016/j.jhydrol.2019.123958
https://doi.org/10.1016/j.envres.2019.108852
https://doi.org/10.1016/j.engappai.2006.10.008
https://doi.org/10.1016/j.engappai.2006.10.008
https://doi.org/10.1016/j.atmosenv.2015.11.016
https://doi.org/10.1016/j.apr.2018.11.004
https://doi.org/10.1016/j.apr.2018.11.004
https://doi.org/10.1016/S0022-1694(96)03259-3
https://doi.org/10.1016/j.scitotenv.2018.10.193
https://doi.org/10.1016/j.scitotenv.2018.10.193
https://doi.org/10.2166/hydro.2018.151
https://doi.org/10.2166/hydro.2018.151
https://ofmpub.epa.gov/eims/eimscomm.getfile?p_download_id=526855
https://ofmpub.epa.gov/eims/eimscomm.getfile?p_download_id=526855
https://doi.org/10.2166/hydro.2013.134
https://doi.org/10.2166/hydro.2013.134
https://doi.org/10.1016/j.envsoft.2017.11.031
https://doi.org/10.1016/j.envsoft.2017.11.031
https://doi.org/10.1016/S0925-2312(01)00702-0
https://doi.org/10.1016/S0925-2312(01)00702-0
https://doi.org/10.1016/j.undsp.2020.05.008
https://doi.org/10.1016/j.undsp.2020.05.008

	Sensitivity analysis and ensemble artificial intelligence-based model for short-term prediction of NO2 concentration
	Abstract
	Introduction
	Materials and methods
	Study area and data
	Proposed methodology
	Sensitivity analysis
	Scenario 1
	Scenario 2
	Scenario 3

	Support vector regression (SVR)
	Feed-forward neural network (FFNN)
	Classification and regression tree (CART)
	Efficiency criteria
	Ensembling unit

	Results and discussion
	Results of the sensitivity analysis
	Results of the integrated modelling
	Results of the ensemble techniques

	Conclusion
	Acknowledgements 
	References




