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Abstract
The composition and configuration of land uses/covers (LULC) have a key role in determining the quality of surface waters. 
This study investigated the relationships between 207 landscape metrics (LMs) at landscape and class levels and water 
quality parameters (WQPs) by analytically approach in Mazandaran sub-basins, north of Iran. For this purpose, at first the 
basic WQPs were identified by principal component analysis (PCA). Then, stepwise linear regression analysis was applied 
to recognize optimal LMs for estimating each of the WQPs individually. Finally, the effect of the spatial configuration of 
LULC classes on WQPs and their variability was analytically evaluated by real samples. According to the PCA results, 
SAR, TDS, pH, PO4

3−, and NO3
− were identified as principal WQPs in Mazandaran Rivers. The results also showed that 

the interspersion and juxtaposition index of bare lands, related circumscribing circle of agriculture, percentage of the for-
est, connectivity index of residential, and percentage of agriculture were the optimal metrics for estimating SAR, pH, TDS, 
PO4

3−, and NO3
− levels, respectively. The metrics at the class level also had more ability to describe the WQPs. In this study, 

a suitable model for future LULC establishment in Mazandaran Province with the aim of improving effects on surface water 
quality was proposed.
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Introduction

Water quality is a key factor for different water usages, i.e., 
industrial, agricultural, and residential applications. Land 
use/cover (LULC) in a watershed has a significant effect 
on the quality and quantity of water in basin outlet (Nakane 
and Haidary 2009). Human activities, i.e., developing 
industrial, agricultural, and residential areas, led to sharp 
changes in natural landscapes. Consequently, the type and 
proportion of land use in a basin can be changed during the 
time. These changes altered the drainage pattern of basin 
and type and amount of contaminants (Tiwari et al. 2018; 
Iqbal et al. 2019; Mirzaei et al. 2020). Typically, after human 
developing activities, the availability and amount of con-
tamination are increased (Lee et al. 2009; Yan et al. 2018). 
For example, when a grassland changes to agriculture land 
the pattern of drains, potential erosion, light and tempera-
ture regime, available chemicals, and soil organic particles 
will be affected (Griffith 2002). In other words, as runoff 
passes through different LULC, it is likely to be exposed to 
a variety of contaminants (Schoonover and Lockaby 2006; 
Hashemi et al. 2016; Mirzaei et al. 2020).
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Therefore, when the effects of LULC on the quality of 
water are measured, in addition to the size of each cover, 
the composition and spatial configuration of them should 
also be considered. In this regard, landscape metrics (LMs) 
can quantify specific spatial characteristics of patches, class 
or landscape scale (Amiri and Nakane 2009; Lausch et al. 
2015; Wu et al. 2012; Lamine et al. 2018). Some studies 
took specific advantage of applying LMs and statistical 
analyses to estimate surface WQPs and recognize existing 
relationships. For instance, Shi et al. (2017) investigated 
the relationships between LULC characteristics and river 
water quality. They stated that analyses of spatial develop-
ment patterns (size, density, aggregation, and diversity of 
LULC in landscape) were important factors in estimating 
river water quality. De Mello et al. (2018) developed an 
empirical model for LULC effects on river water quality. 
Mirzaei et al. (2020) investigated and modeled the interac-
tion of water quality parameters (WQPs) and land use/cover. 
These results confirmed that LULC compositions were sig-
nificantly influenced on surface WQPs. Also, in numerous 
studies relations between surface water quality and LULC 
characteristics were investigated based on linear and non-
linear statistical models (Mehaffey et al. 2004; Amiri and 
Nakane 2009; Lee et al. 2009; Yang 2012; Lowicki 2012; 
Wu et al. 2012; Mirzaei et al. 2020); however, they did noted 
scribe these relationships with the analytical landscape met-
ric maps. In other words, LMs were used only as a numerical 
variable in the modeling process, and no proper analysis 
of its impact on water quality was provided. For instance, 
exactly what happens to the mesh size metric of agriculture 
lands, which leads to an increase in nitrate concentration in 
the river’s water, was not explained.

This study was conducted in parts of the Caspian Sea 
basin, Mazandaran Province, northern Iran. According to 
the researches carried out in Mazandaran Province (Ghola-
malifard et al. 2012; Talebi-Amiri et al. 2009; Mirzaei et al. 
2013,2020), over the past two decades, LULC changes, in 
particular, the conversion of Hyrcanian forests to residential 
and industrial development had been faster, and consequently 
the establishment of inappropriate land use are more visible. 
This will disrupt the natural drainage system of the region 
and change the amount and contribution of available pollut-
ants for superficial flows and ultimately change the quality 
of these streams. Therefore, the availability of spatial tools 
for quantification and understanding of the relationships 
between land-use patches configuration and surface WQPs 
can provide solutions for the conservation and survival of 
these ecosystems and go toward sustainable landscape man-
agement. In other words, success in the sustainable manage-
ment of landscape and conservation of aquatic ecosystems 
relies on a better understanding of the relationships between 
the landscape characteristics and the responses of WQPs to 
these characteristics (Alberti et al. 2007; Amiri and Nakane 

2009). Because the Mazandaran province has a relatively 
high density of rivers and due to the precipitation distribu-
tion in all seasons, the rivers are always affected by non-point 
sources pollutions. That is, the Mazandaran Province was 
more appropriate for conducting the current study.

Therefore, we tried to investigate the relationship between 
WQPs and LMs in class and landscape level with explicitly 
recognizing effects in Mazandaran sub-basins. Altogether, 
this study was designed with the following aims: (1) model 
the relation between LMs–WQPs using multiple linear 
regressions and recognizing more appropriate metrics for 
forecasting each of WQPs and (2) analysis of LMs–WQPs 
relationships using some actual examples of LMs maps of 
studied sub-basins and providing management solutions for 
improving river water quality in the study area.

Materials and methods

Study area

As shown in Fig. 1, the study area located on the south-
ern coast of the Caspian Sea and covered an area of 
2,613,213 hectares (latitude: 35°45′ to 36°59′, longitude: 
50°10′ to 54°42′). Therefore, the study area covers the north of 
Iran and includes Mazandaran Province and parts of Tehran, 
Gilan, and Golestan provinces. The dominant LULC of the 
study area is the Caspian-Hyrcanian mixed forests. These for-
ests are a source of biodiversity and one of the most valuable 
forests of the world, which considered as a natural museum. 
Hyrcanian forest has a vital role in soil conservation, carbon 
storage, gentler air, and water purification (Gholamalifard 
et al. 2012,2013; Joorabian-Shooshtari et al. 2018), which 
degrading these forests is one of the major environmental 
challenges of recent decades (Mirzaei et al. 2013). The aver-
age annual rainfall is 977 mm, and its spatial distribution from 
the west to the east of the study area is reduced, while its time 
distribution is almost regular. The water drainage density in 
the study area is 2.33 km/ha (Mirzaei et al. 2013). Most of the 
existing rivers in Mazandaran are permanent and include large 
rivers, e.g., Babolrood, Tajan, Sangrud, Haraz, Nekarood, Sar-
dabrood, CheshmehKilah, Glendrood, Garmarood, Chalous 
Rood, Nesarood, Chalkrood, and Safarood.

Methods

Land‑use/cover map generation

The Landsat satellite images of Mazandaran Province were 
obtained in six frames to classify the land-use type of the 
terrain by satellite images and digital interpretation. The 
Lambert Conformal Conic coordinate system was defined for 
them. The images were mosaically matched, and the study 
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area was cut. Digital maps of Iran Cartographic Center in 
1: 25,000 and 1: 50,000 scales were used to determine the 
ground control points for image geometry correction. In the 
next step, a multistage combination process with the use of 
multiple sources including Landsat, ETM and OLI satellite 
imagery, Google Earth virtual images, and achieved MODIS 
images of Terra Satellite (IGBP) was used to prepare the most 
accurate LULC map for 2014. In this process, visual interpre-
tation and comparisons methods, supervised and unmatched 
classification, and Tasseled Cap, NDVI, and Isocluster analy-
ses were used in the Google Earth software, Erdas Imagine, 
and Idrisi Taiga. It is worth mentioning that manual digitiza-
tion has been performed for phenomena such as river and road 
as well as border control for land use, to be more accurate. 
Finally, seven land-use types (agricultural, forest, grassland, 
barren land, urban (residential), roads, and surface water 
(water bodies) were classified from the Landsat images.

Water quality data collection

In this study, water quality data of 85 sampling stations 
from February 2012 to February 2014 were obtained from 
Iran’s Water Resources Management Company in an Excel 
file format. The parameters included total dissolved solids 
(TDS), electrical conductivity (EC), acidity (pH), nitrate 
(NO3

−), phosphate (PO4
3−), carbonate (CO3

2−), bicarbo-
nate (HCO3

−), sulfate (SO4
2−), calcium (Ca2+), magnesium 

(Mg2+), potassium (K+), sodium (Na+), sodium absorp-
tion ratio (SAR), sodium percent (Na%), permanent hard-
ness (Per. H), and temporal stiffness (Tem. H), which are 

measured on a monthly basis. Continuity and sampling fre-
quencies were checked for individual parameters measured 
in this organization. Finally, 74 stations with continuous data 
were selected and the other stations were deleted.

Principal component analysis (PCA)

Since WQPs are highly correlated, it is therefore necessary to 
select the principal parameters that provide a good description 
of the water quality in the studied rivers. PCA is a very popu-
lar multivariate statistics method that can use to reduce the 
dimensionality of large data sets, by transforming a large set of 
variables into a smaller one (called principal components: PCs) 
that still contains most of the information in the large set (Wold 
et al. 1987; Abdi and Williams 2010). Usually, the original 
data are standardized before performing the PCA. Since the 
WQPs have different units and their variation ranges is not the 
same, it is necessary to standardize them before entering into 
the analysis. Therefore, following equation was used to convert 
water data to standard form in the SPSS software:

where X is the mean of inputs. SD is denotes standard devia-
tion, and Z is the standard input value of X.

In the next step, the appropriateness of the statistical 
sample society for conducting the PCA was examined by 
the Kaiser–Meyer–Olkin (KMO) test. A high KMO value 
(close to 1) generally indicates that the PCA results are 

(1)Z =
X − X

SD

Fig. 1   Location of the study area in Iran
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useful (Shrestha and Kazama 2007), which in this study: 
KMO = 0.73. The Varimax rotation was also used to maxi-
mize the sum of the variances of the squared loadings as all 
the coefficients will be either large or near zero, with few 
intermediate values (Ouyang, 2005; Riitters et al. 1995).

In PCA, a correlation matrix is formed, and the PCs 
that transform a large set of variables into a smaller one 
are extracted. The results of a PCA are usually discussed in 
terms of factor loadings (the weight by which each stand-
ardized original variable should be multiplied to get the 
component score). The factor loadings (− 1 < factor loading 
<  + 1) are the correlation coefficients between the variables 
(rows: in this study water quality parameters) and factors 
(columns or PCs). Subsequently, based on the maximum 
factor loading, the principal variables can be identified in 
each PC (Lausch and Herzog 2002).

LMs calculation and analysis

In this study, FRAGSTATS version 4.0 (McGarigal et al. 
2002) was used for the extraction of information and analy-
sis of the metrics at class and landscape levels for each of 
the WQPs. Table 1 provides more details of the LMs used 
in this study.

Determination of optimal LMs

McGarigal et al. (2002) introduced 39 metrics in landscape 
and 24 metrics in class-level. Considering the existence of 
seven land-use/cover types in the study area, there are a 
totally of 207 metrics (7*(39 + 24) = 207), which play a key 
role as independent variables for the main parameters of 
water quality. Therefore, it is necessary to reduce the number 
of inputs of the model and the best metrics that have a bet-
ter description of each of the WQPs, enter into the relevant 
model. For this purpose, since multiple linear regressions are 
good tools for selecting independent variables and reducing 
inputs (Noori et al. 2010), this approach was used. Lead-
ing regression was performed in three steps due to the large 
volume of data. In the first step, the optimal metrics were 
selected at class-level; the second step, the optimal metrics 
were chosen at landscape-level, and the third step, the met-
rics taken from the first and second steps, entered to the 
progressive regression and ultimately the best set of metrics 
selected and introduced for the modeling stage. The selec-
tion of optimal metrics for each of the main WQPs should be 
made in such a way that, while having good correlation and 
high ability to describe water quality changes, it also has a 
lack of correlation of errors in the prediction and intersec-
tion of the internal Independent variables. For this purpose, 
the variance inflation factor (VIF) and the Durbin–Watson 
coefficient have been used. If the VIF value is less than 10, it 
indicates a lack of internal correlation between independent 

variables. Also, if the Durbin–Watson value is close to 2 
(i.e., 1.5–2.5), it shows the lack of correlation of errors in 
the prediction of the regression model. In models developed 
by multiple linear regressions, it is automatically reduced to 
internal correlation (VIF less than 10) and optimal inputs at 
the 5% significance level (Mirzayi et al. 2014).

Modeling WQPs and LMs

After the statistical verification of the data and the selec-
tion of independent and dependent variables, multiple linear 
regressions were used to model the relationship(s) between 
WQPs and LMs. The general multiple linear regression is 
as follows:

where Yi is the predicted value of the dependent variable, 
β0 is the intercept, β1 through βp are the regression coef-
ficients, Xi1 through Xip are independent variables and ∈ is 
the model’s error.

It is worth noting that for each of the main WQPs 
(dependent variables), different metrics were selected and 
modeling was done for each of them individually. Landscape 
metrics were considered as an independent variable, and 
water quality parameters were considered as a dependent 
variable in regression modeling and imported into different 
columns in Excel. Then, all statistics were performed by 
using the IBM SPSS software to model linkage between LMs 
and river water quality parameters.

We used 70% of the data randomly for train the model and 
30% of the remaining data for test the validity. Nash–Sut-
cliffe value (NASH), root mean squared error (RMSE), and 
R-Squared (R2) indexes were applied to assess the perfor-
mance of models. The indices are calculated according to 
the 2–4 equations:

where q0 and qp are the obtained and predicted values, q
0
 is 

the mean value of the obtained data, and n is the total num-
ber of site being modeled.

Yi = �
0
+ �

1
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2
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Results and discussion

Principal WQPs

In reducing the complexity of input water quality data, the 
first five developed principal components (PC) could explain 
approximately of 90.53% of the total variance in the data 
sets. According to the PCA results, SAR, TDS, pH, PO4

3−, 
and NO3

− parameters had the highest factor loading in the 

PC1, PC2, PC3, PC4, and PC5, respectively, and they were 
considered as the best variables in describing the water qual-
ity of Mazandaran during the sampling period (Fig. 2).

Best LMs for estimating WQPs

The best LMS which were capable to describe the vari-
ance in WQPs (TDS, pH, NO3

−, PO4
3− and SAR) deter-

mined based on linear modeling and results are presented 
in Table 2. The models that have the highest coefficient of 

Table 1   Details of the LMs used in this study

Metrics name Metric abbreviation Range/description

Patch cohesion index COHESION 0 < COHESION < 100; Increases as the patches of the corresponding patch 
type become less connected

Mean shape index MSI MSI ≦ 1, without limit; The ratio between the perimeter of a patch and the 
perimeter of the simplest patch in the same area

Total edge TE TE ≥ 0, without limit; Measures the total edge
Area-weighted mean fractal dimension index FRAC_AM 1 ≦ FRAC ≦ 2; Fractal dimension: ratio of perimeter per unit area. Increases 

as patches become more irregular
Area-weighted mean shape index SHAPE_AM A larger value of SHAPE_AM means the area is more complex and irregu-

lar in shape
Landscape shape index LSI LSI ≥ 1, without limit; The complexity of landscape structure
Total class area CA CA > 0 without limit; CA is a measure of landscape composition
Related circumscribing circle CIRCLE 0 < CIRCLE < 1; CIRCLE equals 1 minus patch area (m2) divided by the 

area (m2) of the smallest circumscribing circle
Clumpiness index CLUMPY − 1 ≦ CLUMPY ≦ 1; CLUMPY equals the proportional deviation of the 

proportion of like adjacencies involving the corresponding class from that 
expected under a spatially random distribution

Connectivity index CONNECT 0 ≦ CONNECT ≦ 100
Landscape division index DIVISION 0 ≦ DIVISION < 1; DIVISION equals 1 minus the sum of patch area (m2) 

divided by total landscape area (m2), quantity squared
Edge density ED ED ≥ 0 without limit; ED equals the sum of the lengths (m) of all edge 

segments involving the corresponding patch type, divided by the total 
landscape area (m2), multiplied by 10,000

Euclidean nearest neighbor distance ENN ENN > 0 without limit; The average distance between two patches in a 
landscape

Fractal dimension index FRAC​ 1 ≦ FRAC ≦ 2; FRAC equals 2 times the logarithm of patch perimeter (m) 
divided by the logarithm of patch area (m2)

Interspersion and juxtaposition index IJI 0 < IJI ≦ 100; The adjacency of each patch with all other patch types
Largest patch index LPI 1 ≦ LPI ≦ 100; LPI equals the percentage of the landscape comprised by the 

largest patch
Effective mesh size MESH Ratio of cell size to landscape area ≦ MESH ≦ total landscape area
Normalized landscape shape index NLSI 0 ≦ NLSI ≦ 1
Perimeter–area ratio PARA​ PARA > 0without limit, PARA equals the ratio of the patch perimeter (m) to 

area (m2)
Percentage of landscape PLAND 0 < PLAND ≦ 100; PLAND quantifies the proportional abundance of each 

patch type in the landscape
Shape index SHAPE SHAPE ≦ 1without limit
Splitting index Split 1 ≦ SPLIT ≦ number of cells in the landscape area squared, SPLIT equals the 

total landscape area (m2) squared divided by the sum of patch area (m2) 
squared
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determination (R2) and the lowest standard error predic-
tive value were selected as the best model for estimating 
WQPs. Also, for these models, the VIF and Durbin–Wat-
son coefficient, which indicates the lack of internal cor-
relation between independent variables and lack of corre-
lation of predictive errors in these models (VIF < 10 and 
Durbin–Watson > 1.5), is presented. All appropriate metrics 
were selected at class-level. In other words, class-level met-
rics provide more detailed information on land use existing 
in the watershed and more explanatory of WQPs variance 
in the study area. According to this finding, Li et al. (2005) 
and Lee et al. (2009) also recommended class-level metrics 
in surface WQPs estimating in these studied cases.

Configurationally analysis of the relationships 
between LMs and WQPs

The structural characteristics of the landscape can be 
described through a large number of numerical indicators 

(metrics) that for certain purposes should be used appropri-
ate types of metrics. Proper use of metrics and their inter-
pretation can show either change in patterns over time or 
signs of ecological processes in the landscape. Metrics also 
provide the possibility of comparison between the desired 
situation and planned situation. In other words, understand-
ing the relationship between landscape structure and func-
tion (e.g., surface water quality) makes it possible to predict 
the ecological consequences of different land management 
and planning scenarios and ultimately helps to move toward 
planning for a more sustainable land. In fact, it is possible to 
assume an optimal spatial arrangement of ecosystems and 
land uses for each landscape or each main part of a land-
scape. Such an optimal arrangement of the elements of the 
landscape will increase the integrity and achieve the basic 
human needs and create a sustainable environment. The uses 
of landscape metrics provide a perspective to aid the spatial 
design process. Accordingly, we analyzed the relationships 

Fig. 2   Factor loading of the WQPs in the rotated component matrix of PCA

Table 2   Summary result of the more accurate MLR in modeling the relationships between WQPs and LMs

A agriculture, BL bare land, F forest, R residential, RL rangeland, Ro road, W water resources

WQP The structure of regression models Durbin–Watson VIF Train Test

RMSE R2 CE RMSE R2 CE

SAR 0.001 + 0.149 * (PLAND_A) + 0.296 * (MESH_A) + 0.908 * (IJI_BL) 1.85 1.24 0.43 0.79 0.79 0.39 0.81 0.76
pH 1.002 + 0.295 * (DIVISION_F) − 0.513 * (ED_R) − 0.357 * (DIVI-

SION _F) + 0.199 * (CA_F) − 0.944 * (CIRCLE_
MN_A) − 0.463 * (ED_A)

1.88 1.40 0.21 0.82 0.82 0.33 0.56 0.51

TDS 0.809 − 2.159 (PLAND_F) 1.564 * (LPI_F) + 0.554 * (ENN_
MN_R) + 0.980 (CIRCLE_MN_R) + 0.125 * (SHAPE_MN_A)

2.01 3.05 60.78 0.82 0.82 78.54 0.73 0.73

PO4
3− − 0.145 + 0.391 * (PLAND_A) + 0.259 * (ED_R) + 0.220 * (DIVISIO

N_R) + 0.523 * (CONNECT_R) + 0.406 * (SPLIT_A)
1.80 1.99 0.03 0.75 0.75 0.03 0.63 0.62

NO3
− 0.119 − 0.316 * (PLAND_F) + 0.439 * (PLAND_A) − 0.145 * (ED_W) 

+ 0.382 * (NLSI_A)
2.23 2.77 0.84 0.65 0.65 1.26 0.44 0.41
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between WQPs and LMs in Mazandaran Province and pro-
vide a basis for land-use planers in the following sections.

Relationships between LMs and SAR

Table 2 shows the percentage (PLAND_A) and effective 
mesh size (MESH_A) of agricultural land had a direct and 
significant relationship with SAR. According to this result, if 
the percentage of agricultural in two sub-basins is the same, 
taking a higher value of perforation will increase SAR levels 
at the outlet point. In this order, two sub-basins were com-
pared to show the effect of perforation on the SAR levels in 
adjacent surface waters. In Fig. 3, two sub-basins located 
on the upstream of the hydrometric station with cod-no 4 
(Glourd) and 46 (Rosen), which have nearly identical com-
position and approximately the same extent of agricultural, 
were selected for comparison. The value of agriculture mesh 
size metric in the Glourd was 0.41 and in the Rosen was 
0.60. The mean annual SAR of these two sub-basins was sig-
nificantly (P < 0.05) different (2.30 and 0.33, respectively). 
In other words, if agricultural land use is not connected and 
stained by patches of other land use, as shown in Fig. 3, the 
SAR will increase in adjacent rivers. The reason for this can 
be due to the concentration of agricultural wastewaters in 
the same places and the reduction in the possibility of self-
purification and deposition of salts during transplantation. 
Forest patches among agricultural areas led to decrease in 
pollutant loads and increase in rate of water purification and 
deposition of suspended sediments, which is practically not 
possible in integrated agricultural lands without fragmenta-
tion. Increase in the residential areas was reason for increase 
in value of SAR in the Karkheh River, Iran (Salajegheh et al. 
2011), while landscape metric of agricultural areas has sig-
nificant effect for SAR increase in Mazandaran rivers.

The results also showed a positive relationship between 
the increase of the interspersion and juxtaposition index 

of the bare lands (IJI_BL) and SAR levels in sub-basins of 
Mazandaran Province. To understand and compare the spa-
tial implication of this metric, two sub-basins were also con-
sidered: cod-no 39 (Punjab) and 55 (Wali-Abad). In Punjab 
sub-basin, the pattern of land use is such that the bare lands 
are away from other classes. While in Wali-Abad sub-basin 
is in such a way that the bare lands are close to other classes 
such as forests, agriculture, and residential areas (Fig. 4). In 
the study area, bare lands have less green-covered and are 
exposed to soil erosion more than forests and rangelands. 
As a result, the potential of sodium solution in soil layers 
increases in this land-use type. Deforestation for agriculture 
and then land release due to their low productivity is com-
mon in Mazandaran Province (Mirzaei et al. 2013). This 
results in locating bare lands in the vicinity of other land 
use/covers and as a result of increasing the interspersion and 
juxtaposition index and finally increasing SAR in the rivers 
of the study area.

Relationships between LMs and pH

According to Table 2, the agricultural edge density metric 
(ED_A) and the related circumscribing circle of agriculture 
(CIRCLE_A) have a negative and significant relation with 
pH levels and cause to increase Mazandaran rivers acidifi-
cation. The edge density increases if the small patches with 
irregular shapes are prevalent in the landscape matrix. To 
illustrate the effect of this metric, the pattern of agricultural 
lands in two sub-basins located upstream of the hydrometric 
stations, Walt (cod-no: 61) and Jangal-Dareh (cod-no: 79), 
was considered (Fig. 5).

The average agricultural edge density in Walt and Jan-
gal-Dareh sub-basins was 27.78 and 31.01 m/ha, respec-
tively. Meanwhile, in spite of different areas of agricultural 
lands in these sub-basins (Walt, 3721.53 ha vs. Jangal-
Dareh, 2387.8 ha), due to the small size and irregular 

Fig. 3   Comparison of effective mesh size metric for agricultural lands in the Rosen (a) and Glourd (b) and sub-basins
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shape of the patches in Jangal-Dareh, the edge density 
measure for Walt has increased. There was a significant 
difference (P < 0.05) in the mean annual pH in two sub-
basins (Walt: 8.42 vs. Jangal-Dareh: 7.70). This indicates 
the significance of the agricultural edge density on rivers 
pH in the study area in a more descriptive manner.

The related circumscribing circle of agriculture was 
another metric, which has a negative relationship with pH 
levels in Mazandaran Province (Table 2). To compare the 
effect of this metric, two sub-basins were compared on the 
upstream of Waspol (cod-no: 57) and Agoskeshi (cod-no: 
49) (Fig. 6). The average of this metric for agricultural 
land in the Waspol and Agoskeshi sub-basin was 0.37 and 
0.41, respectively, while the agricultural land area was 
greater in Waspol (Waspol, 1069.69 vs. Agoskeshi 627.3 

Ha), but the average annual pH was lower in the Agoskeshi 
(Waspol, 8.40 and Agoskeshi, 8.01).

As illustrated in Fig. 6, the high values of the agri-
cultural circumscribing circle in the Agoskeshi sub-basin 
can be attributed to the extended shape of agricultural 
patches along the river’s margin. In general, the negative 
relationship between the circumscribing circle metric and 
the river’s pH is prevalent in the study area especially in 
the mountainous regions because of the configuration of 
agricultural land use which is linearly embedded along 
the rivers. Similar to the results, in the regression equa-
tion developed by Wu et al. (2012), also agricultural land-
use metrics had caused acidification of the Sihu River in 
China. This is due to increasing the margin of agricultural 
land, increasing its penetration to other land use, and also 

Fig. 4   Comparison of the dispersion and proximity index of bare lands in the Wali-Abad (a) and Punjab (b) sub-basins

Fig. 5   Comparison of agriculture edge density in the Jangal-Dareh (a) and Walt (b) sub-basins
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with the increase of small patches, which have the poten-
tial of affecting the surface water quality and lowering of 
pH levels in the outlet of sub-basins. It is worth mention-
ing that agricultural practices such as fertilization with 
Sulfur-containing, manganese sulfate, etc., fertilizers, 
which produce acidic compounds after dissolving in water, 
as well as the decomposition of agricultural residues, are 
the main reasons for reducing pH by agricultural land use.

According to Table  2, the residential edge density 
(ED_R) also reduced the pH of rivers in the study area. 
In other words, if residential areas are not connected and 
distributed in small patches, they will have a greater edge 
density and reduce the pH of the rivers. Sewage from resi-
dential areas and the sedimentation of sulfur and nitro-
gen soils cause acidic runoff. Similarly, the results of 
Mahmoudi et al. (2007) showed that urban and irrigated 
areas in the Karkheh River basin are the most important 
factors in reducing pH, increasing salinity and increasing 
the number of anions and cations.

As shown in Table 2, the division and total patches area 
of forest had also a positive and significant effect on river pH 
in Mazandaran Province. Although the effect of forest area 
is very common and understandable, but to facilitate under-
standing of the forest division effects, Ramsar (cod-no: 78) 
and Tobon (cod-no 68) sub-basins were compared (Fig. 7). 
The division index increases by fragmenting the large and 
connected forest patches into small and scattered patches (its 
value varies between 0 and 1). The value of this metric in 
Ramsar and Tobon sub-basin was 0.60 and 0.91, respectively, 
which is due to the differences between forest patches con-
figuration as illustrated in Fig. 7. It should be noted that the 
main trees of the study area are beech, hornbeam, oak, maple, 

and alder which are often alkaline (Ahmadi and Sheikhole-
slami 2003). Broad-leaf trees absorb more nitrates and thus 
prevent soil nitrogen washing and reduce the production 
of related acids. In line with the results, Norton and Fisher 
(2000) noted that forest cover has adjusted the water pH of 
rivers and the role of this LULC in improving the water qual-
ity of rivers is vital. Contrary to the results of the current 
study, Amiri and Nakane (2009) have reported a reduction 
in the pH of the Chicago Rivers, which could be due to dif-
ferences in tree species in the two studied regions.

Relationships between LMs and TDS

According to regression models presented in Table 2, the 
value of the largest patch index of forest (LPI_F) can sig-
nificantly reduce the TDS levels in the studied rivers. The 
calculation of LPI is based on the percentage of the land-
scape that is occupied by the largest patch of a land use and 
can be assigned as dominance land use in a landscape. The 
difference of this metric with the percentage of area metric 
is that the total area of a land use in the landscape may be 
high, but due to the small size and scattered patches, its larg-
est patch metric is low.

For a visual comparison of the largest patch metric, 
two sub-basins are shown in upstream of Shirgah (cod-
no: 25) and Parvij-Abad (cod-no: 14) hydrometric stations 
(Fig. 8). The largest patch metric in Shirgah and Parvij-
Abad was 94.1% and 34.9%, respectively, while both sub-
basins had an almost equal forest cover (Shirgah: 27,474.5 
and Parvij-Abad: 30,687.3 ha). While the average annual 
TDS at these stations was examined, the results showed 
a significant difference (P < 0.05) for this parameter. 

Fig. 6   Comparison of the circumscribing circle metric of agricultural land use in the Agoskeshi (a) and Waspol (b) sub-basins
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Therefore, it can be concluded that the large patches of 
forest cover play a key role in reducing the load of soluble 
materials, and in the basins where the value of this metric 
is higher, the water quality at the outlet of the basin has 
been better.

According to this result, Hatt et al. (2004) described the 
forests as a water quality improvement factor that prevented 
the soil from erosion and solution of minerals because the 
forest cover decreases the flow of surface water and provides 
more time for deposition and absorption of solutions. The 
results of Mirzaei et al. (2013) in the study area indicate 
an increase in the area in residential, agricultural, range-
land, and roads (7387, 54,655, 88,986, and 4768 ha, respec-
tively), and a sharp decline of the forests (162,867 ha) during 
1984–2010. This has led to a reduction in the largest patch 

of forest cover in parts of the study area, and even in some 
cases, the landscape matrix has changed from forests to pas-
ture and agriculture.

Regression models presented in Table 2 also shows a pos-
itive and significant relationship between the related circum-
scribing circle (CIRCLE_A) and Euclidean nearest neighbor 
distance (ENN_A) metrics of residential areas with TDS at 
the outlet point of the sub-basins. In the previous sections, 
the effect of CIRCLE on the spatial configuration of land use 
has been mentioned. The ENN metric illustrates the close-
ness of the patches of a land-use type together and is calcu-
lated in such a way that in a clump distribution shows lower 
value and in a discrete dispersion, shows a higher value. 
In Fig. 9, to compare the ENN metric in residential land 
use, parts of the sub-basins of the Walt (cod-no: 61) and the 

Fig. 7   Comparison of forest division metric in the Tobon (a) and Ramsar (b) sub-basins

Fig. 8   Comparison of the largest forest patch metric in the Parvij-Abad (a) and Shirgah (b) sub-basins
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Tallar-Shirgah (cod-no: 25) are shown. The average ENN_A 
metric in Walt sub-basin was 703.5 and in Talear-Shirgah 
was 924.2 m, which can be explained by the difference in 
residential patches configuration in these two sub-basins.

According to the results and due to the positive relation-
ship of TDS with CIRCLE and ENN metrics, if residential 
areas in the study area were close to each other and have a 
circular configuration, the TDS in rivers will be reduced and 
water quality will be improved. In many studies, residential 
land use has been mentioned as an impervious surface which 
can provide superfluous anions and cations to water and, as a 
result, reduce the water quality, as illustrated by the studies 
conducted by Bahar et al. (2008), Wilson and Weng (2010) 
and Alberti et al. (2007).

The average agricultural shape index (SHAPE_A) was 
also another metric in describing TDS changes in the studied 
rivers. The value of this metric was increased with the rise 
of the sides and the distance from the square shape. In order 
to display changes in this metric, parts of the sub-basins 
of Kelardasht (cod-no: 60) and Zarandin (cod-no: 80) are 
illustrated in Fig. 10. According to this figure, in Kelardasht, 
most agricultural patches have a regular and square-like 
shape, while in Zarandin agricultural patches are complex 
with irregular shapes and more sides, which cause the aver-
age of the shape metric in the two sub-basins, are 1.19 and 
1.41, respectively.

Fig. 9   Comparison of the Euclidean nearest neighbor distance metric of the residential land use in the Tallar-Shirgah (a) and Walt (b) sub-basins

Fig. 10   Comparison of agricultural patches shape metric in the Zarandin (a) and Kelardasht (b) sub-basins
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Relationships between LMs and PO4
3−

According to Table 2, the percentage of agricultural area: 
PLAND_A, residential edge density: ED_R, residential divi-
sion index: DIVISION_R, residential connectivity index: 
CONNECT_R and agricultural splitting index: SPLIT_A met-
rics increase the amount of phosphate in the studied rivers. So 
it can be said that residential land-use metrics have a significant 
role in describing phosphate changes in the studied rivers. By 
increasing the residential edge density, division and splitting in 
residential area, the amount of soluble phosphate in the rivers 
were increased (Table 2). The implication and effects of edge 
density and division metrics were presented in the previous sec-
tions. However, for describing the effect of connectivity index, 
Nowshahr (cod-no: 59) and Gordkol (cod-no: 84) sub-basin 
were compared in Fig. 11. The residential connectivity index 
in Nowshahr and Gordkol sub-basin was 3.66% and 28.57%, 
respectively, which visual comparison of the distances between 
residential patches in these two sub-basin can explain this dif-
ference. It should be noted that the annual concentration of 
phosphate in the Gordkol hydrometric station was significantly 
higher than Nowshahr hydrometric station.

Regarding the impact of residential metrics on river water 
quality in Mazandaran Province, it can be said that if the res-
idential patches are large (according to the division and edge 
density metrics) and in the distance of each other (according 
to connectivity index) phosphate levels in the outflows of the 
rivers will be decrease. For example, the phosphate levels 

at the outlet of the basin will decrease if urban development 
policies are such that to prevent the formation of small towns 
with complex shapes and built them in areas with less con-
nectivity with other patches.

In this regard, Amiri (2006), Tong and Chen (2002), 
and Ngoye and Machiwa (2004) had found that residential 
land-use metrics are significant factor in increasing phos-
phate levels in rivers, which due to the importance of this 
parameter in the field of non-point-source pollutants, they 
provided management strategies to reduce phosphate lev-
els. In another study, Udeigwe et al. (2007) noted a positive 
and significant relationship between residential land-use and 
river phosphate levels. Phosphate often enters rivers from 
residential wastewater and is used as a detergent (Powley 
et al. 2016; Minareci and Çakır 2018). Meanwhile, spatial 
planning in residential development, based on landscape 
metrics, can play a significant role in reducing nutrient influx 
into downstream ecosystems (Yang 2012).

In accordance with Table 2, increasing the splitting and 
percentage of agriculture cover increase the availability of 
phosphate to surface water. To understand the concept of 
this metric, two sub-basins with a different splitting index 
are shown in Fig. 12. The agricultural splitting metric for 
Sarokulla (cod-no: 19) and Tallar-Shirgah (cod-no: 26) sub-
basin was 4.11 and 18,837.3, respectively. Even the visual 
comparison shows that there are small patches of agricul-
tural land use in Tallar-Shirgah sub-basin, which led to the 
splitting of landscape and the increase of this metric. Similar 

Fig. 11   Comparison of residential connectivity metric in the Gordkoln (a) and Nowshahr (b) sub-basins
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to these results, Tafangenyasha and Dube (2008) and Mehaf-
fey et al. (2004), obtained a significant correlation between 
the land-use/cover metrics and soluble phosphate in rivers.

Range of pH was between 7.17 and 10.20, with average 
of 8.19 in river waters of Mazandaran Province during sam-
pling periods. According to weak correlation between pH 
and PO4

3− in the study area, increase or decrease in pH does 
not seem to have significant changes in phosphate.

Regarding the climatic conditions of Mazandaran Province 
and the high level of crop cultivation, especially rice and citrus 
in the county, increasing use of fertilizer (including nitrates and 
phosphates) and agricultural pesticides (Nejatkhah-Manavi 
et al. 2009) can lead to contamination of rivers water. Accord-
ing to the Agricultural Organization of Mazandaran Province, 
more than 170 thousand tons of nitrogen and phosphate ferti-
lizers are consumed on average annually in the province (Mir-
zayi et al. 2016). Therefore, the positive effect of agricultural 
land-use metrics on increasing phosphate and nitrate levels can 
be explained in the current study.

Relationships between LMs and NO3
−

According to Table 2, the percentage and normalized land-
scape shape index (NLSI) of agricultural land-cover metrics 
have a direct relationship with nitrate levels in the outlet of 
sub-basins in the study area. NLSI is an advanced metric for 
quantifying the shape of patches in a landscape and its value 
increases from 0 to 1 as the shape of a patch changes from a 

square to polygons. The sub-basins of Koohestan (cod-no: 8) 
and Waspol (cod-no: 57) were selected for the visual compar-
ison of this metric (Fig. 13). The value of NLSI in these sub-
basins was 0.04 and 0.42, respectively, which can be attrib-
uted to irregular forms of agricultural patches in the Waspol 
sub-basin (Fig. 13). Therefore, according to the results, only 
the agricultural area cannot be a factor in describing the water 
nitrate content in the rivers. In fact, if two sub-basins have 
the same characteristics and similar land-use composition, 
the shape of agricultural patches (so-called NLSI) can be 
a nitrate driver in surface waters that is very important in 
regional planning. In confirmation of this finding, Burkart 
and James (1999), Turner and Rabalais (2003), and Ngoye 
and Machiwa (2004) introduced agricultural land-use metrics 
as a key factor affecting nitrate uptake in surface water.

The percentage of forest (PLAND _F) land cover has a 
negative effect on the nitrate output from the basin (Table 2). 
This could be due to poor erosion in the forest cover, as well 
as the preservation of nitrate in the litters and forest floor 
vegetation cover. In other words, nitrogen mineralization 
and nitrate reduction in forests are occurring by vegetation 
in the forest floor preventing nitrate from being washed and 
transferred to streams and rivers (Adams and Attiwill 1982; 
Minick et al. 2016). The results of Norton and Fisher (2000) 
and Ngoye and Machiwa (2004) have also estimated for-
est land cover as a nitrate moderator. Similar to the results 
of the current study, Amiri (2006) reported the forest land 
cover as a reducing agent in nitrate levels at the outlet of the 
Yamaguchi River basins in Japan. Since forest cover is the 

Fig. 12   Comparison of agricultural land-use splitting metric in the Tallar-Shirgah (a) and Sarokulla (b) sub-basins
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predominant cover in the province and due to the moderating 
role of forests in nitrate levels, forest conservation, increas-
ing forest levels can be an optimal solution for maintaining 
water quality in the studied rivers.

As shown in Table 2, surface water resources (includ-
ing dams and wetlands) have a significant negative effect 
on nitrate output from the basin. Similar to the results, the 
water resources-related metrics in Amiri and Nakane (2009) 
study have also a significant effect on the reduction in nitrate 
levels in the Chicago Rivers. They considered surface water 
resources as a nitrate deposition bed. However, the regression 
model is proposed by Norton and Fisher (2000) for prediction 
of nitrate levels, despite the use of water resources as one of 
the LULC, only forest cover and wheat were introduced as 
the effective variables and water resources did not have any 
significant effect on this parameter. It is worth noting that the 
ability of water bodies to improve runoff quality depends on 
several parameters such as their vegetation, depth, bed soil 
type, size, or climate variables (Moreno et al. 2008). There-
fore, according to the obtained results, the edge density of 
water bodies has a significant effect on decreasing the amount 
of nitrate in the rivers of the Mazandaran Province.

Conclusion

Given that the establishment of any LULC has a significant 
impact on the water quality and the available pollutants 
of the outlet of the basin, in this study, landscape metrics 

at class and landscape levels were used to describe the 
changes in WQPs of Mazandaran Province Rivers in the 
North of Iran. The results indicated that despite the fact 
that LMs had a significant relationship with WQPs, but 
when class-level metrics were entered into the regression 
models, the LMs were eliminated. This shows the ability 
of class-level metrics for describing surface water qual-
ity. In other words, metrics at the class-level can provide 
more detailed information on the land-use characteristics 
in the basin. While landscape-level metrics are a brief 
quantitative presentation of the land-use pattern in the 
basin and water quality follows fine-scale relations, this 
allowed the regression models to more appropriately link 
the dependent variables (WQPs) and class-level metrics. 
Similar to the current study results, Li et al. (2005) and 
Lee et al. (2009) pointed out the class-level metrics have 
more potential to describe WQPs changes.

Many studies had used the results of the analysis of the 
relationship between LMs and surface water quality to pro-
vide management solutions for sustainable development, 
such as Jones et al. (2001), Griffith (2002), Uuemaa et al. 
(2005), Lee et al. (2009), and Li et al. (2018). In the pre-
sent study, the best LMs for each WQP were determined. 
Among the seven land-use types classified in the study area 
(residential, forest, agriculture, water resources, rangeland, 
bare land, and road), residential, agriculture, and forest 
have the greatest potential for describing river water qual-
ity changes, and the metrics related to these land-use types 
were introduced in most regression models as the optimal 

Fig. 13   Comparison of 
agricultural normalized shape 
metric in two sub-basins of the 
Waspol (a) and Koohestan (b) 
sub-basins
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variables. Along with these results, in Hively et al. (2011) 
and Wu et al. (2012) studies, residential, agricultural, and 
forest LULC had the most impacts on water quality. Agri-
cultural and residential land use declined and the forest 
improved the quality of surface water, respectively, while 
rangeland, bare lands, water bodies, and roads, despite cov-
ering a large fraction of the study area, were excluded from 
the study process, statistically. This was especially evident 
for the rangeland and the road. However, this finding can-
not confirm the ineffectiveness of the mentioned land use 
and elimination of their related metrics could be due to the 
greater correlation between residential-, agricultural-, and 
forest-related metrics with WQPs.

The results of this study can be used as a good strategy for 
regional planning and evaluation of environmental impacts 
in development programs. According to the results, the town 
construction or forestry can lead to a decrease and increase 
in the quality of river water, respectively. But land-use con-
figuration patterns and land-use ecology principles can less 
negative impact on river water quality and even increase 
their quality level. For example, according to the results, the 
edge density of residential areas has reduced the pH levels 
of the studied rivers. Therefore, if the residential areas are 
distributed in small patches, they will be having more edge 
density and as a result lower pH of the rivers. However, if 
the area of forest cover is equal in two landscapes, integrated 
and extensive forests are more capable for pH adjustment.

It is worth noting that changing the shape or pattern of the 
current deployment in a short time is difficult and somewhat 
impossible, but the present results can be used in long-term 
development planning. Therefore, according to the results, 
if the water quality of rivers is a major factor in the planning 
of Mazandaran Province, it is better to focus on the optimal 
composition and configuration of residential, agricultural, 
and forest LULC in the province landscape.
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