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Abstract
Every year tones of plastic are produced and people become the victim of many types of waste including domestic, agronomic 
and industrialized waste. In this paper, we have constructed the mathematical model to examine the rising pollution level due 
to industrial plastic waste and the process of destroying or renovating this plastic waste using several toxic chemicals. The 
dynamical model suggests investing the influential part of the budget into civilization health policy, like reducing the plastic 
burning and support the installation of the eco-friendly plastic recycling machine to reuse dumped industrial plastic. Both 
of these policies are strides to the health as well as the economic progress of the country. In the model, the local stability of 
the system of nonlinear differential equations is qualitatively analyzed with appropriate conditions. Graph theory results help 
to distinguish the global stability behavior of the model. Techniques to reduce plastic pollution are outlined by optimizing 
both the policies which are simulated numerically with given validated data.

Keywords Pollution · Processes on plastic waste · Health policy · Stability · Graph theory

Introduction

Million tons of plastic are consumed each year. Estimation 
said that out of this only one-quarter part is recycled. Plastic 
is prepared from toxic materials like vinyl hydrochloride, 
benzene, etc. These chemicals cause the precarious health 
issues and also contaminate our air, soil and water. The huge 
bulk of industrial plastic is non-biodegradable and if it is 
degradable then it only starts degrading in about 700 years 
which means that all the plastic that has ever been produced 
has not degraded yet. Therefore, these dumped industrial 
plastics are either burned or recycled. One should recycle 
all the things of plastic rather than new production and 
burning. Keep it away from environmental sources such as 

landfill and ocean. Because when the industrial waste plas-
tic composed in dumping sites, it keeps rotting, spreading 
odor which cause the air pollution. Hence, rivers and landfill 
become the target of this various types of pollution which 
are produced by industrial waste plastic.

About three decades ago, as people’s requirement was 
not too big so that easy to control the garbage causes. But 
today’s world has none of the activities which do not gener-
ate plastic debris. Instead of this, all stated processes like 
producing, dumping, burning of plastics, one needs to think 
beyond this. This paper includes two occurrences to invest 
particular total budget into health policy and installing recy-
cling machine policy rather than the budget used in new 
production, burning or dumping of plastic.

In statistical way, Wilcox et al. (2015) has developed a 
model on how sea birds do effective waste management 
which help to reduce pollution threat. Song et al. (1999) 
has tuned a model to determine the optimal conditions and 
identify environmentally favorable recycle routes by analyz-
ing the sensitivity and optimization methods. Dubey (2010) 
used optimal investment policy for clean environment and 
human health policy by considering a nonlinear dynamical 
model of resource biomass. Pathinathan et al. (2014) took 
an algorithmic approach and using induced fuzzy cognitive 
maps which analyze the threats of plastic pollution. Nganda 
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(2007) prepared two models to manage the municipal waste 
by using integer and mixed integer programming problem. 
Matar et al. (2014) established a paper for production, recy-
cling and reuses of inventory plastic beverages bottles like 
EOQ model. Shah et al. (2019) formed a model to optimize 
two investment policies to control environmental pollution. 
Donovan et al. (1975) prepared a mathematical model using 
the concept of two-shot modeling for recycling of plastic. 
Cairns et al. (2005) has framed a paper on improving options 
to reuse, reduce and recycle of e-waste to protect consumers, 
public health and an environment.

In epidemics model proposed by Swan (1990), Branicky 
et al. (1998), De Pillis and Radunskaya (2001), Gaff and 
Schaefer (2009), Okosun and Makinde (2014), Rodrigues 
et al. (2014), Rachah and Torres (2015), Ding et al. (2016) 
and many more control theory have been applied.

A brief survey tells the information about the plastics 
and way to optimize the environmental pollution using dif-
ferent approaches of mathematics. This paper has obtained 
the results using mathematical dynamical model. “Mod-
eling” section deals with development of mathematical 
model of the problem under consideration. “Stability” sec-
tion analyzes the local and global stability of the proposed 
model. Two cost policies for burning and installing recy-
cling machine is optimized in “Optimal investment in health 
and recycled machine policy” section. All the results are 
numerically interpreted in “Numerical simulation” section. 
“Conclusion” section includes the remarkable conclusions 
from the model.

Material and methods

Modeling

This paper supports for reducing eminence of pollution by 
moderating plastic consumption and promoting recycling 
of industrial plastic. This industrial plastic (PL(t))(in tons) 
is either sends for burning (Bn(t))(in tons), dumping (D(t))
(in tons) or recycling (RC(t))(in tons) which sources the pol-
lution (P(t))(in ppm) at any time t ≥ 0 . Here, total budget 
(C) (in $) is divided into two useful optimum policy, health 
policy for the society (Ch) (in $) and installing recycling 
machine policy (Cm = C − Ch) (in $).

The model given in Fig. 1 is formulated by using all 
parameters mentioned in Table 1 are the rates which con-
nects the state variables known as compartments. The para-
metric values have been assumed hypothetically.

Hence, the system of differential equation is constructed 
as,

with PL > 0 and D,Bn,RC,P ≥ 0.
Summing the above differential equations of system (1), 

we have

⇒ lim
t→∞

sup(P
L
+ B

n
+ D + R

C
+ P) ≤ B

�
.

Thus,  the feasible region of the model is 
Λ =

{
(PL,Bn,D,RC,P) ∈ R5 ∶ PL + Bn + D + RC + P ≤ B

�

}
.

w h e r e  R
5
+
=
{
(P

L
,B

n
,D,R

C
,P) ∈ R

5 ∶ P
L
> 0, B

n
≥ 0,

D ≥ 0, R
C
≥ 0, P ≥ 0

}
.

By solving system (1), the solutions are finding out called 
equilibrium points:

 (i) E0

(
B

�
, 0, 0, 0, 0

)

 (ii) E1

(
Ch�1+�1+�

�1
,
−Ch��1+B�1−�1�−�

2

�1(Ch�1+�1+�)
, 0, 0,

�1(−Ch��1+B�1−�1�−�
2)

�1�(Ch�1+�1+�)

)

 (iii) E2

(
�2+�3+�

�1
, 0, 0,

B�1−�2�−�3�−�
2

�1(�3+�)
,
�3(B�1−�2�−�3�−�2)

��1(�3+�)

)

 (iv) E∗
(
P∗
L
,B∗

n
,D∗,R∗

C
,P∗

)

(1)

dPL

dt
= B − �1PLBn − �2PLD − �1PLRC + �2RC − �PL

dBn

dt
= �1PLBn + �D − �1Bn − �Bn − �1ChBn

dD

dt
= �2PLD + �D − �2D − �D − �D + �2CmD

dRC

dt
= �1PLRC − �2RC + �D − �3RC − �RC

dP

dt
= �1Bn + �2D + �3RC − �P

d

dt

(
P
L
+ B

n
+ D + R

C
+ P

)

= B − �P
L
− �B

n
− �D − �R

C
− �P − �

1
C
h
B
n
+ �

2
C
m
D

= B − �(P
L
+ B

n
+ D + R

C
+ P) ≥ 0

Fig. 1  Diagram of model
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where

P∗
L
=

� + �2 + � + � − Cm�2

�

B∗
n
= �((−Cm�2 + � + �2 + � + �)(−�1�(−Cm�2 + � + �2 + � + �) + �2B�1) + (�2 + �3 + �)(−B�2

2

+ �2�(−Cm�2 + � + �2 + � + �)))∕ − �2
2
�2(−Cm�2 + � + �2 + �)(Ch�1 + �1 + �) + �1�1(−Cm�2

+ � + �2 + �)2(−Cm�2 − �2 − �) + (−Cm�2 + � + �2 + �)((Ch�1 + �1 + �)(�2�1(−Cm�2 + � + �2

+ �) − �2
2
(�3 + �)) + �1�2�2(�3 + �) + �1�2�3(�2 + � + �))

D∗ = [�1(−Cm�2 + � + �2 + �) − �2(�2 + �3 + �)][(Ch�1 + �1 + �)(�2�(−Cm�2 + � + �2 + �)

− B�2
2
) + (−Cm�2 + � + �2 + �)(−�1�(−Cm�2 + � + �2 + �) + B�1�2)]∕�2{�

2
2
�2(Ch�1 + �1

+ �)(−Cm�2 − � − �) + (−Cm�2 + � + �2 + � + �)[�1�1(−Cm�2 + � + �2 + � + �)(Cm�2 − �2)

+ �2�1(−Cm�2 + � + �2 + �)(�1 + �1 + �) − �2
2
(Ch�1 + �1 + �)(�3 + �) + �1�2�2(−Cm�2 + �2

+ �) + �1�2�3(−Cm�2 + �2 + � + �) + �1�2�(−Cm�2 + � + �) − �1�1�(−Cm�2 + � + � + �)

+ �1�1�(Cm��2 − �2(� + �2 + � + �))]}

R∗
C
= �(�2(Ch�1 + �1 + �)(−B�2 + �(−Cm�2 + � + �2 + � + �)) + �1(−Cm�2 + � + �2 + �

+ �)(B�2 − �(Cm�2 + � + �2 + � + �))∕�2(Ch�1 + �1 + �)(−Cm�1�2(−Cm�2 + � + �2 + � + �)

− �2�2(−Cm�2 + � + �2 + �)) + �1�1�(Cm��2 − �2�) + �2�1(�2�(−Cm�2 + �1) + �1(�(� + �)

+ ��2)) + (−Cm�2 + � + �2 + � + �)(�1�1(−Cm�2 + � + �2 + � + �)(Cm�2 − �) + �2(Ch�1 + �1

+ �)(−�2(�3 + �) + �1(� + �2 − �) − �1�2(Cm�2 − �)(�2 + �3 + �) + �1�2(�2(�2 + �3 + �)

+ �(�3 + �)) − �1�1�2(� + �2 + � + �))

Table 1  Notation, parameter description and parametric values

Notation Parameter description Parametric values

B Growth rate of industrial plastic usage (in tons) 0.05
�1 The rate of burning of plastic 0.35
�2 The rate of dumping of plastic 0.50
�1 The rate of recycling of plastic 0.40
�2 The rate at which recycled industrial plastic is being used 0.2
� The rate at which dumped plastic is burned 0.5
� The rate at which dumped plastic is recycled 0.30
�1∕�2∕�3 The rate at which pollution is created due to burning/dumping/recycling 0.40/0.35/0.30
� Wastage rate 0.30
�1 Depletion rate of burned industrial plastic used due to investment in health policy 0.5
�2 Growth rate of dumped recycled plastic used due to investment in recycling policy 0.3
C Total budget 5 (in 000′ $/ton)
C
h

Investment to be made for health policy 2 (in 000′ $/ton)
C
m

Investment to be made for installing recycling machine 2.5 (in 000′ $/ton)
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First is pollution-free equilibrium point. Second point is 
recycling free, third is dumping free and fourth is optimum 
issue point.

Stability

To scrutinize the stability analysis of model for equilibrium 
points E0,E1,E2 and E∗ is very useful. Stepwise stability for 
each equilibrium point is carried out as follows locally and 
globally.

Local stability

Jacobian matrix using system (1) is stated which will be used 
to derive local stability for the model.

P∗ = �2�{Ch�1�2[�(�2�2 − ��1) + �2(−�(Cm�2 + �2 + �) + �3 (1 + �2 + 2�) − �2�1(�2 + 2�))

− �1(�
2 + 2�(�2 + �))] + Cm�2[Cm�2(−�1�2(�2 + �3) + �1(3�1� − �2�1)) + �1�2(2�2(�2 + �)

+ 2�3(�2 + �)) + �1�(2� − 3�1(2�2 − 1 − 2�) − �2�1(�2 + �3 − 2�(�1 + �2) − 2�2�1)] + �2[2��(

− �1(�2 + 2�3) − 2�1�1) + �(�1(−2�2(�2 + �) − �3(3�2 + 3� + 4��)) + 2�1(�2�3 − �1(�2 + �2�))

+ �2�
2(Ch�1(�2 + �) − �Cm�2) − �1((�2 + �3)(�2 + �)2 + ��(2�2 + � + �)) − �1(�2(�2 + �3)(�2

+ �) + ��(1 + 2�3)) + �2�
2(�2 + �) − Cm�2(Ch�1(2�1� − �2(�2 + �3)) + 2�1�(�2 + 2�3)

+ 2�1�1�)] − 3�1�1�(3�2(�2 + �) + �(2�2 + � + �))} + Cm�2{�1[�2�3��(2� − Cm�2 + 2� − �2�1)]

+ �[�(�1Cm�2(3�1�2 − �2�1) + �1�2(2��2 − 3�1(� + 2�2 + 2�)) − �2(�2�1(�2 + �3) − 2�1(�1(�

+ �) + ��2))) + �2(−��2(�3(� + �2) + �2(�2 + �1)) + 2�2��1(�2 + �)) + Cm�2�2(−�2�1(Cm�2

+ �) + �1(−�2� + 3�1(�2 + �))) + B�2(�1�2(Cm�2�1 − Ch�1�2) + 2�1�2�1(� + � + �))

− Ch�1�
2
2
�3�]} + B�2{�2[Ch�1(�1�2(� + �) + �2(�2(�2 + �) + �3(�2 + �))) + Cm�2 − �1(�2(�2

+ �3 + �) − �3� + �2�2(� + � + �) + �(�2(�2 + �) + ��3) + �3�2(� + �) + ��(�3 + �2)) + �1(−�1(�

+ �2) − �2� − �2
2
+ ��1(2�2 + � + �) + �2�1(�

2 + �2
2
) + �2�2�(�2 + �) + �1��2(�(� + �1) + �(�2

+ �)) − �2
2
(�2(�1(� + �2) + �2�) − �1(�3 + �)(� + �2))] + �1[�1�2(2(Cm�2�2 − �(� + �) − ��)(�

+ �2 + �2 + 2�2(�2 + � + �))) + �2�2(�2 + �3 + �(�2 + �)) + �2�3�
2 − �1�

3
2
)]} + ��[��2(−�1�3(�

+ 2�) + ��2(�2�2 − �1) + �2�1�3) + �2�1�1�2 + �2��3(��1 + �2�1)] + �2�{�2�[2�3�(� + �)

− 2B�2�2 + 2�(��1 + ��2) − �1�2((�2 + �)2 + �3
2
+ �3 + 3�2�(�2 + �)) + �2�2�

2�2(�2 + 1) + �1�2

+ �3�2(�2 + �)] + �2�1[−��2(�
2 + �2

2
+ ��2) + �2�1(� − �2)]} + ��{Ch�1[�2�2(�2(�2 + �3)

− �1(� + 2�2 + 2�)) + �2
2
�3� + 2�2�1�2(Cm�2 − �)] + Cm�2[�1�2(�2(�2 + �3) + ��3) + 2�1(�2(

− 3�1� + 2�2�1) + �2�1�)] − �1[�1(�
2 + �2) + ��(2�1 + �2) + 2��2(�2 + �)] + �1[�2(�2(−(� + 2�2

+ 2�)(�2 + �3) − 2��) − ��3� − 2��3(� + �)) + 3�1�2�(� + 2�2 + � + 2�) + 3�1�2(�(� + �2) + �2

+ �2
2
) − �2�2�(� + �2 + 2�) + ��1�2(� + �2)] + �2[−�1(2�1�(� + �) + �1�2(3�2 + 4�) − 2��2�)

+ �2�1(2�2(�2 + �3) + 4��3 + �3(� + �) + �(2�2 + �)) + �2�2(�1(� + �) + �2�) + �3(�2 + �)]}

∕�2�{�
2
2
�2(Cm�2 − � − �2 − � − �)(Ch�1 + �1 + �) + (Cm�2 − � − �2 − � − �)[�2�1(Cm�2 − � − �2

− �)(Ch�1 + �1 + �) + �2
2
(Ch�1 + �1 + �)(�3 + �) + �1�1(Cm�2 − � − �2 − � − �)(Cm�2 − �2

− �) + �1�2((Cm�2 − �2 − �)(�2 + �3 + �) + �(�3 + �))]}

where J11 = −�1Bn − �2D − RC�1 − �, J22 = −C
h
�1 + �1PL

−�1 − �,  J33 = Cm�2 + �2PL − � − �2 − � − �  a n d 
J44 = −�1PL − �2 − �3 − �.

Theorem 3.1.1 The pollution-free equilibrium point E0 of 
model is locally asymptotically stable with conditions.

Proof Jacobian matrix at E0 is as follows:

J =

⎡
⎢⎢⎢⎢⎢⎣

J11 −�1PL −�2PL −�1PL + �2 0

�1Bn J22 � 0 0

�2D 0 J33 0 0

RC�1 0 � J44 0

0 �1 �2 �3 −�

⎤⎥⎥⎥⎥⎥⎦
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has eigenvalues,
�1 = −�  ,  �2 = −�  ,  �3 =

�1B

�
− (�2 + �3 + �)  , 

�4 = −Ch�1 +
�1B

�
− �1 − �  a n d 

�5 = Cm�2 +
�2B

�
− � − �2 − � − �.

Equilibrium point is stable if all eigenvalues related to 
Jacobian matrix are negative. Here, only first two eigenval-
ues are negative. Therefore, the conditions for the equilib-
rium point E0

(
B

�
, 0, 0, 0, 0

)
 to be asymptotically stable is,

 (i) (i) 𝛿2 + 𝜂3 + 𝜇 >
𝛿1B

𝜇
,

 (ii) (ii) Ch𝜃1 + 𝜂1 + 𝜇 >
𝛽1B

𝜇
 and

 (iii) (iii) 𝜀 + 𝜂2 + 𝛾 + 𝜇 > Cm𝜃2 +
𝛽2B

𝜇
.

  ◻

Theorem 3.1.2 The recycling free equilibrium point E1 of 
model is locally asymptotically stable with conditions.

Proof Let x1 =
Ch�1+�1+�

�1
 and the Jacobian matrix at E1 is,

where J111 = −�1

(
−�

�1
+

B

�1x1

)
− � , J122 = −Ch�1 + �1x1 − �1 − �,

J133 = Cm�2 + �2x1 − � − �2 − � − � and J144 = �1x1 − �2
−�3 − � has eigenvalues,

�1 = −� , �2 = Cm�2 + �2x1 − � − �2 − � − � , �3 = �1x1
−�2 − �3 − � and

�4 = −
1

2x1

⎛⎜⎜⎜⎜⎜⎜⎝

�
�1Ch

x1 − x
2

1
�1 + �1x1 + �x1 + B

�
± (C2

h
�2
1
x
2

1

−2�1Ch
x
3

1
�1 + x

4

1
�2
1
+ 2�1Ch

�1x
2

1
+ 2�1Ch

�x2
1

−2x3
1
�1�1 + 2x3

1
�1� − 2B�1Ch

x1 − 2Bx2
1
�1

+�2
1
x
2

1
+ 2�1�x

2

1
+ �2

x
2

1
− 2B�1x1 − 2B�x1 + B

2)
1

2

⎞⎟⎟⎟⎟⎟⎟⎠

.

Recycling free equilibrium point E1 is asymptotically sta-
ble if following conditions hold:

 (i) 𝛿2 + 𝜂3 + 𝜇 > 𝛿1x1,
 (ii) 𝜀 + 𝜂2 + 𝛾 + 𝜇 > Cm𝜃2 + 𝛽2x1 , and
 (iii) B

(
Ch𝜃1 + 𝜂1 + x1

)
> 𝛽1𝜇x

2
1
.

  ◻

J0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−�
−�1B

�

−�2B

�

−�1B

�
+ �2 0

0 −Ch�1 +
�1B

�
− �1 − � � 0 0

0 0 Cm�2 +
�2B

�
− � − �2 − � − � 0 0

0 0 �
�1B

�
− �2 − �3 − � 0

0 �1 �2 �3 −�

⎤
⎥⎥⎥⎥⎥⎥⎦

J1 =

⎡
⎢⎢⎢⎢⎢⎣

J111 −�1x1 −�2x1 −�1x1 + �2 0

�1

�
−�

�1
+

B

�1x1

�
J122 � 0 0

0 0 J133 0 0

0 0 � J144 0

0 �1 �2 �3 −�

⎤⎥⎥⎥⎥⎥⎦

Theorem 3.1.3 The dumping free equilibrium point E2 of 
model is locally asymptotically stable with conditions.

Proof Let x2 =
�2+�3+�

�1
 and x3 =

B−�x2

�3+�
 and the Jacobian 

matrix at E2 is 

where J222 = −Ch�1 + �1x2 − �1 − � , J233 = C
m
�2 + �2x2

−� − �2 − � − � has eigenvalues, �1 = −� , �2 = −C
h
�1 + �1x2

−�1 − � , �3 = Cm�2 + �2x2 − � − �2 − � − � and �4 = −
1

2

⎛⎜⎜⎝
(−�1x2 + x3�1 + �2 + �3 + 2�) ± (�2

1
x
2

2
− �2

1
x2x3 + �2

1
x
2

3
− 2�1�2x3 + �2

3

+2�1�2x3 − 2�1�3x2 + �2
2
+ 2�2�3)

⎞⎟⎟⎠

1

2

.

Dumping free equilibrium point E2 is asymptotically sta-
ble if following conditions hold:

 (i) Ch𝜃1 + 𝜂1 + 𝜇 > 𝛽1

(
𝛿2+𝜂3+𝜇

𝛿1

)
,

 (ii) 𝜀 + 𝜂2 + 𝛾 + 𝜇 > Cm𝜃2 + 𝛽2

(
𝛿2+𝜂3+𝜇

𝛿1

)
 and

 (iii) 
(
𝜂3 + 𝜇

)
(x3𝛿1 + 𝜇) + 𝜇𝛿2 > 𝜇

(
𝛿2 + 𝜂3 + 𝜇

)
.

  ◻

Theorem  3.1.4 The endemic equil ibr ium point 
E∗

(
P∗
L
,B∗

n
,D∗,R∗

C
,P∗

)
 of model is locally asymptotically 

stable with conditions.

Proof Let ,  x11 = �1B
∗
n
+ �2D

∗ + R∗
C
�1 + � ,  x22 = C

h
�1

−�1P
∗
L
+ �1 + �,

x33 = � + �2 + � + � − Cm�2 − �2P
∗
L
 and x44 = �2 + �3

+� − �1P
∗
L
.

J a c o b i a n  m a t r i x  a t  E∗  i s , 

J∗ =

⎡
⎢⎢⎢⎢⎢⎣

−x11 −�1P
∗
L
−�2P

∗
L
−�1P

∗
L
+ �2 0

�1B
∗
n

−x22 � 0 0

�2D
∗ 0 −x33 0 0

R∗
C
�1 0 � −x44 0

0 �1 �2 �3 −�

⎤⎥⎥⎥⎥⎥⎦

 and has char-

J2 =

⎡
⎢⎢⎢⎢⎢⎣

−�1x3 − � −�1x2 −�2x2 −�1x2 + �2 0

0 J222 � 0 0

0 0 J233 0 0

x3�1 0 � �1x2 − �2 − �3 − � 0

0 �1 �2 �3 −�

⎤
⎥⎥⎥⎥⎥⎦
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acteristic equation, �5 + a1�
4 + a2�

3 + a3�
2 + a4� + a5 = 0 , 

where

A criterion satisfies if all coefficients ai ’s are positive. This 
gives condition P∗

L
𝛿1 > 𝛿2.  ◻

Global stability

A graph is basically a pair of sets G = (V ,E) , where V is the 
set of vertices and E is the set of edges, formed by pairs (i, j) of 
vertices. (i, j) stands for the initial vertex and the terminal ver-
tex, respectively. If these vertices are same that is i = j known 
as a self-loop, it connects a vertex to itself. A directed graph 
is made up of a set of vertices which are connected by edges, 
where these edges have a direction associated with their ver-
tices. A directed graph has path in which the edges are in the 
same direction is known as directed path. Out-degree (d+(i)) of 
refers to the number of edges incident from initial vertex i and 
the number of edges away from the vertex i , is denoted by in-
degree (d−(i)) . A weighted graph directed graph (G, A) where 
A = (aij)n×n , aij > 0 is weight of each edge with numerical 
positive weight if it exists otherwise zero. Product of weight on 
all edges gives the weight w(K) of sub-graph. The root vertex 
has degree one is called root tree. The sub-graph contains all 
vertices with minimum number of edges are called a spanning 
tree. The Laplacian matrix L = (lij) of G is defined as:

a1 = � + x44 + x33 + x22 + x11

a2 =R
∗
C
�1
(
P
∗
L
�1 − �2

)
+ B

∗
n
P
∗
L
�2
1
+ D

∗
P
∗
L
�2
2

+ �
(
x11 + x22 + x33 + x44

)
+
(
x11 + x44

)
(
x22 + x33

)
+ x11x44 + x22x33

a3 =
(
P
∗
L
�1 − �2

)(
D

∗�2� + R
∗
C
�1
(
x22 + x33 + �

))

+
(
x11x22 + B

∗
n
P
∗
L
�2
1

)(
x33 + x44

)
+ x33x44(x11 + x22)

+ �
(
x11x44 + x22x33 +

(
x22 + x33

)(
x11 + x44

))

+ D
∗
P
∗
L
�2
2
(x22 + x44 + �) + P

∗
L
�1(D

∗�2� + B
∗
n
�1�)

a4 =�
(
x33 + x44

)(
B
∗
n
P
∗
L
�2
1
+ x11x22

)
+ �D∗

P
∗
L
�1�2�

+ �D∗�2
2
P
∗
L

(
x22 + x44

)
+
(
P
∗
L
�1 − �2

)
[
D

∗�2�
(
� + x22

)
+ R

∗
C
�1
(
�
(
x22 + x33

)
+ x22x33

)]

+ x33x44(�
(
x11 + x22

)
+ B

∗
n
P
∗
L
�2
1
+ x11x22)

+ D
∗
P
∗
L
�2x44

(
�1� + �2x22

)

a5 =�(x22(P
∗
L
�1 − �2)(D

∗�2� + R
∗
C
�1x33)

+ x33x44(B
∗
n
P
∗
L
�2
1
+ x11x22) + D

∗
P
∗
L
�2x44(�1� + �2))

(2)lij =

{
−aij, i ≠ j,∑

i≠k aik, i = k.

Theorem  3.2.1 (Kirchhoff ’s matrix tree theorem) For 
n ≥ 2 , assume that ci is the cofactor of lii in L . Then 
ci =

∑
T∈Ti

W(T), i = 1, 2, ..., n, where Ti is the set of all 
spanning tree T  of graph (G, A) that are rooted at vertex 
i . Moreover, if (G, A) is strongly connected, then ci > 0 for 
1 ≤ i ≤ n.

Lemma 3.2.1 Let ci be as given in Kirchhoff’s matrix tree 
theorem. If aij > 0 and d+(j) = 1 for some 1 ≤ i, j ≤ n , then 
ciaij =

n∑
k=1

cjajk.

Lemma 3.2.2 Let ci be as given in the Kirchhoff matrix tree 
theorem. If aij > 0 and d−(i) = 1 for some 1 ≤ i, j ≤ n , then 
ciaij =

∑n

k=1
ckaki.

Theorem 3.2.2 Suppose that the following assumptions are 
satisfied:

1. There exist functions Vi ∶ U → ℝ, Gij ∶ U → ℝ 
and constants aij > 0 such that for every 1 ≤ i ≤ n , 
V �
i
≤ ∑n

j=1
Gij(x) for x ∈ U.

2. For M = [aij] , each directed cycle C of (G, M) has ∑
(s, r)∈�(C)

Grs(x) ≤ 0 for x ∈ U , where �(C) denotes the arc 

set of the directed cycle C.

Then, the function V(x) =
n∑
i=1

ciVi(x) , with constants ci ≥ 0 

as given in the theorem 3.2.1,
satisfies V ′ ≤ 0 , hence, V  is a Lyapunov function for the 

system.

Theorem  3.2.3 The endemic equil ibr ium point 
E∗

(
P∗
L
,B∗

n
,R∗

C
,D∗,P∗

)
 is globally asymptotically stable.

Proof Using graph theoretical results for global stability, we 
generate Lyapunov function V(t) and each Vi is defined as,

V1 = PL − P∗
L
− P∗

L
ln

PL

P∗
L

,  V2 = Bn − B∗
n
− B∗

n
ln

Bn

B∗
n

, 
V3 = D − D∗ − D∗ln

D

D∗
,V4 = RC − R∗

C
− R∗

C
ln

RC

R∗
C

 a n d 

V5 = P − P∗ − P∗ln
P

P∗
.

Now, each Vi , for 1 ≤ i ≤ 5 differentiating with respect 
to t we have,

V
�
1
=

(
1 −

P
∗
L

PL

)
P
�
L
=

(
1 −

P
∗
L

PL

)
(B − �1PLBn

− �2PLD − �1PLRC + �2RC − �PL)

= �1P
∗
L
B
∗
n

(
1 −

P
∗
L

PL

)(
1 −

PLBn

P
∗
L
B∗
n

)
+ �2P

∗
L
D
∗

(
1 −

P
∗
L

PL

)(
1 −

PLD

P
∗
L
D∗

)

+ �1P
∗
L
R
∗
C

(
1 −

P
∗
L

PL

)(
1 −

PLRC

P
∗
L
R
∗
C

)
− �2R

∗
C

(
1 −

P
∗
L

PL

)(
1 −

RC

R
∗
C

)

+ �P∗
L

(
1 −

P
∗
L

PL

)(
1 −

PL

P
∗
L

)
≤ a12G12 + a13G13 + a14G14
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 and

w h e r e  a12 = a21 = �1P
∗
L
B∗
n

 ,  a13 = a31 = �2P
∗
L
D∗  , 

a14 = a41 = �1P
∗
L
R∗
C
 , a23 = �D∗ , a33 = �2CmD

∗ , a43 = �D∗ , 
a52 = �1B

∗
n
 , a53 = �2D

∗ and a54 = �3R
∗
C
   ◻.

This above calculation leads to a weighted graph contain-
ing each compartment as below:

This weighted graph (G, A) includes four vertices pre-
senting the three cycles G12 + G21 = 0, G13 + G31 = 0 
and G14 + G41 = 0 (Fig. 2). Theorem 3.2.2 gives the con-
stants ci’s, for 1 ≤ i ≤ 5 to construct a Lyapunov function 
V(x) =

∑n

i=1
ciVi(x) . Lemma 3.2.2 helps to relate the con-

stants ci ’s which turns out to,

 
Let us take c1 = k1, c2 = k2, c4 = k3, c5 = k4

Since, V(t) = ∑5

i=1
ciVi(t) = c1V1 + c2V2 + c3V3 + c4V4 + c5V5

V �
2
=

(
1 −

B∗
n

Bn

)(
�1PLBn + �D − �1Bn − �Bn − �1ChBn

)

≤ �P∗
L
B∗
n

(
1 −

B∗
n

Bn

)(
1 −

PLBn

P∗
L
B∗
n

)
+ �D∗

(
1 −

B∗
n

Bn

)(
1 −

D

D∗

)

= a21G21 + a23G23

V �
3
=
(
1 −

D∗

D

)(
�2PlD − �D − �2D − �D − �D + �2CmD

)

≤ �2P
∗
L
D∗

(
1 −

D∗

D

)(
1 −

PLD

P∗
L
D∗

)
+ �2CmD

∗
(
1 −

D∗

D

)(
1 −

D

D∗

)

= a31G31 + a33G33

V �
4
=

(
1 −

R∗
C

RC

)(
�1PLRC − �2RC + �RC − �3RC − �RC

)

≤ �1P
∗
L
R∗
C

(
1 −

R∗
C

RC

)(
1 −

PLRC

P∗
L
R∗
C

)
+ �D∗

(
1 −

R∗
C

RC

)(
1 −

D

D∗

)

= a41G41 + a43G43

V
�
5
=

(
1 −

P
∗

P

)(
�1Bn + �2D + �3RC − �P

)

≤ �1B
∗
n

(
1 −

P
∗

P

)(
1 −

Bn

B∗
n

)

+ �2D
∗

(
1 −

P
∗

P

)(
1 −

D

D∗

)
+ �3R

∗
C

(
1 −

P
∗

P

)(
1 −

RC

R
∗
C

)

= a52G52 + a53G53 + a54G54

d−(3) = 1 ⇒ c3a31 = c1a13 + c2a23 + c4a43 + c5a53

⇒ c3 =
k1�2P

∗
L
+ k2� + k3 � + k4�2

�2P
∗
L

= k1V1 + k2V2 +

(
k1�2P

∗
L
+ k2� + k3 � + k4�2

�2P
∗
L

)
V3 + k3V4 + k4V5

where ki ’s for 1 ≤ i ≤ 4 are arbitrary constants. {E∗}.
Here, V ′ ≤ 0 at equilibrium point i.e.,PL = P∗

L
,Bn = B∗

n

,RC = R∗
C

,D = D∗ and P = P∗ which suggest that {E∗} is 
the only invariant set in int (Λ) indicates that E∗ is globally 
asymptotically stable (Harary 1969; West 1996).

Optimal investment in health and recycled machine 
policy

Optimal control theory deals with state equations and con-
trol variables for finding control by optimizing objective 
function. The purpose of this paper is to optimizing pollu-
tion. Therefore, the objective function is,

where Λ denotes set of all compartmental variables, 
A1,A2,A3,A4,A5 denote non-negative weight constants for 
compartments PL,Bn,D,RC,P , respectively. w1 and w2 are 
the weight constants for investments on health policy (Ch) 
and installing recycled machine policy (Cm) , respectively.

As the weight parameter w1 and w2 are constants of the 
cost applied on the density of burned and recycled plastic 
for both the policies, respectively, from which the optimal 
investment condition is normalized. Ch and Cm are the invest-
ments for optimizing the burning and recycling, respectively. 
Now, we will calculate both the values of investment policy 
from t = 0 to t = T  such that,

where � is a smooth function on the interval [0, 1] . The opti-
mal investment policy denoted by Ch and Cm are found by 
accumulating all the integrands of Eq. (3) using the lower 

(3)

J(c
i
,Λ) =

T

∫
0

(A1P
2

L
+A2B

2

n
+ A3D

2

+ A4R
2

C
+ A5P

2 + w1C
2

h
+ w2C

2

m
) dt

J(Ch(t),Cm(t)) = min{J(C∗
h
,Λ), J(C∗

m
,Λ)∕(Ch,Cm) ∈ �}

Fig. 2  The weighted graph
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bounds and upper bounds, respectively, with the results of 
Fleming and Rishel (2012).

For minimizing the investment function in (3), using the 
Pontrygin’s principle from Pontryagin et al. (1986) by con-
structing Lagrangian function consisting of state equations 
and adjoint variables �1, �2, �3, �4, �5 as follows:

The partial derivatives of the Lagrangian function with 
respect to each variable of the compartment gives the adjoint 
equation variables �i = (�1, �2, �3, �4, �5) corresponding to 
the system which are:

The necessary conditions for Lagrangian function L to 
be optimal are,

∙

Ch = −
�L

�Ch

= −2w1Ch + �2�1Bn = 0  and  
∙

C
m
= −

�L

�C
m

= −2w2Cm
− �3�2D = 0.

Hence, we get Ch =
�2�1Bn

2w1

 and Cm =
−�3�2D

2w2

.
The whole computation gives the optimal investment con-

ditions resulting as,
C∗
h
= max

(
a1,min

(
b1,

�2�1Bn

2w1

))
 a n d  C

∗
m
= max

(
a2,

min

(
b2,

−�3�2D

2w2

))
.

In this manner, analytical outcomes have been determined 
for optimized investment. Next section contains the numeri-
cal interpretation.

L(Λ,Ai) = A1P
2
L
+ A2B

2
n
+ A3D

2 + A4R
2
C
+ A5P

2 + w1C
2
h
+ w2C

2
m

+ �1(B − �1PLBn − �2PLD − �1PLRC + �2RC − �PL)

+ �2(�1PLBn + �D − �1Bn − �Bn − �1ChBn)

+ �3(�2PLD − �D − �2D − �D − �D + �2CmD)

+ �4(�1PLRC − �2RC + �D − �3RC − �RC)

+ �5(�1Bn + �2D + �3RC − �P)

∙

�1 = −
�L

�P
L

= − 2A1PL
+ (�1 − �2)�1Bn

+ (�1 − �3)�2D

+ (�1 − �4)�1RC
+ �1�

∙

�2 = −
�L

�B
n

= − 2A2Bn
+ (�1 − �2)�1PL

+ �1(�2 − �5)

+ �2� + �2�1Ch

∙

�3 = −
�L

�D
= − 2A3D + (�1 − �3)�2PL

+ (�3 − �2)�

+ (�3 − �5)�2 + (�3 − �4)� + �3� − �3�2Cm

∙

�4 = −
�L

�RC

= −2A4RC + (�1 − �4)(�1PL − �2) + (�4 − �5)�3 + ��4

∙

�5 = −
�L

�P
= −2A5P + �5�

Result and discussion

Numerical simulation

This section illustrates the simulation results which are used 
to verify the efficacy of this existing model by using the 
parametric values given in Table 1.

Figure 3 consists of five activities, plastic; it’s burning, 
dumping, recycling and causes the pollution, which can be 
depicted from a graph. After approximately 24 days, indus-
trial plastic is sent for dumping then after one month it is 
recycled; during that period, it is also burned and this results 
pollution in two months.

Figure 4 gives the idea that how total budget is function-
ing. Initially, for almost two years, it is increasing and then 
gradually decreases. For simulating the model, here we have 
considered the total budget as 1 (in 000′ $/ton). Figure 5 
advocates that out of total budget, the investment in health 
policy (Ch) is 30% by decreasing the burning of plastic and 

Fig. 3  Transmission of pollution

Fig. 4  Total budget
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Fig. 5  Cost functions

Fig. 6  a Effect of C
h
 on burning b Effect of C

m
 on recycling

Fig. 7  Trajectory curve of burning and recycling to pollution

another in installing recycling machine policy (Cm) is 60%. 
Both cost functions are increasing in same manner then with 

passage of time it decreases in accordance with the total 
budget.

Figure 6a and b gives the effect of investment as cost 
functions on decreasing burning and installing recycling 
machine, respectively. Investments benefit that burning 
decreases by 14.88% which can be used for health policy for 
the society. In the same manner to promote plastic recycling, 
the cost is invested in installing recycling machine which 
results in recycling increases by 14.90%.

These trajectory graphs in Fig. 7 are plotted with growth 
rate value of B = 60%. It recommends that the direction 
of both the process to pollution is toward to the solution 
of system (1) that is equilibrium point. As time increases 
or decreases for an identified period; trajectory remains 
approaches to critical point.

Figure 8 analyzes the global dynamical behavior of pol-
lution due to dumped plastic. One can observe from this 
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scatter diagram that dumped plastic garbage from industries 
emits the pollution. It is periodic in nature.

Conclusion

Industrial dumped plastics are sent for either burning or 
recycling. With our increasing awareness, this paper is use-
ful in how to invest in health policy by reducing the burning 
of industrial plastic and in installing recycling machine pol-
icy for dumped plastic. Local stability for nonlinear dynamic 
with its differential equations gives sufficient conditions. 
By using graph theory results, global stability implemented 
advocates that the model is globally asymptotically stable. 
This model has been extended by optimizing the cost func-
tion. Detailed computations along with its numerical simula-
tion seek to show that the cost function is very effective for 
the model as it is concerned with the society by controlling 
pollution and invest in health policy. Supporting recycling is 
the one good approach to prevent dumped plastic pollution. 
The time has come and should know that only we people are 
the solution by either reducing or recycling the plastic usage 
by re-thinking our life style.
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