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Abstract
The goal of this research is to model the level of carbon dioxide flowing from soil to sky using various methods. The methods 
of multiple linear regression (MLR) and artificial neural networks (ANN) beside two different hybrid models were exploited 
to achieve this objective. These hybrid models were arranged as the prior two methods with principal component analysis 
(PCA). For the ANN, 36 different structures were used with different transfer (logsig–logsig, tansig–tansig, pureline–pureline, 
logsig–tansig, logsig–pureline and tansig–pureline)—learning functions (Levenberg–Marquardt and Gradient Descent with 
Momentum) and neuron numbers (10, 20 and 30). The manure norm, soil type, soil temperature, soil moisture content, soil 
depth, and photosynthetically active radiation values were taken into account as input parameters while  CO2 flux was output 
parameter. According to the research conducted, the best results were obtained from the ANN method. This method was 
followed by PCA + ANN, MLR and PCA + MLR methods. The R2 value of the network established in the ANN method was 
determined as 0.98. In this ANN model, Levenberg–Marquardt and tansig–pureline with 30 neurons were used as transfer 
and learning functions, respectively. Besides, when principal components were used as input parameters, the lower R2 values 
were obtained with both the MLR and ANN methods.

Keywords Artificial neural networks · Principal components · Linear regression · Saline soil · Soil moisture · Soil 
temperature

Introduction

There are a few main factors affecting soil  CO2 flux such as 
soil organic matter content, soil type, soil tillage and man-
agement systems, root respiration, etc. The decomposition 
of soil organic matter causes  CO2 flux (Kuzyakov 2002; 
Fender et al. 2013). Fertilization, especially N fertilization, 
accelerates  CO2 flux due to the effect of root development 
(Shao et al. 2013) and microbial activity (Yan et al. 2010; 
Fangueiro et al. 2008). Soil temperature and soil moisture 

affect soil  CO2 flux because of their direct impact on micro-
bial activity (Risk et al. 2002; Rustad et al. 2001). Soil respi-
ration amount increases with the increase in soil temperature 
(Kirschbaum 1995; William et al. 1994, Lou et al. 2003, Lu 
et al. 2008).

Various methods have been used while modeling of the 
 CO2 flux from soil to atmosphere. Assorted studies in the 
literature to model  CO2 fluctuation have applied various 
techniques (Oprea and Iliadis 2011; Ibarra-Berastegi et al. 
2008; Huebnerova and Michalek 2014). Among these tech-
niques, multiple linear regression and artificial neural net-
works have been mostly utilized (Huebnerova and Michalek 
2014; Elangasinghe et al. 2014; Kurt and Oktay 2010; Banja 
et al. 2012).

ANN has been successfully utilized for modeling many 
complex systems (Droulia et al. 2009). This is an efficient 
method for modeling nonlinear systems. This method uses 
input and output parameters for prediction with different 
transfer-learning function combinations and neuron num-
bers (Franch and Panigrahi 1997). Besides, different neural 
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network types have been used such as back-propagation neu-
ral network (Van Wijk and Bouten Verstraten 2002).

ANN is frequently applied in the studies on ecologi-
cal modeling such as temperature and rainfall prediction 
(Somaratne et al. 2005; Zhuang et al. 2012; Wen et al. 2014; 
Li et al. 2017). Also, Papale and Valentini (2003), Hagen 
et al. (2006) and Song et al. (2014) stated that the ANN 
model is a very appropriate method for efficiently predicting 
soil respiration. In many studies, the ANN method has been 
used successfully to model gas emission in forest soils. For 
example, Van Wijk and Bouten Verstraten (2002) and Papale 
and Valentini. (2003) stated that  CO2 emissions successfully 
modeled in European forests using the ANN method.

MLR is another method that was chiefly used in modeling 
works (Hutchinson et al. 2000; Welles et al. 2001). Besides, 
MLR has been designated in most of the approaches to  CO2 
modeling studies (Pedersen 2000). The model’s performance 
in the researches using the MLR method has been evalu-
ated considering R2 values (Pedersen et al. 2001). Higher 
the R2 value obtained from the study results approaches to 
1, more accurate the model’s acceptance (Hutchinson and 
Livingston 2001).

For the performance evaluation of this model, the R2 
values are taken into consideration. If the value of the R2 
approaches to 1, the efficiency of the model is considered as 
good. Bond-Lamberty and Thomson (2010) reported a linear 
model (R2: 0.32) among the soil  CO2 flux, soil temperature 
and moisture. In this research, temperature and moisture val-
ues were used as inputs,  CO2 flux was used as output values. 
Similarly, Chen et al. (2013) obtained a R2 of 0.40 from the 
linear model between the  CO2 flux and soil temperature—
moisture contents.

The PCA method condenses the input parameters into a 
smaller set called principal components (Johnson and Wich-
ern 2002). MLR and ANN are employed to model the levels 
of  CO2 flow from soil to the atmosphere. In addition to these 
methods, two different hybrid models were formed; one of 
the hybrid models was planned as PCA + MLR while the 
other was PCA + ANN. As for ANN, 36 different structures 
were used with different transfer—learning functions and 
number of neurons. The manure norm soil type, soil tem-
perature, soil moisture content, soil depth and photosyntheti-
cally active radiation values were taken into account as input 
parameters while  CO2 flux was output parameter.

The level of  CO2 fluxed from the soil to the atmosphere is 
directly affected by factors such as soil type, fertilizer norm 
and application form of the fertilizer, soil temperature, soil 
moisture content and soil management practices. Continuous 
observation of  CO2, one of the most effective greenhouse 
gases in the atmosphere, is very important for a sustainable 

environmental approach. From this point of view, the ratio 
of  CO2 emitted from the soil to the atmosphere can be con-
tinuously monitored by modeling the level of  CO2. Artifi-
cial neural networks and hybrid models can determine the 
relationships between nonlinear changing factors and model 
these relationships with high accuracy.

The purpose of this research is to investigate the effects 
of different soil conditions on the fluxed  CO2 from soil to 
atmosphere and determine the best  CO2 flux model using 
artificial neural networks and hybrid models.

Materials and methods

Laboratory experiments

In this study, two different soil types (normal and saline), 
two different farmyard manure norms (2–4 t ha−1) and two 
different manure application methods (surface and subsur-
face) were examined in the laboratory conditions for mod-
eling  CO2 flux from soil to atmosphere.

Saline and normal type soil examples provided east of 
Iğdır pasture and west of Iğdır pasture, Turkey, respectively. 
In the east of Iğdır, pasture has saline soil properties. In this 
region, soils have salinity properties as a result of wrong 
field applications such as excess irrigation, conventional 
agriculture, etc. The properties of the soil used in labora-
tory experiments are given in Table 1.

The manure used in the experiments was applied with 
two different methods as surface and subsurface. Manure 
had been homogenously laid on the soil surface as surface 
application method. In the subsurface application, manure 
laid on the 10 cm soil depth and then mixed with a paddle. 
The chemical content of the farmyard manure is given in 
Table 2.

A flux-type temperature resistance was used in the labora-
tory experiments. The resistance is laid on the soil surface 
approximately 15 cm of soil depth. The electronic control 
unit was used for blocked temperature fluctuation. The 
automated ACE and soil  CO2exchange system were used 

Table 1  Properties of soil examples

Soil properties Normal soil Saline soil

Soil texture Clay-loam Clay-loam
CaCO3 6.53% 10.2%
EC 1228 µS cm−1 5.48 µS cm−1

pH 8 9.3
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for determining the  CO2 flux. The technical information of 
 CO2 exchange system is given in Table 3.

Before the experiments were started, the soil was satu-
rated by water. After waiting for 2 days, the soil was heated 
from 20 to 50 °C degrees with grades of 0.5°. An electronic 
temperature control unit (ECU) with flexible temperature 
resistance was used for this purpose. After reaching the max-
imum temperature level, the temperature resistance and ECU 
system were deactivated until the soil temperature reached 
20 °C. These processes were continued about 48 h for each 
factor.

The resistance equipped with an electronic control unit 
and the soil  CO2 exchange system is given in Fig. 1. Volu-
metric soil moisture percentage (%) and temperature (°C) 

were simultaneously measured via automated ACE and soil 
 CO2 exchange system sensors.

Dataset for  CO2 flux modeling

In the research, 27,713 data (7 parameters × 3959 observa-
tion) were used for  CO2 flux prediction model. These data 
were obtained by automated ACE and soil  CO2 exchange 
system during the 48 h for all of the factors.

The modeling with multiple linear regression

The MLR method and model architecture are given in 
Eq. 1 and Fig. 2, respectively. In the equation, Y is model’s 
predicted value, X is contaminant concentration,  ai, i:0,…
,n, is coefficient of regression.

The MATLAB software was used for the MLR model. The 
input and output parameters for this model are given in 
Table 4.

The modeling with principal component analyses

The principal component analysis (PCA) was used to 
decrease the number of input parameters. These new 

(1)Y = a
0
+ a

1
x
1
+ a

2
x
2
+⋯ + anxn

Table 2  Chemical content of 
the farmyard manure

Properties Values

Organic matter 352 g kg−1

pH 7.2
EC 3.4 dS m−1

N 16 g kg−1

P 8.2 g kg−1

K 6.9 g kg−1

Ca 65 g kg−1

Mg 5.8 g kg−1

Table 3  Technical information 
of  CO2 exchange system

Technical specifications Unit

Measurement of  CO2 Standard range: (Molar) approximately 40.0 mmols m−3

Measurement of PAR 0–3000 μmols m−2 s−1 Silicon photocell
Measurement of soil temperature 6 selectable inputs for thermistors
Measurement of soil moisture 4 selectable inputs for industry-standard sensors
Flow control to chamber 200–5000 ml min−1 (137–3425 μmols s−1)
Flow control accuracy ± 3% of fsd
Chamber volume Closed type 2.6 l/open type 1.0 l
Chamber diameter 230 mm

Fig. 1  CO2 flux, temperature 
resistance and electronic control 
unit

CO2 flux device Temperature resistance and ECU
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input parameters were called principal components (PC-
eigenvectors). To construct principal components Math-
Works MATLAB was used. MATLAB’s PCA function 
uses the singular value decomposition (SVD) algorithm 
by default and returns the percentage of the total variance 
explained by each principal component. In general, the 
smallest number of components explaining 80–99% of the 
total variance is chosen, where these values follow PCA 
best practices.

The modeling with artificial neural network (ANN)

Another model used in the research is artificial neural net-
work (ANN). Artificial neural networks are frequently used 
in the modeling studies conducted between the variables 
which especially has nonlinear correlation. In this method, 
models are established with the aid of appropriate trans-
fer and activation functions, number of neurons and learn-
ing algorithms considering the structural specifications of 
the problem (Gardner and Dorling 1998). In the research, 
the combinations of two learning functions, three transfer 
functions and three different neuron numbers were used in 
ANN structures to model  CO2 flux flowing from soil to air 
(Table 5). Artificial neural network architecture is given in 
Fig. 3.

Principal component analysis with multiple linear 
regression

In this method, for modeling  CO2 emission, PCs were 
accepted as input parameters and combined with the MLR 
method (Fig. 4). PCs were obtained from the principal com-
ponent analyses.

Principal component analysis with artificial neural 
network

The PCs were used as input parameters in this method as 
in the PCA + MLR method. The same transfer—learning 
functions and neuron numbers used in the ANN method 
were used together with PCs for modeling  CO2 emission 
(Table 6). Figure 5 illustrates architecture of principal com-
ponent analysis with artificial neural network.

Statistical analysis for the dataset

Analysis of variance (ANOVA) was used to assess the signif-
icance of each treatment on soil properties and  CO2 fluxes. 
Means were compared when the F test for treatment was sig-
nificant at 5% level by using Duncan’s multiple range tests.

Performance evaluation for hybrid models

Accuracies of models were confirmed via root mean-square 
error (which is also known as root mean-square deviation 

Fig. 2  Model architecture of MLR

Table 4  The input and output parameters

Input parameters Output parameter

St: soil temperature (°C)
Sm: soil moisture content (%)
St: soil type
Fn: fertilizer norm
Sd: soil depth
Pr: photosynthetically active radiation

CO2 flux

Table 5  Functions and neurons numbers used in the ANN

Input parameters ANN structures Output parameter

Learning functions Transfer functions Neurons

St: soil temperature (°C)
Sm: soil moisture content (%)
St: soil type
Fn: fertilizer norm
Sd: soil depth
Pr: photosynthetically active radiation

Levenberg–Marquardt (Trainlm)
Gradient descent with momentum (Traingdm)

Logsig–logsig
Tansig–tansig
Pureline–pureline
Logsig–tansig
Logsig–pureline
Tansig–pureline

10
20
30

CO2 flux
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or RMSE), mean absolute error (MAE), and R2 (which is 
also known as coefficient of determination or R2). A model 
is evaluated as its accuracy is high when R2 reaches to 1 and 
RMSE and MAE approaches to zero.

(2)RMSE =

√√√
√1

n

n∑

i=1

(
Ypi − Ydi

)2

Fig. 3  Artificial neural network 
architecture

Fig. 4  The architecture of principle component analysis with multiple linear regression

Table 6  Functions and 
neurons numbers used in the 
PCA + ANN

Input 
parameters

ANN structures Output parameter

Learning functions Transfer functions Neurons

PC1 Levenberg–Marquardt (Trainlm) Logsig–logsig 10
20
30

CO2 flux

Tansig–tansig CO2 flux
Pureline–pureline CO2 flux

PC2 Gradient descent with momentum 
(Traingdm)

Logsig–tansig CO2 flux

Logsig–pureline CO2 flux
Tansig–pureline CO2 flux
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In these equations, where n is the number of observations, 
Ypi is the predicted value for observation i, Ydi is the real 
value from observation i, and Y ̅ is the average of the real 
value.

Results and discussion

The results of statistical analyses for the dataset

Soil  CO2 flux was affected by soil type, farmyard manure 
norm, manure application techniques and soil temperature 
statistically highly significant (p < 0.001), but this trend was 
not observed interaction values (Table 7).

At the initial temperature conditions (20–25 °C),  CO2 
flux assigned as 1.173 µmol g cm−3,  CO2 flux gradually 
raised according to higher soil temperature conditions. 
When the soil temperature had been reached the maxi-
mum level (45–50 °C),  CO2 flux from soil to atmosphere 
determined as 6.62 µmol g cm−3. The  CO2 flux on the 
subsurface manure application was bigger than the sur-
face manure application, approximately 50%. However, 

(3)MAE =
1

n

n∑

i=1

|||
Ypi − Ydi

|||

(4)R2
= 1 −

�∑n

i=1

�
Ypi − Ydi

�2

∑n

i=1

�
Ypi − Ȳ

�2

�

Fig. 5  The architecture of principal component analysis with artificial neural network

Table 7  The results of variance analysis for the dataset

Factors F P

Main factors Soil temperature 18.235 0.000**
Soil type 3.782 0.050 *
Fertilizer amount 9.108 0.006**
The method of fertilizer applica-

tions
21.501 0.000**

Interactions Temperature * soil type 0.269 0.926 ns
Temperature * Manure norm 0.588 0.709 ns
Temperature * soil depth 0.479 0.789 ns

Temperature CO2 flux

20–25 °C 1.173 c
25–30 °C 1.401 c
30–35 °C 2.350 c
35–40 °C 3.935 b
40–45 °C 4.705 b
45–50 °C 6.620 a
Soil type CO2 flux
 Normal 3.758 a
 Saline 2.971 b

Manure norm CO2 flux
 2 t ha−1 2.754 b
 4 t ha−1 3.975 a

Soil depth CO2 flux
 Surface 4.303 a
 Subsurface 2.426 b
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the  CO2 flux increased with increasing manure norm. 
 CO2 flux determined as 2.754 and 3.975 µmol g cm−3 for 
2 and 4 t ha−1 manure norm, respectively. When exam-
ined effects of soil type on the  CO2 flux, maximum  CO2 
flux values were observed at the normal-type soil with 
3.758 µmol g cm−3 and minimum values determined at the 
saline soil conditions with 2.971 µmol g cm−3.

The results of multiple linear regression (MLR) 
modeling

In the research firstly, multiple linear regression models were 
used to estimate the  CO2 flux. For this purpose, soil tempera-
ture (St), soil moisture content (Sm), soil type (St), ferti-
lizer norm (fn), soil depth (sd) and photosynthetically active 
radiation (PAR) were used as input parameters for prediction 
of  CO2 flux. Table 8 illustrates the statistical results of the 
MLR. Examining Table 8, it can be seen that R2 and P values 
are 0.681 and 0.000, respectively. The equation of the MLR 
model and predicted—observed values are given in Eq. 5 
and Fig. 6, respectively.

In this equation, x1: St, x2: Sm, x3: Sty, x4: Fn, x5: Sd, x6: 
PAR.

(5)

CO
2
flux = − 8.60 − 1.40x

1
+ 1.1x

2
+ 0.24x

3

+ 0.03x
4
+ 0.22x

5
9.045x

6

The results of the principal component analysis 
(PCA) modeling

The principal component analysis (PCA) results showed 
that the first two principal components,  PC1 and  PC2, 
explained, respectively, 82.39 and 15.78% of the variance 
for all areas and jointly was responsible for more than 
98.17% of the variance (Table 9). A similar result was 
found in a study by Panosso et al. (2011) on  CO2 fluxes, 
where the PCs together explained 70% of the variability of 
soil attributes (physical and chemical), with  PC1 explaining 
52% and  PC2, 18%.

The result of multiple linear regression 
with principal component analyses (PCs + MLR) 
hybrid modeling

In this method, the PCs  (PC1 and  PC2) were used as input 
parameters to predict  CO2 flux. The results of the statis-
tical analyses and the equation of this model are given in 

Table 8  The statistical results for MLR analysis

R2 F P Estimated error variance

CO2 flux 0.681 1408.081 0.000 2.197

Fig. 6  Observed and predicted 
 CO2 flux in the multiple linear 
regression model

Table 9  The eigenvalues of principal components analyses

PC1 (%) PC2 (%) PC3 (%) PC4 (%) PC5 (%) PC6 (%)

82.39 15.77 1.37 0.29 0.17 0.001
98.17

Table 10  The statistical results of PCs + MLR

R2 F P Estimated error variance

CO2 flux 0.432 1504.418 0.000 3.912
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Table 10 and Eq. 6, respectively. In this equation,  x1 and  x2 
were expressed  PC1 and  PC2, respectively. Also, observed 
and predicted values can be seen in Fig. 7.

The R2 value was calculated as 0.432. This value is smaller 
than the R2 of the MLR model. The MLR model used six 
input parameters such as soil temperature, soil moisture 
content, soil type, fertilizer norm, soil depth and photosyn-
thetically active radiation for prediction of the  CO2 flux. 
However, this method used only two inputs parameters such 
as  PC1 and  PC2. According to this result, it can be said that 
better modeling will be done as the number of input param-
eters increase in the modeling of  CO2 emission.

The results of the artificial neural network (ANN) 
modeling

In the ANN, it was used 36 different neural structures with 
different learning—transfer functions with different neu-
ron numbers. The statistical results of these structures are 
given in Table 11. Among these structures, the best results 
were obtained from the ANN 18 structure. This network 
model used Levenberg–Marquardt (Trainlm) learning 
function and Tansig–Pureline transfer function with 30 
neurons.

In the ANN 18 structure, it can be seen that the high-
est R2 and the lowest MAE values were calculated as 
0.983 and 0.024, respectively. Also, the R values of test 
and validation were more than 0.99 (Fig. 8). Figure 9 

(6)CO
2
flux = − 4.8 + 0.21x

1
+ 0.05x

2

illustrates the observed and predicted values of the 
ANN18 structure.

The results of the artificial neural network 
with principal components analysis (PCs and ANN) 
hybrid modeling

In this model, PCs were used as input parameters, and 
the 36 different ANN structures were examined for the 
 CO2 flux. Table 12 illustrates the statistical results of 
the PCs and the ANN model. The best-predicted results 
were obtained from the ANN16 structure. In this struc-
ture, the R2 and MAE values were determined as 0.756 
and 0.051, respectively. As can be seen in Table 12, the 
Levenberg–Marquardt (Trainlm) learning function and 
Logsig—Tansig transfer function with 30 neurons were 
used in the ANN 16 structure. Also, the R values training 
and validation were calculated as 0.86 and 0.87, respec-
tively (Fig. 10).

The R2 value of the PCs and ANN model was smaller 
than the ANN model. This result can be thought to be 
caused by the difference in input parameters. The PCA 
model has two input values such as  PC1 and  PC2, while 
the 6 input values (soil temperature, soil moisture content, 
soil type, fertilizer norm, soil depth and photosyntheti-
cally active radiation) in the ANN model have affected 
the model performance. Similar results were observed 
at the MLR and MLR with PCA models. Predicted and 
observed values of the  CO2 flux for Pcs and ANN model 
are given in Fig. 11.

Fig. 7  Predicted and observed 
values of the PCs and MLR
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Conclusion

Among the methods conducted to model  CO2 flux, the 
ANN gave the best results. It is a good idea to visualize 
the data in the 2D plot using PCA to decrease 6 param-
eters to two principal components. However, PCA + MLR 
and PCA + ANN combinations resulted worse than MLR 
and ANN methods when they were utilized singularly. 

When PCs were constructed over 98% of the variance, 
it would be expected that MLR and ANN results should 
be close to PCA + MLR and PCA + ANN results, respec-
tively. Regarding only R2 values, MLR (0.681) differs from 
PCA + MLR (0.432) and ANN (0.983) from PCA + ANN 
(0.756). This much difference may be caused by our 
parameters being nonlinear. Further research may work on 
simultaneous-, progressive-, successive-, prioritized- (Liu 

Table 11  The statistical results 
of the ANN model

Model Adaption learn-
ing function

Transfer function Number of hid-
den neurons

RMSE MAE R2

ANN 1 Trainlm Logsig–logsig 10 0.795 0.749 0.010
ANN 2 Trainlm Tansig–tansig 10 0.058 0.037 0.966
ANN 3 Trainlm Pureline–pureline 10 0.180 0.123 0.681
ANN 4 Trainlm Logsig–tansig 10 0.067 0.042 0.956
ANN 5 Trainlm Logsig–pureline 10 0.061 0.039 0.963
ANN 6 Trainlm Tansig–pureline 10 0.064 0.039 0.959
ANN 7 Trainlm Logsig–logsig 20 0.791 0.741 0.293
ANN 8 Trainlm Tansig–tansig 20 0.046 0.027 0.979
ANN 9 Trainlm Pureline–pureline 20 0.180 0.123 0.681
ANN 10 Trainlm Logsig–tansig 20 0.049 0.029 0.977
ANN 11 Trainlm Logsig–pureline 20 0.050 0.030 0.975
ANN 12 Trainlm Tansig–pureline 20 0.051 0.031 0.975
ANN 13 Trainlm Logsig–logsig 30 0.791 0.741 0.294
ANN 14 Trainlm Tansig–tansig 30 0.045 0.026 0.980
ANN 15 Trainlm Pureline–pureline 30 0.180 0.123 0.681
ANN 16 Trainlm Logsig–tansig 30 0.046 0.027 0.979
ANN 17 Trainlm Logsig–pureline 30 0.042 0.025 0.983
ANN 18 Trainlm Tansig–pureline 30 0.042 0.024 0.983
ANN 19 Traingdm Logsig–logsig 10 0.795 0.749 0.000
ANN 20 Traingdm Tansig–tansig 10 0.106 0.070 0.890
ANN 21 Traingdm Pureline–pureline 10 0.180 0.123 0.681
ANN 22 Traingdm Logsig–tansig 10 0.126 0.081 0.843
ANN 23 Traingdm Logsig–pureline 10 0.117 0.077 0.864
ANN 24 Traingdm Tansig–pureline 10 0.118 0.073 0.864
ANN 25 Traingdm Logsig–logsig 20 0.795 0.749 0.257
ANN 26 Traingdm Tansig–tansig 20 0.100 0.068 0.902
ANN 27 Traingdm Pureline–pureline 20 0.180 0.123 0.681
ANN 28 Traingdm Logsig–tansig 20 0.114 0.076 0.873
ANN 29 Traingdm Logsig–pureline 20 0.134 0.090 0.823
ANN 30 Traingdm Tansig–pureline 20 0.110 0.072 0.880
ANN 31 Traingdm Logsig–logsig 30 0.795 0.749 0.053
ANN 32 Traingdm Tansig–tansig 30 0.109 0.071 0.884
ANN 33 Traingdm Pureline–pureline 30 0.180 0.122 0.681
ANN 34 Traingdm Logsig–tansig 30 0.111 0.077 0.879
ANN 35 Traingdm Logsig–pureline 30 0.121 0.076 0.856
ANN 36 Traingdm Tansig–pureline 30 0.100 0.063 0.900
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 CO2 flux in the  ANN18 structure 
for ANN model



4729International Journal of Environmental Science and Technology (2020) 17:4719–4732 

1 3

and Chang 2007), independent-, sparse-, sparse independ-
ent- (Lee et al. 2016), parallel-, kernel- (Jiang and Yan 
2018), local- or constrained (Aversano et al. 2019) PCA. 
ANN presented better models than MLR. Thus,  CO2 flux 
seems nonlinearly dependent on input parameters (manure 

norm, soil type, soil temperature, soil moisture content, 
soil depth, photosynthetically active radiation and maybe 
more). Nonlinear regression methods should be used 
instead of linear models.

Table 12  The statistical results 
of the PCs and ANN model

Model Adaption learn-
ing function

Transfer function Number of hid-
den neurons

RMSE MAE R2

ANN 1 Trainlm Logsig–logsig 10 0.397 0.375 0.005
ANN 2 Trainlm Tansig–tansig 10 0.088 0.055 0.692
ANN 3 Trainlm Pureline–pureline 10 0.159 0.123 0.006
ANN 4 Trainlm Logsig–tansig 10 0.089 0.056 0.684
ANN 5 Trainlm Logsig–pureline 10 0.094 0.062 0.651
ANN 6 Trainlm Tansig–pureline 10 0.091 0.059 0.673
ANN 7 Trainlm Logsig–logsig 20 0.397 0.375 0.000
ANN 8 Trainlm Tansig–tansig 20 0.091 0.061 0.675
ANN 9 Trainlm Pureline–pureline 20 0.159 0.123 0.006
ANN 10 Trainlm Logsig–tansig 20 0.084 0.052 0.724
ANN 11 Trainlm Logsig–pureline 20 0.090 0.057 0.680
ANN 12 Trainlm Tansig–pureline 20 0.093 0.060 0.657
ANN 13 Trainlm Logsig–logsig 30 0.397 0.375 0.000
ANN 14 Trainlm Tansig–tansig 30 0.082 0.052 0.732
ANN 15 Trainlm Pureline–pureline 30 0.159 0.123 0.006
ANN 16 Trainlm Logsig–tansig 30 0.079 0.051 0.756
ANN 17 Trainlm Logsig–pureline 30 0.087 0.055 0.700
ANN 18 Trainlm Tansig–pureline 30 0.082 0.051 0.732
ANN 19 Traingdm Logsig–logsig 10 0.398 0.375 0.003
ANN 20 Traingdm Tansig–tansig 10 0.153 0.118 0.081
ANN 21 Traingdm Pureline–pureline 10 0.159 0.123 0.006
ANN 22 Traingdm Logsig–tansig 10 0.157 0.122 0.037
ANN 23 Traingdm Logsig–pureline 10 0.153 0.120 0.079
ANN 24 Traingdm Tansig–pureline 10 0.151 0.117 0.105
ANN 25 Traingdm Logsig–logsig 20 0.397 0.375 0.003
ANN 26 Traingdm Tansig–tansig 20 0.148 0.113 0.134
ANN 27 Traingdm Pureline–pureline 20 0.159 0.123 0.006
ANN 28 Traingdm Logsig–tansig 20 0.150 0.115 0.114
ANN 29 Traingdm Logsig–pureline 20 0.151 0.118 0.098
ANN 30 Traingdm Tansig–pureline 20 0.142 0.101 0.209
ANN 31 Traingdm Logsig–logsig 30 0.397 0.375 0.000
ANN 32 Traingdm Tansig–tansig 30 0.143 0.109 0.194
ANN 33 Traingdm Pureline–pureline 30 0.159 0.123 0.006
ANN 34 Traingdm Logsig–tansig 30 0.208 0.133 0.012
ANN 35 Traingdm Logsig–pureline 30 0.144 0.109 0.184
ANN 36 Traingdm Tansig–pureline 30 0.144 0.106 0.184
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