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Abstract
Day by day, the water sources are increasingly being adulterated due to various reasons including the uncontrolled discharge 
of pollutants from the point and nonpoint sources. Therefore, it is a timely need to develop suitable, inexpensive and efficient 
treatment techniques for water purification. This review aims at evaluating different water treatment technologies, their basic 
principles, cost and suitability for pollutants’ removal from wastewater. Among various water treatment technologies, adsorp-
tion technique appears to be techno-economically more attractive due to its inexpensiveness, universality and environment 
friendliness. Here, wide varieties of adsorbents (silica gel, activated alumina, clays, limestone, chitosan, activated carbon, 
zeolite, etc.) and their capacities for pollutant removal are described. The limitations of conventional adsorbent applica-
tions for water treatment are also discussed. Recently, nanotechnology has introduced nanoadsorbents, which have drawn 
additional attention due to their unique properties and are considered to be the viable alternative to conventional adsorbents. 
The potential applications, separation and regeneration of nanoadsorbents for wastewater treatment are also included in this 
review. Furthermore, prospects including commercial and health aspects of nanoadsorbents are also added.

Keywords  Nanoadsorbent · Wastewater treatment · Regeneration · Adsorption · Nanotechnology · Biotechnological 
solution

Introduction

The first United Nations World Water Development Report 
addressed water’s importance as “Water for People Water 
for Life.” Water is the prime need for sustaining all lives 
on the earth and plays a key role in maintaining ecosystems 
(Nemerrow 1978; Lehr et al. 1980; Franklin 1991; Helmer 
and Hespanhol 1997). But in the twenty-first-century reliable 

access to clean water remains a major global challenge (Qu 
et al. 2013a, b). Rapid population growth, enormous indus-
trialization, enhancement of agricultural activities to meet 
food demand, other geological, environmental and global 
changes have contributed to both the increased variety and 
volume of pollutants continuously contaminating the water 
sources (Nemerow and Dasgupta 1991; Tchobanoglous and 
Franklin 1991; Yang 2011; Ali and Aboul-Enein 2004; da 
Silva and Gouveia 2020; Karimi-Maleh et al. 2019, 2020; 
Shamsadin-Azad et al. 2019). As a result, the quality of 
water sources for industrial, agricultural and human con-
sumption is worsening globally. Therefore, water quality 
preservation and improvement become a serious concern 
for scientists, water regulatory authorities and governmental 
agencies (Ali et al. 2012). Generally, the water pollutants 
are classified as inorganic, organic and biological pollut-
ants (Gupta et al. 2012; Ali et al. 2019; Elsayed et al. 2019; 
Karimi-Maleh et al. 2020).

In the last couple of decades, various technologies for 
water purification and recycling were reported in the lit-
erature. These technologies differ in their physical, chemi-
cal, biological, thermal and electrical principles. The most 
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important water purification technologies include screen-
ing, coagulation–flocculation, filtration, biological treat-
ment, oxidation, reverse osmosis, ion exchange process, 
distillation, electrochemical dialysis, adsorption, etc. 
(Barakat 2011; Wasewar 2010; Gupta et al. 2012; Hoque 
et al. 2018; Tlili and Alkanhal 2019; Blanco et al. 2019). 
Among these purification techniques, adsorption processes 
are the most popular treatment method due to its univer-
sality, low construction and maintenance costs and ease 
of operation (Gupta et al. 2012). The removal capacity of 
inorganic, organic and biological pollutants from wastewa-
ter via adsorption can be as high as 99.9% (Ali et al. 2012). 
The attributes which determine adsorption efficiency are 
porosity and pore size of adsorbents and their surface area 
(Singh and Kaushal 2013). Currently, common adsorbents 
used for wastewater purification process include clays (El-
Guendi et al. 1995), activated alumina (Singh and Pant 
2004), silica gel (Do 1998), limestone (Aziz et al. 2008), 
activated carbon (Aggarwal et al. 1999), zeolites (Ming 
and Dixon 1987), chitosan (Crini 2006), etc. Among all of 
them, activated carbon is the most extensively used adsor-
bent (Babel and Kurniawan 2003). Nevertheless, despite its 
versatility, activated carbon suffers from several shortcom-
ings. Activated carbon shows limited porosity, surface area 
and pore volume and loses its adsorption capacity quickly. 
Recovery of adsorption capacity upon regeneration is also 
poor (Freeman 1998; Taiwo and Adesina 2005). Generally, 
surface functionalization of the conventional adsorbents is 
an attractive method to improve the adsorbent performance. 
However, these functionalized materials require complex, 
multistep synthesis process which is not amenable for their 
large-scale production and therefore are expensive (Bhat-
nagar et al. 2013). In addition, convenient separation of the 
adsorbent from treated water and removal of pollutants at 
ppb levels are major challenges for conventional adsorbent 
(Li et al. 2011; Mohan and Pittman 2006).

Recent advances in nanotechnology showed the poten-
tial routes to synthesize nanomaterials are mechanical, 
solgel, combustion, sonochemical, chemical, microwave 
and so on from numerous sources such as biomass resi-
dues, agriwastes and residues (Biswas et al. 2017, 2019; 
Rangari et a. 2017). To overcome the aforementioned 
limitations of the conventional adsorbents, researchers 
introduced next-generation adsorbents (nanoadsorbents) 
for the water treatment system (Förstner and Wittmann 
1985; Ali et al. 2012). Nanoadsorbent possesses an array 
of exceptional physical and chemical properties like high 
surface area, high chemical reactivity, conductivity, cat-
alytic, selectivity, magnetic and optical properties. The 
high surface area offers a higher number of active sites 
for various pollutants to react with nanoadsorbent. These 

properties make them better adsorbent than their corre-
sponding bulk materials (Kalfa et al. 2009; Liu et al. 2005; 
Hurt et al. 2006; Ilisz et al. 2004). Nanoadsorbents open 
a potential market in environmental industries at both the 
domestic and international levels. It is expected that the 
market value of the nanoadsorbents will reach €1.6 tril-
lion by 2020 and create over a million jobs (Donlan et al. 
2009).

Nature of water pollutants

Before addressing water treatment technologies, it is impor-
tant to have a good idea of the nature of the major water 
pollutants both qualitatively and quantitatively. The nature 
and amount of the pollutants found in wastewater vary based 
on sources such as agricultural, industrial and municipal 
discharge effluents. The toxicity of these pollutants is only 
observed when they exceed the permissible limit. Gener-
ally, wastewater pollutants are classified into three categories 
such as organic, inorganic and biological pollutants. These 
water pollutants may be present in water either in colloidal, 
solvated or in the suspended form (Gupta et al. 2012).

Inorganic pollutants

Inorganic pollutants include heavy metals found in vari-
ous waste streams that include industrial wastewater, river 
sediments, mine drainage, ashes and electronic scraps 
wastewater (Hoque and Philip 2011). Heavy metal com-
prises cations of lead, zinc, chromium, cadmium, iron, 
copper, arsenic and mercury, and anions of nitrates, sul-
fates, phosphates, fluorides, chlorides and oxalates are 
common inorganic water pollutants (Gaston 1979; Hutson 
and Roberts 1990; John 1990). The maximum contaminant 
level (MCL) established by USEPA (US Environmental 
Protection Agency) for some heavy metals is mentioned 
in Table 1 (Babel and Kurniawan 2003).

Table 1   List of heavy metals and their maximum concentration limit

Heavy metals (MCL) Maximum 
concentration limit 
(mg/L)

Mercury 0.00003
Arsenic 0.05
Lead 0.006
Cadmium 0.01
Chromium 0.05
Zinc 0.8
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Organic pollutants

The organic pollutants are very stable in the environment due 
to one or more cyclic rings in chemical structure, absence 
of polar functional group and a few halogen substitutions 
(Ali et al. 2012). The toxic organic pollutants are comprised 
of pesticides (insecticides, fungicides, herbicides), phenols, 
fertilizers, plasticizers, biphenyls, polybrominated biphenyls, 
formaldehyde, greases, detergents, hydrocarbons, oils, phar-
maceuticals, etc. (Gaston 1979; Hutson and Roberts 1990; 
John 1990). Agricultural and chemical industries are the 
most important sources of organic pollutants.

Biological pollutants

Various biological agents like viruses, bacteria, algae, fungi, 
amoeba and other worms also pollute water and induce dif-
ferent types of diseases (Gaston 1979; Hutson and Roberts 
1990; John 1990). The water pollutants cause serious health 
problems like kidney damage, nausea, rheumatoid arthritis, 
chronic asthma, diseases of the nervous system, circulatory 
system and, in extreme cases, death (Barakat 2011).

Wastewater treatment technology

The wastewater treatment technologies have been classified 
into three stages: (1) primary, (2) secondary methods and 
(3) tertiary (Fig. 1). The primary stage includes screening, 
filtration, coagulation–flocculation, centrifugation, grav-
ity and sedimentation methods. Generally, screening is the 
first operation in wastewater treatment. These techniques 
can protect the equipment and/or water plant from potential 
damage or blockages by removing large non-biodegradable 
floating solids or sediments present in the wastewater, such 
as cloth debris, paper, fiber, fecal solids, wood, hair and 
kitchen refuse. Sometimes, activated silica, alum or iron 
materials are used to remove non-settable solids by coagu-
lation process (Franklin 1991; Nemerow and Dasgupta 1991; 
Latifossglu et al. 1997).

In secondary water treatment systems, different biological 
microbes (usually bacterial and fungal strains) are employed 
for the removal of different pollutants (Franklin 1991; Kato 
et al. 1997; Zinkus et al. 1998). These microbes produce dif-
ferent by-products like water, carbon dioxide and ammonia 
gas after reacting with organic pollutants (Pendashteh et al. 
2010; Joss et al. 2006). Tertiary water treatment technologies 
are needed to achieve a water quality that meets the existing 
standards for human consumption. This is the final treat-
ment strategy for water purification. The technique includes 
oxidation, precipitation, ion exchange, adsorption, reverse 
osmosis, etc. (Gupta et al. 2012).

These water treatment technologies are applied for 
groundwater, surface water and wastewater treatment pur-
poses. Due to uncontrolled industrial discharge, ground-
water is adulterated by toxic metal cations and anions con-
tinuously. Tertiary treatment is necessary to remove these 
pollutants. On the other hand, both secondary and tertiary 
treatment methods are required for surface water, where con-
tamination is initiated by biological, organic and inorganic 
pollutants. Generally, utilization of tertiary water treatment 
methods varies depending on wastewater nature, economic 
feasibility and efficiency of pollutant removal. For better 
water treatment a good hybridization of these three treatment 
technologies is always required. (Gupta et al. 2012).

Current state of the art for wastewater treatment

Generally, water treatment processes are employed for three 
purposes, i.e., wastewater treatment, water source reduction 
and recycling. Researchers all over the world are looking 
for low-cost and effective methods for wastewater treatment 
and reuse (Gupta et al. 2012). Over the last few decades, 
numerous processes have been applied to remove metal 
ions from industrial wastewater. The commonly used tech-
niques for removing water pollutants are filtration, biologi-
cal treatment, ion exchange process, chemical precipitation, 
oxidation, electrochemical dialysis and adsorption (Barakat 
2011). Here, these water treatment techniques are shortly 
discussed mentioning their mechanism of action, advantages 
and shortcomings.

Contaminated water Primary Treatment Secondary Treatment Tertiary Treatment

Pollutants free water

Fig. 1   Different wastewater treatment stages
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Chemical precipitation

In most of the countries, chemical precipitation is a com-
monly applied method for the elimination of heavy metal 
ions from wastewater due to availability of cheap precipitant 
like lime and limestone (Mirbagherp and Hosseini 2004; 
Aziz et al. 2008). Besides these, alum, sodium bicarbonates, 
ferric chloride and ferrous sulfate are also commonly applied 
precipitants for the chemical precipitation purposes (Gupta 
et al. 2012). Inorganic effluent with a metal concentration of 
higher than 1000 mg/L can be treated by lime precipitation 
as reported in the literature (Aziz et al. 2008). Limestone 
plays the prime role to remove heavy metals via chemisorp-
tion reaction because of its rough surface which provides 
higher contact areas to react even at very low concentrations. 
Besides, the pH of the resultant solution goes up above the 
solubility value due to calcium carbonate of limestones, thus 
allowing metal impurities to precipitate via forming metal 
oxides and carbonates (Sturchio et al. 2003; Xu et al. 1996; 
Stipp et al. 1992). The theoretical mechanism of heavy metal 
elimination via chemical precipitation technique is shown by 
the following reaction (Wang et al. 2004):

where M2+, OH− and M(OH)2 imply dissolved metal ions, 
precipitant and insoluble metal hydroxide, respectively. 
Here, the removal efficiency can be improved by adjusting 
the temperature and alkalinity (pH 9–11) (Wang et al. 2004). 
Aziz et  al. (2008) reported that limestone significantly 
removed (more than 90%) Cd2+ and Cu2+ from aqueous 
solution at pH 8.5 (Aziz et al. 2008). Though it can remove 
heavy metals from industrial effluent, the requirement of 
a large amount of chemicals, excessive sludge formation, 
poor metal precipitation, slow settling, presence of oil and 
grease as well as the aggregation of metal precipitates during 
treatment make its application limited for a broad range of 
applications (Aziz et al. 2008).

Biological treatment

In this system, organic compounds are degraded in modified 
sludge tanks through the application of aerobic or anaero-
bic conditions, under the strict control of temperature and 
the system’s chemical oxygen demand (COD) (Britto and 
Rangel 2008).

Aerobic treatment  In aerobic treatment, bacteria and fungi 
are the most widely used because of their ability to destroy 
pollutants in the presence of oxygen in biological treatment 
processes. The prime benefit of the aerobic approach is the 
production of the non-toxic end product as well as signifi-
cant influence to remove nitrates, phosphates, BOD, COD, 

M
2+ + 2(OH)

−
↔ M(OH)

2
↓

dissolved and suspended organics, etc. (Gupta et al. 2012). 
Different enzyme-secreting bacteria in the wastewater are 
selected for their pollutants breakdown capacity (Rai et al. 
2005). For example, Kurthia sp strain can efficiently decol-
orize (92–100%) a wide variety of dyes (organic pollutants) 
like magenta, pararosaniline, brilliant green, ethyl violet, 
crystal violet and malachite green (Sani and Banerjee 1999). 
The successful decolorization of pollutants depends on sev-
eral factors like temperature and initial pH of the effluent, 
the concentration of pollutants and the concentrations of 
dyes (Christie 2007). The aerobic treatment has some short-
comings (Husain 2006; Kulla 1981; Gupta et al. 2012):

	 (i)	 development of aerobic bacterial strains is costly and 
challenging

	 (ii)	 no uniform decomposition of synthetic dyes and
	 (iii)	 costly due to high production of biosolids and its 

management

Anaerobic treatment  The anaerobic decomposition or 
putrefaction occurs when dissolved oxygen is not available 
in the wastewater (Venkata Mohan et  al. 2007; Van Der 
zee and Villaverde 2005). Delee et al. (1998) demonstrated 
the potential applications of anaerobic approach for a wide 
range of artificial dyes. The anaerobic treatment process 
offers the following advantages over an aerobic treatment 
process (Delee et al. 1998).

•	 cheap and alternative of aerobic process where costly 
aeration and bulk sludge are a major concern,

•	 dye decolorization can be done via the reduction process 
with low cost but efficient removal of BOD levels,

•	 heavy metals can be removed via sulfate reduction,
•	 high effluent temperatures are favorable and
•	 high pH of effluent can be reduced and thus initiates neu-

tralization of organics.

Zee van der et al. (2001) showed the treatment and decol-
orization of 20 azo dyes using anaerobic granular sludge and 
investigated their viability of the process (Van der Zee et al. 
2001). Despite these advantages, still, the anaerobic process 
faces some challenges like removal of BOD is not sufficient, 
dyes and other organics are not neutralized, nutrients (N, 
P) are not eliminated and sulfates form sulfide (Delee et al. 
1998).

This treatment process requires 20 to 200 US$ per million 
liters depending on the material used for treatment purposes 
(Franklin 1991; Zinkus et al. 1998). A simplified representa-
tion of the biological treatment is shown in Fig. 2.
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Filtration technology

This technology is considered to be the primary technique 
that received huge attention for drinking water and waste-
water treatment applications. This approach showed excel-
lent performance not only for removing suspended solids 
and organic matters but also for heavy metals and other 
inorganics (Barakat 2011). Numerous membrane filtration 
techniques are available that include microfiltration, nanofil-
tration, ultrafiltration, reverse osmosis and so on which are 
applicable depending on particle size to be removed (Fig. 3) 
(Barakat 2011; Gupta and Suhas 2009). To evaluate the 
potential of ultrafiltration technique, Saffaj et al. (2004) used 
cheap ZnAl2O4–TiO2 ultrafiltration membranes and achieved 
93% Cd (II) and 86% Cr(III) rejection, respectively. This 
high removal efficiency might be because of higher interac-
tions between the divalent cations (pollutant) and the filter 
membrane (Saffaj et al. 2004). Based on membrane proper-
ties, this ultrafiltration method can attain more than 90% 
removal capacity at a wide pH range and 2–5 bar of pres-
sure for metal concentration with a range of 10 to 112 mg/L 
(Kurniawan et al. 2006a, b). Recently, a polymer-supported 
ultrafiltration method has been introduced for the removal 
of heavy metal ions from industrial effluent. This method 
uses soluble polymeric ligand that binds to metal or ions of 
interest and form macromolecules complexes. These com-
plexes are rejected by the membrane and produce an effluent 
without targeted metal ions (Rether and Schuster 2003).

In addition to the ultrafiltration method, sometimes 
polymers have been used as binders to remove metal ions 

reported in the literature. Those polymers include carboxyl 
methylcellulose (Barakat 2008), polyethyleneimine (Aroua 
et al. 2007), diethylaminoethyl cellulose (Trivunac and Ste-
vanovic 2006), etc. The selection of appropriate membranes 
for filtration technique depends on several factors including 
characteristics of the wastewater, heavy metals concentra-
tions, pH, temperature, compatibility with the polluted water 
and cleaning agents to abate surface fouling (Madaeni and 
Mansourpanah 2003). However, surface fouling exhibits 
prime difficulty in the filtration approach, which reduces 
productivity and wide application (Zularisama et al. 2006). 
Researchers use both physical and chemical procedures for 
recovering membrane permeability. The membranes have 
been reported to regain the initial membrane efficiency by 
the treatment with different chemical agents like sodium 
hypochlorite (NaOCl), sodium hydroxide (NaOH), hydro-
chloric acid (HCl) and nitric acid (HNO3). But these regen-
eration processes are very expensive and may cause una-
voidable membrane damage and generate toxic by-products 
(Park et al. 2002). The cost of this water treatment process 
ranges from 25 to 450 US$ per million liters of treated water 
(Franklin 1991; Nemerow and Dasgupta 1991).

Oxidation

Oxidation is one of the most widely used approaches for 
decolorization of organic matters like dyes. Generally, two 
forms of oxidation processes are used for industrial waste-
water treatment such as chemical oxidation and UV-assisted 
oxidation. Various kinds of oxidizing agents such as chlorine 

Fig. 2   Schematic representation 
of biological treatment

Fig. 3   Schematic representation of filtration technology
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(Namboodri et al. 1994), hydrogen peroxide (Hage and 
Lienke 2006), Fenton’s reagent (H2O2 + Fe catalyst) (Wang 
2008) and ozone (Wu et al. 2008) are applied for the efflu-
ent treatment after the primary treatment (sedimentation) 
process. Oxidation processes completely degrade the pol-
lutants into low molar mass substances such as nitrogen, 
sulfates, aldehydes and carboxylates (Gupta and Suhas 
2009). It is worth mentioning that the pH of the solution 
and applied catalysts greatly influence the efficiency of the 
oxidation process. For example, in the decomposition of the 
metal–dye complex like chromium, copper, iron and nickel 
are generated and exhibit a catalytic effect that enhances 
decolorization. Chlorine is used as a strong oxidizing agent 
in low-cost approach for decolorizing dye water, but unfor-
tunately, it shows unavoidable side reactions, generates toxic 
compounds such as trihalomethane, increasing adsorbable 
organic halogen content in the treated water, and liberates 
metals in metal–dye complex degradation which encounters 
corrosion in metallic containers (Gupta and Suhas 2009). 
The cost of wastewater treatment by oxidation ranges from 
100 to 2000 US$ per million liters of clean water (Gupta 
et al. 2012).

Advanced oxidation processes (AOPs)  Sometimes, a single 
oxidation process fails to degrade the organic pollutants 
completely. The process where more than one oxidation 
processes are applied simultaneously to produce powerful, 
non-selective hydroxyl radicals in an aqueous medium for 
pollutant degradation is termed as advanced oxidation pro-
cesses (Garciamontano et al. 2006). These hydroxyl radicals 
are highly reactive but unstable due to their high oxidation 
potential (Mahamuni and Adewuyi 2010). In 2009, Kla-
varioti and his co-worker discussed and compared differ-
ent types of advanced oxidation processes, such as ozone-
assisted chemical oxidation processes, combined ozone and 
peroxide, ultraviolet-enhanced oxidation such as UV/H2O2, 
UV/ozone, UV/air, wet air oxidation, electrochemical oxida-
tion and catalytic wet air oxidation (Klavarioti et al. 2009).

The reaction between hydroxyl (.OH) radical and natu-
ral organic matter proceeds in three steps: (i) addition of 
.OH to double bonds, (ii) abstraction of H-atom resulting 
carbon-centered radicals and (iii) organic substituents donate 
an electron to .OH, radical resulting carbon-contained radi-
cals, which react very quickly with oxygen and form peroxyl 
radicals. At the end of the reaction, ketones or aldehydes 
and/or carbon dioxide are formed (Kleiser and Frimmel 
2000). The rate of the reaction depends on several factors 
like oxygen, the presence of free radicals and also pollut-
ant concentrations (Parsons 2004). Techniques included in 
the advanced oxidation processes are photo-Fenton’s oxida-
tion process (Moncayo-Lasso et al. 2009), ultraviolet (UV) 
photolysis (Gjessing and Kallovist 1991) and ultrasonic 
irradiation (Nagata et al. 1996). At ambient temperature 

and pressure, advanced oxidation processes are capable of 
complete degradation of dyes and also show benefit over 
biological approach for wastewater treatment comprising 
toxic or bio-contaminants (Matilainen and Sillanpaa 2010).

Namboodri and Walsh (1996) performed a comparative 
study between oxidation and advanced oxidation for color 
removal. They reported that the oxidation alone can only 
remove 10–20% color, but after the addition of peroxide 
the removal efficiency reached 90% (Namboodri and Walsh 
1996). De Witte et al. (2009) investigated the advanced oxi-
dation process with a 120 mL/min O3 flow rate for removal 
of ciprofloxacin (pharmaceutical activated product). The 
highest degradation was found with the highest concentra-
tion of ozone (660–3680 ppm) and the lowest concentration 
of ciprofloxacin (22.64–135.81 µM). The degradation was 
pH-dependent. At pH 10, the highest concentration (99%) 
of the degraded product (diethylene ciprofloxacin) was iden-
tified using HPLC–MS technique (De Witte et al. 2009). 
Common pharmaceuticals (diclofenac) were completely 
removed within 100 min from water by solar-driven pho-
tocatalysis. The stock solution concentration was 50 mg/L 
(Pérez-Estrada et al. 2005). Though advanced oxidation pro-
cesses have proven potential for dye removal, it has some 
shortcomings like the formation of undesired by-products, 
incomplete mineralization, dependent on pH, a high degree 
of pretreatment obligation and operational challenges. More-
over, the processes are found to be pretty expensive in the 
small-scale sector, especially in developing countries (Gupta 
and Suhas 2009; Comninellis et al. 2008).

Ion exchange treatment

Generally, ion exchange involves adsorption of dissolved and 
colloidal matters from industrial effluent (ionic matter) (Kur-
niawan et al. 2006a, b). A solid sorbent (ion exchanger) can 
accomplish exchanging cations or anions with the surround-
ing substances (Choi et al. 2007). This treatment can remove 
pollutants at lower concentrations (up to 250 mg L−1) (Gupta 
et al. 2012). There are two types of ion exchange membranes 
like anion or cation exchangers. In anion exchanger, the 
membrane infused with the positively charged ions (NH3

+, 
NH2

+, NR3
+) which permit anions to pass through, but dis-

card cations. On the other hand, the cationic membranes 
infused with negatively charged ions (SO3

2−, RCOO−, 
PO3

3−) permit cations to pass through rejecting anions. 
Based on the preparation method, the membranes are cat-
egorized into heterogeneous and homogeneous (Xu 2005). 
Polymeric membrane (styrene and acrylic resins) is mostly 
used because of its structural integrity, chemical inertness 
and great selectivity (Dickert 2007). The basic principle of 
the ion exchange process is described in Fig. 4.

Synthetic organic ion exchange resins (Barakat 2011), 
zeolites (Vassilis 2010) are found to remove pollutants such 
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as Cr3+, Fe3+, Cu2+, Pb2+ and NH3. However, this kind of 
technique has some disadvantages like expensive mem-
branes, poor electrochemical properties and high porosity 
(Xu 2005; Nagarale et al. 2006). Moreover, it needs back-
washing and regeneration after long use. Sometimes, the 
organic materials fix the resin and cause the appearance of 
fouling in the membrane (Üstün et al. 2007). Ion exchange 
is a low-cost reversible process because the adsorbent resin 
can be used for a long period before replacement is manda-
tory (Homem and Santos 2011). The cost varies from 50 to 
200 US$ for the treatment of one million liters of wastewater 
(Gupta et al. 2012).

Electrodialysis

Electrodialysis technique for water pollution manage-
ment was developed based on electrochemistry princi-
ples, where ionized species are separated by applying a 
high voltage on both sides of an ion exchange membrane 
(Barakat 2011) (Fig. 5). The basic difference between elec-
trodialysis and ion exchange membrane treatment process 
is that in the ion exchange process the concentration differ-
ence (diffusion and dialysis) is the driving forces, whereas, 
in electrodialysis, the externally applied electric potential 
is the driving force (Koter and Warszawski 2000). Gener-
ally, electrodialysis cell is made of thin films of polymeric 
products having either anionic or cationic in nature (anion 
exchange membrane and cation exchange membrane) 
(Chen 2004). The ionic functional groups of the mem-
brane originate from the chemical nature of the polymer 
(Blackburn 1999). Such anionic exchange membranes have 
positive fixed charges due to the presence of quaternary 
amine groups in the polymer; in contrary, cation exchange 
membranes have negative charges resulted due to the pres-
ence of sulfonic acid groups in the polymer. A solution 
containing ionic species is added to an electrodialysis cell. 
Then, potential is applied by the electrodes on both sides 
of the dialysis cell. The anionic exchange membranes with 
fixed positive charges attract anions and allow them to pass 
through and reject cations. The reverse scenario works in a 
cationic exchange membrane (Blackburn 1999).

Electrodialysis can provide high selectivity for success-
ful separation and recovery of the desired compounds and 
metals (Scott 1995). The electrodialysis cell can be used 
as a reactor for obtaining desirable products from both 

Fig. 4   Schematic representation 
of ion exchange treatment

Fig. 5   Schematic representation of the electrodialysis technique for 
water treatment
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electrolytes and chemicals. The successful operation of the 
cell depends on selecting the cell structure and the right 
operating conditions. Electrodialysis ensures high water 
recovery after treatment. It also reduces water hardness. 
The flexibility to operate when needed and no requirement 
of any toxic chemical make this treatment process attractive 
compared to other processes (Koter and Warszawski 2000).

Moreover, electrodialysis not only removes undesirable 
impurities from water but also produces highly concentrated 
liquor for recovery for reuse, such as valuable metals Cr 
and Cu (Blackburn 1999). The success of the electrodialy-
sis depends on membrane characteristics, feedstock nature, 
composition and process parameters such as initial flow rate, 
operation conditions and cell geometry (Mohammadi et al. 
2004). Due to long use and higher current, membrane foul-
ing occurs and consequently decreases the efficiency of the 
membrane. The presence of other ions also decreases the 
efficacy of the membrane separation process (Korngold et al. 
1998; Messalem et al. 1998; Hansen et al. 1997). Pretreat-
ment is necessary to avoid membrane fouling. For better 
performance, electrodialysis process needs a continuous sup-
ply of new feedstock, continuous monitoring on the opera-
tion and regular maintenance to avoid damages. The treat-
ment cost ranges from 15 to 400 USD (Gupta et al. 2012) 
(Table 2).

Sometimes, combined techniques are applied for water 
pollutants removal; for example, in India, Kenya, Sene-
gal and Tanzania, the most commonly used technique for 
defluoridation is the Nalgonda technique. In this method, the 
required amounts of alum, bleaching powder and lime are 
applied to treat water. After that, the water proceeded with 
disinfection, flocculation, filtration and sedimentation. The 
whole process takes 2–3 h in a batch experiment. But this 
treated water contains 2–7 mg/L residual aluminum concen-
tration which is higher than the WHO standard (0.2 mg/L) 
(Ayoob et al. 2008; WHO 2004; Meenakshi and Maheshwari 
2006).

Adsorption

Reverse osmosis, ion exchange and oxidation are com-
monly used technologies for wastewater treatment. These 
methods introduce toxic secondary pollutants into the eco-
system which make their use limited in wastewater treat-
ment at potable and industrial levels (Crini 2005; Gaya and 
Abdullah 2008). Therefore, there is a need to explore other 
alternative techniques, which are effective in removing pol-
lutants and are economical at the same time. The increas-
ing environmental awareness and concern among scientists 
led to developing the adsorption technique, which is effec-
tive for purification and separation of water and wastewater 

pollutants. Among all the water purification treatment meth-
ods, adsorption is one of the popular techniques which is 
meant to be an efficient, economical and eco-friendly tech-
nique for wastewater treatment (Crini 2006). Adsorption is 
the mass transfer process where pollutants are concentrated 
or adsorbed on a solid substrate from the liquid phase or 
gaseous surroundings in contact with the substrate. Here, 
pollutants are referred to as adsorbate and substrate as an 
adsorbent (Singh and Kaushal 2013).

Kayser in 1881 first introduced the term adsorption in 
the literature and postulated the adsorption process as a 
surface accumulation of materials (Dabrowski 2001). It is 
a surface phenomenon if the adsorbate or the species are 
attached to the adsorbent surface physically without any 
chemical bonding; the process is denoted as physisorption. 
In physisorption, the bonding forces are van der Waal forces, 
weak H-bonds, hydrophobicity, interaction due to polarity 
and steric effect, dipole–dipole interaction, π–π interaction, 
etc. (Ali et al. 2012). On the other hand, a chemical bonding 
also participates in the adsorption process, referred to as 
chemisorption (Ali et al. 2012). It is hard to remove chem-
isorbed compounds from the substrate (Yadla et al. 2012). 
The pollutants are adsorbed onto solid sorbents surface in 
three stages: 1. transport of pollutants from balk solutions 
to the adsorbent; 2. adsorption on the surface of any parti-
cles; and 3. transport within the absorbent particle (Barakat 
2011). The mechanism of adsorption is shown in Fig. 6.

Different factors affect the adsorption process, such as 
pH, temperature, types of adsorbates and adsorbents, the 
concentration of pollutants, the presence of other pollutants, 
contact time, surface functional group and other atmospheric 
and experimental conditions. Sometimes, prefiltration is 
required to avoid the unwanted effect of suspended parti-
cles, oils and greases in water during adsorption (Ali 2010). 
The adsorption process is especially suited for wastewater 
treatment and more so in the case of high concentration but a 
low volume of wastewater. Watonabe and Ogawa (1929) first 
demonstrated the application of activated carbon heavy met-
als adsorption. The adsorption process is effective to remove 
soluble as well as insoluble organic pollutants. The removal 
efficiency can be up to 99.9% as reported in the literature 
(Ali et al. 2012). As a result, researchers considered that 
adsorption is the greatest universal method as it can remove 
various types of inorganic as well as organic pollutants from 
wastewater. It is economically viable for the treatment of a 
large volume of wastewater due to low construction, main-
tenance and operation cost of the adsorption equipment 
(Gupta et al. 2012). The adsorption method has the benefit 
to remove analytes instead of creating potentially more haz-
ardous metabolites (Rivera-Utrilla et al. 2009; Putra et al. 
2009). Many industries like dyes, textiles, paper and plastic 
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discharge different types of dyes in the water. These dyes 
are detrimental to aquatic life (O’Neill et al. 1999). The 
removal of these color substances is very difficult because 
the dyes are intractable organic molecules, inert to aerobic 
digestion, stable under light, heat and oxidizing agents (Ravi 
Kumar et al. 1998). Adsorption shows the best results for 
the removal of various kinds of dyes (Ho and McKay 2003; 
Derbyshire et al. 2001; Jain et al. 2003).

Different conventional water treatment techniques 
like pre-/post-chlorination, coagulation/flocculation/fil-
tration, cannot efficiently remove cyanobacterial toxins 
from wastewater (Lambert et al. 1996; Huang et al. 2007; 
Momani et al. 2008). For example, the flocculation treat-
ment can eliminate cyanobacterial cells from water by 
an appropriate concentration of flocculent. But the treat-
ment increases the concentration of cyanobacterial toxins 
by cell lysis, which cannot be removed by this treatment 
(Lepistö et al. 1994). Huang et al. (2007) reported suc-
cessful removal of cyanobacterial toxins by the adsorption 
process (Huang et al. 2007).

Adsorption has advantages over conventional tech-
niques, which are shown below (Volesky 1999):

•	 Cheap Adsorbent is often made from abundant agri-
cultural or waste materials, which makes adsorbents 
cheap.Ta

bl
e 

2  
(c

on
tin

ue
d)

Tr
ea

tm
en

ts
A

dv
an

ta
ge

s
D

ra
w

ba
ck

s
Re

fe
re

nc
es

El
ec

tro
di

al
ys

is
Pr

ov
id

e 
hi

gh
 se

le
ct

iv
ity

 fo
r s

ep
ar

at
io

n
A

ct
 a

s a
 re

ac
to

r
Re

du
ce

 w
at

er
 h

ar
dn

es
s

M
em

br
an

e 
fo

ul
in

g
H

ig
h 

en
er

gy
 c

on
su

m
pt

io
n

Pr
es

en
ce

 o
f o

th
er

 io
ns

 re
du

ce
s t

he
 e

ffi
ci

en
cy

Re
qu

ire
 c

le
an

 fe
ed

, c
ar

ef
ul

 o
pe

ra
tio

n,
 p

er
io

di
c 

m
ai

nt
en

an
ce

B
la

ck
bu

rn
 (1

99
9)

, G
up

ta
 e

t a
l. 

(2
01

2)
, H

an
se

n 
et

 a
l. 

(1
99

7)

–,
 n

ot
 av

ai
la

bl
e

Fig. 6   Schematic representation of the adsorption process and its 
mechanism
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•	 Metal selective The metal sorbing capability of different 
kinds of biomass adsorbents can be dependent on metal 
ions as well as the nature of biomass, composition in the 
solution, preparation and physicochemical treatment of 
biomass.

•	 No sludge generation Unlike other techniques, no second-
ary sludge generation occurs with adsorption.

•	 Regenerative The adsorbent can be regenerated and used 
for several cycles of adsorption.

•	 Metal recovery It is possible to recover metal (pollutants) 
ions after being sorbed.

Major operating variables of adsorption

Based on the review of the latest published research on 
the application of adsorption process for water treatment, 
major operating variables are discussed below.

Effect of initial concentration and contact 
times on adsorption of pollutants

The initial concentration and contact time influence the 
metal ion (Cu2+) adsorption shown in Fig. 7. At pH 6.0 
and adsorbent dose 2 g/L, the adsorption experiment was 
carried out at initial concentration varying from 25 to 
100 mg/L. The figure shows that the metal ions adsorp-
tion increased simultaneously with the increase in contact 
time at all concentration, and after 3 h, the adsorption 
became constant. It indicates that the contact time was 
not dependent on metal ion concentration. The optimum 
uptake period of Cu2+ adsorption was about 3 h. The 

adsorption of Cu2+ increased from 11.92 to 36.40 mg/g 
as the initial concentration changing from 25 to 100 mg/g 
(Anirudhan and Sreekumari 2011).

But the different scenario was found, when Lv 
et  al. (2011) studied different initial concentrations 
(10–60 mg/L) of Cr(VI) for removal by nanocomposite. 
The complete removal was found at concentrations 10, 20 
and 40 mg/L. However, at a concentration of 60 mg/L, the 
removal capacity decreased to 40% as shown in Fig. 8. The 
reason might be the lack of available sites for adsorption in 
the constant amount of nano-zerovalent particles for high 
Cr(VI) concentration (Lv et al. 2011).

Effect of pH on adsorption

pH has a direct effect on pollutant removal. The adsorbent 
should be stable under working pH conditions. For example, 
the efficiency of Cr(VI) removal reduced from 100% to 91% 
with increasing pH from 5.0 to 9.0. The reason is electro-
static repulsion between nano-zerovalent iron multiwalled 
carbon nanotube (composites) and dichromate ions. The 
positive zeta potential of nano-zerovalent iron multiwalled 
carbon nanotube (nanocomposites) at pH < 7.5 acceler-
ated attraction of negatively charged Cr contaminant and 
resulted in the highest removal efficiency and kinetics. When 
pH raised above the pH (point of zero charges), negatively 
surface charge accelerated electrostatic repulsion (Lv et al. 
2011; Pradhan et al. 1999; Das et al. 2000).

The influence of pH was further investigated with acti-
vated carbon at pH range (2–9) to remove Cu (II) and Hg(II) 
as shown in Fig. 9. The increase in the pH value of the solu-
tion increased the pollutant removal percentage. The point of 
zero charges of activated carbon (adsorbent) was 5.2. Below 
pH 5.2, the surface of the activated carbon remains positive 

Fig. 7   Comparison of experimental contact time data and the fittings 
to pseudo-first-order and pseudo-second-order kinetic models for the 
adsorption of Cu (II) onto AC at different concentrations (Anirudhan, 
and Sreekumari 2011)

Fig. 8   Effect of initial Cr(VI) concentration on Cr(VI) removal (pH, 
7.0; nZVI-to-MWCNTs mass ratio, 1:2; ZVI amount 0.1  g/L) (Lv 
et al. 2011)
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due to the presence of H+; as a result, electrostatic repul-
sion occurs between adsorbent and metal cations. On the 
other hand, above pH 5.2 the surface charge of the adsorbent 
becomes negative and electrostatic attraction occurs between 
adsorbent and cationic pollutants. The optimum value of pH 
for the removal of Cu (II) and Hg(II) was observed to be 6 
and 7, respectively (Anirudhan and Sreekumari 2011).

Effect of ionic strength on adsorption

The ionic strength (i.e., electrolyte concentration) of a 
solution influences the binding of adsorbate and adsor-
bent. It influences the interface potential and width of the 
double layer around the adsorbent. Generally, the outer 
sphere complexes are more susceptible to ionic strength 
disparities than inner-sphere complexes of the adsorption 
process. For example, an experiment was performed in 
three different ionic strength solutions (0 M, 0.05 M and 
0.1 M) containing Cr(VI). At strength 0 M, the removal 
efficiency reached above 95% by 2 h; when it raised to 
0.05 M, the rate of Cr(VI) removal was enhanced and 
within 1 h it showed above 95% removal efficiency. How-
ever, the removal efficiency decreased to 81% within 2 h, 
due to the increase in ionic strength (0.1 M). The moder-
ate ionic strength (0.5 M) might strengthen the adsorbent 
capacity for the high removal of dichromate ions. On the 
other hand, high ionic strength would have the opposite 
effect (Lv et al. 2011). Hayes and Leckie (1987) postulated 
that the effect of electrolyte concentrations on adsorption 
can replicate the adsorption type (Hayes and Leckie 1987).

Adsorption isotherms are used to investigate the sol-
ute–solvent interaction, adsorption capability of adsorbent 
and accumulation degree of adsorbate on the adsorbent 
surface (Anirudhan and Sreekumari 2011). The two most 
common isotherms Langmuir and Freundlich are used 
extensively in the literature to elucidate the application of 
various adsorbents (Mor et al. 2007; Arslan and Pehlivan 
2007). Langmuir isotherm describes the monolayer for-
mation of adsorbent on a surface which contains a finite 
number of binding sites, without any lateral interaction 
between adsorbed molecules (Arslan and Pehlivan 2007). 
On the other side, Freundlich isotherm describes the mul-
tilayer adsorption having interaction among adsorbed mol-
ecules (Anirudhan and Sreekumari 2011).

Effect of adsorbent

The efficacy of adsorption depends on the porosity, surface 
area and pore size of the adsorbent (Singh and Kaushal 
2013; Estevinho et al. 2007). To be an effective adsorbent, 
the pore size of the adsorbent and the diameter of the adsorb-
ate molecule should be comparable to each other (Tinge 
et al. 1987). The characteristics of good adsorbents are high 
adsorption volume and quick separation of a large amount 
of solutions, selectivity, renewability, high porosity result-
ing large surface area, chemical and physical stability, low 
diffusion resistance, very low solubility in the respective 
contacting fluid, sorbent preservation and its properties, high 
hardness and compressive strength to prevent crushing and 
erosion, high confrontation to biofouling to extend long life, 
no side reactions, suitable for both batch and continuous pro-
cesses, compatibility and cost-effective (Singh and Kaushal 
2013; Ali et al. 2012; Mayadevi 1996; Mohanty et al. 2006; 
Mei et al. 2010). Ali et al. (2012) also gave importance to 
the presence of a high volume of carbon or oxygen in the 
adsorbent moiety for better adsorption.

The most commonly used adsorbents for wastewater treat-
ment are clay (El-Guendi et al. 1995), activated alumina 
(Singh and Pant 2004), silica gel (Do 1998), limestone (Aziz 
et al. 2008), activated carbon from different raw materials 
(Aggarwal et al. 1999; Rao et al. 2009; Kadirvelu et al. 2001; 
Mohan et al. 2000), zeolite (Ming and Dixon 1987), and 
chitosan (Crini 2006), etc. The adsorbents are discussed in 
the following section.

Clays

Clay materials got attention and used as adsorbent due 
to their abundance, low cost, high adsorption and ion 
exchange properties (Crini 2006). In recent years, clay 
materials have been applied for the removal of inorganic 
and organic pollutants. Various researchers studied clay 
particles for dyes removal from wastewater (El-Guendi 

Fig. 9   Influence of pH on the adsorption of pollutants (Hg and Cu) 
by activated carbon. [condition: adsorbent dose 2  g/L; temperature 
30 °C; equilibrium time 3 h; concentration 25 mg/L (Anirudhan and 
Sreekumari 2011)
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et al. 1995; Alkan et al. 2004; Ozdemir et al. 2004; Gürses 
et al. 2004; Alkan et al. 2005). Different types of clay 
materials like smectites (saponite, montmorillonite, etc.), 
kaolinite, mica (illite), serpentine, pyrophyllite (talc), 
vermiculite and sepiolite are used for pollutant removal 
purposes. Among them, montmorillonite clay exhibits 
the highest surface area and cation exchange efficiency 
(Shichi and Takagi 2000). The adsorption abilities of clay 
materials are due to the net negative charge which came 
from the chemical structure of minerals. Clay materials 
can adsorb positively charged species due to this nega-
tivity. Besides, their high sorption behavior is due to the 
high surface area which can go up to 800 m2/g and high 
porosity (Alkan et al. 2004; Cadena et al. 1990). In 1996, 
El-Guendi investigated the removal performance of natural 
clays and activated clays for cationic dye such as Basic 
Blue 69 and Basic Red 22 from waste aqueous solution. 
Natural clays showed 390 mg/g and 365 mg/g adsorption 
capacities (maximum, qmax) for Basic Blue 69 and Basic 
Red 22, respectively. The adsorption efficiency increased 
by 23% for Basic Blue 69 and 13% for Basic Red 22 after 
activation of natural clays with H2O2 (El-Guendi 1996). 
Like other adsorbent materials, clay materials can be 
modified to improve their ability to remove pollutants. 
Ozdemir and his group (2004) modified sepiolite with 
quaternary amines and applied to adsorb different types 
of azo-reactive dyes. This experiment exhibited substan-
tially improved adsorption of the pollutants (Ozdemir et al. 
2004). Though clay materials are considered as low-cost 
adsorbent, the removal efficiency of clays for heavy metals 
is not adequate (Babel and Kurniawan 2003).

Zeolites

Zeolites are microporous in structure and can be found 
both naturally as silicate minerals and prepared syntheti-
cally like magnetically modified zeolite, bio-zeolite, etc. 
(Ming and Dixon 1987; Adebajo et al. 2003; Nah et al. 
2006; Bai et al. 2010). Clinoptilolite is the most abundant 
zeolite in nature (Ming and Dixon 1987). They are also 
used as an adsorbent due to high ion exchange capability 
(Adebajo et al. 2003). Babel and Kurniawan (2003) and 
Bose et al. (2002) reported high selectivity of clinoptilo-
lite (natural zeolites) for some specific heavy metal ions 
like Pb2+(2.4 mg/g), Cd2+(1.6 mg/g), Zn2+(0.5 mg/g) and 
Cu2+(1.64 mg/g). Magnetically modified zeolite prepared 
by Nah et al. (2006), exhibited high adsorption capabili-
ties for the Pb2+ ion and good chemical inertness in the 
pH range 5–11. In 2010, Bai et al. applied bio-zeolite 
for wastewater treatment containing pyridine and/or 

quinoline. This adsorbent is comprised of mixed bacteria 
and reformed zeolites. Bacteria degraded the organic pol-
lutant, and the modified zeolite removed the ammonium 
ion derived from pyridine and quinoline degradation (Bai 
et al. 2010). Although zeolites originate from low-cost 
natural resources, their selectivity and competitive adsorp-
tion to various ions make their use limited. Moreover, 
these materials do not show the good capability to adsorb 
anionic ions and organics. Further modification of zeolite 
is needed to improve its efficiency to adsorb organics and 
anions and can be done via acid wash, ion exchange and/or 
surfactant functionalization (Wang and Peng 2010). Zeo-
lites show low permeability and require external support 
during column operations (Calzaferri et al. 2000).

Activated alumina

A highly porous, granular crystalline gel used as an adsor-
bent (Singh and Pant 2004) due to having a high surface area 
(Do 1998) varies from 200 to 300 m2 g−1. Researchers have 
used alumina due to its amphoteric properties (Naiya et al. 
2009) for the removal of dyes (Huang et al. 2007) as well 
as other ions such as cadmium, led, arsenate and arsenite 
(Naiya et al. 2009). Activated alumina was also investigated 
for defluoridation of water. At neutral pH (pH = 7), adsorp-
tion efficiency was found to be 1450 mg/kg (Ghorai and Pant 
2004). This defluoridation occurred by nonspecific adsorp-
tion. But alumina fluoro complexes were formed due to the 
presence of aluminum ions in the treated water at pH < 7. 
However, the regeneration of activated alumina can lower 
its removal efficiency of pollutants.

Silica gel

Various workers also used silica gel as an adsorbent for 
its comparatively higher surface area (250 to 900 m2 g−1) 
than alumina (Do 1998). It also has some other advantages 
like local availability and high thermal resistance (Jal et al. 
2004; Sharma et al. 2003). Some researchers also modi-
fied this material by salinization techniques to enhance 
pollutant removal efficiency (Jal et al. 2004; Sharma et al. 
2003). Preliminary researches reported that various ele-
ments from wastewater, such as Pb, Cd, Zn, Cu, Fe and Mn, 
could be effectively removed by functionalized silica gels 
(Jal et al. 2004; Sharma et al. 2003). Though the adsorption 
of basic dyes onto silica was significant, the high price of 
silica restricts its wide applications as adsorbent (McKay 
et al. 1999; Woolard et al. 2002); moreover, the regenera-
tion of adsorbent is a complicated process (Seshadri and 
Kettrupt 1982). Silica shows high sensitivity toward alkaline 
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solutions that limit the usage in the media of pH higher than 
8 (Ahmed and Ram 1992).

Chitosan

Chitosan, a cationic amino polysaccharide biopolymer, gets 
extra attention from researchers due to its sorption capacity 
of dyes and heavy metals at very low concentrations (ppm 
or ppb levels) (Crini 2006). Among other biomaterials, chi-
tosan provides high reactivity, better chemical inertness and 
selectivity toward pollutants (Ravi Kumar 2000; Varma et al. 
2004; Guibal 2004). The structural flexibility, presence of 
hydroxyl group and primary amino groups in the chemical 
structure favor the formation of a stable configuration for 
adsorption of pollutants (metal ions) (Babel and Kurniawan 
2003). Natural chitosan has been modified to improve the 
adsorption capability for different types of pollutants (Ravi 
Kumar 2000). Zhu et al. (2012) synthesized xanthate-mod-
ified magnetic chitosan and used it for adsorption of Pb(II), 
Cu (II) and Zn (II). The highest adsorption efficiency was 
found to be 76.9, 34.5 and 20.8 mg/g for Pb(II), Cu (II) and 
Zn (II), respectively. Chitosan also has some disadvantages 
in wastewater treatment. Chao et al. (2004) stated that chi-
tosan has a low attraction for cationic (basic) dyes. The pow-
der/flake-form chitosan is responsible for pressure drop in 
the sorption column which eventually lowers the adsorption 
efficiency. Also, chitosan is acid sensitive which triggers the 
necessary physical and chemical modification of chitosan 
powder before using in acid condition (Crini 2006).

Activated carbon

Activated carbon, among the conventional adsorbents, is the 
most prevalent and extensively used adsorbent for waste-
water treatment all over the world (Babel and Kurniawan 
2003). The US Environmental Protection Agency (EPA) has 
referred to the activated carbon-based adsorption as one of 
the best technologically feasible methods (Derbyshire et al. 
2001). The credit goes to Raphael von Ostrejko, who first 
developed commercial activated carbon and got patent in 
1900 and 1901. The most common organic precursors are 
wood, olive stones, anthracite coal, bituminous coal, lignite, 
peat shell, and almond and coconut shell. The carbon con-
tents of those materials vary from 40 to 90% (w/w) (Bansal 
et al. 1988; Holden 1982).

Preparation and  surface modification  The activated car-
bons are prepared by controlled pyrolytic decomposition of 
the precursors (Fig. 10) (Fitzer et al. 1971). During carboni-
zation, different low molar mass volatiles, light aromatics 
and hydrogen gas are released (Hucknall 1985). The resulted 
fixed carbonaceous char contains tarry pyrolysis residue, 
which blocks the pores of the char. The resulted char can be 
activated by physical or chemical treatment (Ali et al. 2012). 
The physical treatment requires high temperature and steam, 
CO2 and air as an activator (Lizzio et al. 1990). In chemi-
cal treatment, different activators such as ZnCl2, H3PO4, 
H2SO and KOH are impregnated into the precursors. The 
final material is carbonized followed by an activation step 
in a single action by two different temperatures (Smíšek and 
Černý 1970). Generally, the required temperature for chemi-
cal activation is 400–800  °C (Ali et  al. 2012). This cata-

Fig. 10   Schematic representa-
tion of activated carbons prepa-
ration and pollutant removal



4109International Journal of Environmental Science and Technology (2020) 17:4095–4132	

1 3

lytically activated sample further needs a post-activation 
treatment to remove the residual catalyst. The advantages of 
chemical treatment over physical treatment are (1) it needs 
low temperature and (2) the yield is high because the burn-
ing of char can be avoided.

The heating rate for carbonization and activation is the 
prime process parameter, which influences pore structure 
consisting of macro-, meso- and micropore, surface area 
and surface functional group (Rodriguez-Reinoso 1986; 
Wigmans 1986; Bhatnagar et al. 2013). The key functional 
groups of the activated carbon are carboxyl, carbonyl, phe-
nols, lactones and quinines. These functional groups arise 
by thermal treatment, activation process and post-chemical 
treatment on the activated carbon surface. The properties 
and concentration of functional groups are modified by 
appropriate chemical or thermal treatment to enhance the 
adsorption efficiency of activated carbon (Bhatnagar et al. 
2013). Different researchers reported that activated carbon 
comprises both cationic and anionic ions (Lukens 2007). 
During basic treatment, the increasing trend of net cationic 
ions is due to a decrease in the number of anionic ions on 
the activated carbon surface (Lukens 2007). Generally, sur-
face modification is done after the activation process. The 
alteration can be performed by various approaches that 
include base treatment, acid treatment, microwave treatment, 
impregnation treatment, plasma treatment, ozone treatment 
and surfactant treatment (Bhatnagar et al. 2013). Some of the 
surface modification processes are discussed below:

Acid treatment  It oxidizes the surface of the porous acti-
vated carbon as well as improves its hydrophilic properties 
(Shen et al. 2008). During the acid treatment, huge percent-
ages of oxygen-containing functional groups appear on 
the carbon surface by replacing hydroxide groups and thus 
increase cation exchange properties (Ahn et al. 2009). The 
acidic treatment removes mineral elements from activated 
carbon (Shen et al. 2008). Generally, nitric acid and sulfu-
ric acid are most widely used for acid treatment (Bhatna-
gar et  al. 2013). Here, metal ions form complexes due to 
strong interaction with the negatively charged acid groups 
(electrostatic adsorbate–adsorbent interaction) by replac-
ing (H+) ions from the oxidized carbon surface (Bhatna-
gar et  al. 2013). The adsorption method depends on pH 
competing for metals. The capacity of activated carbon to 
adsorbed metallic compounds is closely related to the num-
ber of surface functional groups (Ahn et al. 2009). Jia and 
Thomas (2000) oxidized activated carbon by nitric acid 
treatment and reported the incorporation of acidic oxygen 
functional group (carboxylic acid group, phenol and quinine 
groups). This surface-modified activated carbon shows cat-
ion exchange behavior over long range of pH values as well 
as exhibited multifunctional nature (Jia and Thomas 2000). 
However, this oxidation treatment sometimes decreases the 

surface area and reduces carbon porosity (Alvarez-Merino 
et al. 2005).

Base treatment  This treatment creates a positive surface 
charge of the activated carbon which adsorbs negative pol-
lutants in higher amounts (Menendez et al. 1996; Faria et al. 
2004; Shaarani and Hameed 2011). Here, activated carbon 
is treated at an elevated temperature in inert, hydrogen or 
ammonia atmosphere (Faria et  al. 2004; Shaarani and 
Hameed 2011). The basic surface properties are due to the 
development of basic nitrogen functionalities like amines, 
amides, protonated amides, pyridine-type structures, etc. 
(Mangun et  al. 2001; Jansen and Vanbekkum 1995; Ray-
mundo-Pinero et al. 2003). This surface-functionalized acti-
vated carbon adsorbs organic dye molecule by electrostatic 
forces or dispersive interaction. The dispersive forces arise 
due to the delocalization of π electrons, which are present at 
Lewis basic sites in the basal planes of a carbon atom and 
free electrons of the dye molecules present in the aromatic 
rings (Bhatnagar et al. 2013). Przepiorski (2006) modified 
the activated carbon by gaseous ammonia at 400 to 800 °C. 
The resulted adsorbent shows 29% more adsorption capac-
ity for phenol than untreated one (Przepiorski 2006). Shaa-
rani and Hameed (2011) also modified the surface through 
ammonia and revealed that the adsorption capacity for 
2,4-dichlorophenols increased from 232.56 to 285, 71 mg/g.

Impregnation  The impregnation technique involves the fine 
distribution of chemical/metal particles in activated carbon 
pores. Iron (Vaughan Jr and Reed 2005), copper (Yeddou 
et  al. 2011), silver (Miyanaga et  al. 2002) and aluminum 
(Tchomgui-Kamga et  al. 2010) are deposited on the acti-
vated carbon using the impregnation process. Huang and 
Vane in 1989 synthesized iron impregnated activated car-
bon for arsenic removal. They reported a tenfold increase in 
arsenic removal by treated activated carbon than untreated 
activated carbon. The enhancement of adsorption was due to 
the adsorption of ferrous ion and the formation of arsenate 
complexes (Huang and Vane 1989). The main advantages of 
impregnated carbon include catalytic properties optimiza-
tion of activated carbon by enhancing its inherent catalytic 
oxidation properties and promote synergism between acti-
vated carbon and the impregnated material.

The adsorbents produced by these aforementioned meth-
ods possess highly porous morphology with a high sur-
face area of 500 to 2000 m2 g −1 (Carrott et al. 1991). The 
adsorption on activated carbon usually happens through 
van der Waals forces. Different types of activated carbon 
are commercially available in the market, such as powdered 
activated carbon (PAC), granular activated carbon (GAC), 
activated carbon pellet and activated carbon fiber (ACF). 
Among them, granular activated carbon is mostly used due 
to its adaptation to continuous interaction with pollutants 
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and no need of additional step to remove the carbon from the 
bulk (Najm et al. 1991). Activated carbon is extensively used 
as adsorbents to remove various types of dyes (Al-Degs et al. 
2001; Pelekani and Snoeyink 2000), organic and inorganic 
pollutants such as metal ions (Gabaldón et al. 2000) phenols 
(Carrott et al. 2005), pesticides (Hu et al. 1998), humic sub-
stances (Lee et al. 1983), chlorinated hydrocarbons (Urano 
et  al. 1991), polychlorinated biphenyls (Pirbazari et  al. 
1992), detergents (Malhas et al. 2002), organic compounds 
which cause taste and odor (Lalezary et al. 1986) and many 
other chemicals and organisms (Carrott et al. 2000).

Removal of inorganic pollutants 
by activated carbon

Rao et  al. synthesized activated carbon from Ceiba 
pentandra hulls and used it for Hg2+ removal. At pH 6, 
this activated carbon showed higher adsorption capacity 
(25.88 mg/g). The increased adsorption capacity is because 
of the presence of sulfur groups on the surface of activated 
carbon. Since Hg2+ is a soft Lewis acid, according to Pear-
son theory, it will interact with surface sulfur groups (soft 
bases). The adsorption isotherm is well fitted to the Freun-
dlich model and adsorption kinetics followed pseudo-sec-
ond-order models. Here, the adsorption equilibrium state is 
achieved by the hydrophilic character (Rao et al. 2009) and 
also by the affinity of activated carbon to mercury species. 
Kadirvelu et al. 2004 prepared activated carbon from waste 
materials of the sago industry by treating with H2SO4 and 
(NH4)2S2O8. The adsorption capacity of Hg2+ was observed 
to be 55.6 mg/g at pH 5.0. The adsorption process obeyed 
Langmuir equilibrium isotherm model (Kadirvelu et al. 
2004).

Arsenic (As) adulteration in pure drinking water leads to 
serious health problems. EPA recommended the arsenic level 
for drinking water 0.01 mg/L (Bohlen 2002). During the last 
few decades, activated carbon is widely applied to remove 
arsenic from contaminated water (Budinova et al. 2009; 
Mondal et al. 2008a; b; Navarro and Alguacil 2002; Mohan 
and Pittman 2007; Kalderis et al. 2008, Daus et al. 2004). 
Asadullah et al. (2014) prepared activated carbon from jute 
stick and loaded with iron by impregnation method. They 
used it for separation from polluted water. The presence of 
iron oxide on activated carbon initiates the oxidation of As 
(III) into As (V) which can more strongly be adsorbed on the 
surface (Mondal et al. 2007, 2008a; Fierro et al. 2009). The 
iron-loaded chemically activated carbon reduced as concen-
tration to 3 µg/L when the initial concentration was 100 µg/L 
and pH 7 (Asadullah et al. 2014). Iron oxide-loaded acti-
vated carbon removed 99.90% As (V) within 5 min of the 
batch adsorption process. This highest adsorption capacity 
was observed 27.78 mg/g at pH 7. The adsorption process 

well fitted both Langmuir and pseudo-second-order kinetic 
models (Yurum et al. 2014). In 2011, Kocabas and Yurum 
used iron-loaded red mud for arsenic removal. At pH 2.0, 
the adsorbent showed a maximum capacity of 11.64 mg/g 
(Kocabas and Yurum 2011).

Alslaibi et al. (2013) synthesized microwave-irradiated 
activated carbon from olive stone and investigated its per-
formance for Cd2+ removal for aqueous solution. Microwave 
treatment provides lesser holding time for heating than the 
conventional heating method. This olive stone-activated car-
bon showed an adsorption capacity of 11.72 mg/g for Cd2+ 
removal. The adsorption followed Langmuir isotherm, i.e., 
monolayer adsorption occurred on the activated carbon sur-
face. The value well fitted with pseudo-second-order kinetics 
and directs chemisorption which is the rate-controlling reac-
tion step during Cd2+ removal (Alslaibi et al. 2013). Acti-
vated carbon synthesized from coconut buttons was inves-
tigated through batch adsorption process to remove heavy 
metal ions like Pb2+, Hg2+ and Cu2+. The activated carbon 
was synthesized by steam activation at 400 °C. The adsor-
bent shows good adsorption at pH 6.0 for Pb2+, Cu2+ and 
Hg2+ at pH 7.0. The monolayer adsorption capacity for Pb2+, 
Hg2+ and Cu2+ was found to be 92.72, 78.84 and 73.60 mg/
gm, respectively, at 30 °C. The adsorption isotherm best 
fitted with the Freundlich model and indicates a heterogene-
ous surface. The adsorption obeys the pseudo-second-order 
kinetics model. The adsorption process was influenced by 
the concentration of metal ions, contact time, solution pH, 
ionic strength and adsorbent concentrations (Anirudhan and 
Sreekumari 2011).

Removal of organic pollutants by activated 
carbon

Activated carbon has also been extensively used to elimi-
nate different classes of industrial dyes from water. McKay 
used activated carbon filtrasorb type (1.4–2.8 mm) to remove 
dyestuffs from water and observed outstanding adsorption 
for acidic, basic and dispersed dyes compared to direct 
dyes (Mckay 1982). Mendez-Diaz et  al. (2010) carried 
out adsorption of imidazole, sulfonamides and trimetho-
prim on activated carbon and found almost 90% removal 
of pollutants. Similar research was studied by Kim et al. 
(2010) where they investigated trimethoprim adsorption as 
a batch or continuous process and found above 90% removal 
efficiency.

Nowadays, pharmaceutically activated compounds and 
endocrine-disrupting compounds have emerged as novel 
contaminants in environmental water (Cabrita et al. 2010). 
Most of them are not biodegradable and cannot be elimi-
nated completely from water by conventional water treat-
ment processes (Villaescusa et al. 2011; Domínguez et al. 
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2011). Various natural materials such as hydrous oxides (Gu 
and Karthikeyan 2005), soils (Figueroa and MacKay 2005), 
clays (Pils and Laird 2007) and silica (Bui and Choi 2010) 
have been used for adsorption of pharmaceutical pollutants 
from wastewater. Activated carbon shows promising roles 
for the efficient removal of these pollutants. It can remove 
the pharmaceuticals without generating any toxic by-prod-
ucts (Dutta et al. 1999). Baccar et al. (2012) synthesized 
activated carbon from agricultural waste (olive-waste cakes) 
at a laboratory scale and used it for adsorption study of four 
common pharmaceutically activated compounds (diclofenac, 
naproxen, ketoprofen and ibuprofen) (Baccar et al. 2012). At 
25 °C, the adsorbent shows maximum adsorption volumes of 
56.17, 39.52, 24.69 and 10.83 mg/g for diclofenac, naproxen, 
ketoprofen and ibuprofen, respectively.

The adsorption process follows Langmuir and pseudo-
second-order adsorption kinetics. The authors also inves-
tigated pH and temperature influence on the adsorption 
of these pollutants. Increasing pH gradually decreases the 
adsorption of these four pharmaceutically activated com-
pounds (Baccar et al. 2012). Trimethoprim is a common 

pharmaceutical product used extensively as human and vet-
erinary medicine. It is poorly metabolized by the animal 
body, and approximately 60% of trimethoprim is discharged 
in the environmental water in the original form (Lindberg 
et al. 2004; Hirsch et al. 1999; Molu and Yurdakoc 2010). 
In 2012, Liu and his co-workers investigated the removal 
efficiency of four kinds of oxyacids of phosphorus-activated 
lotus stalk for trimethoprim (Liu et al. 2012). These oxyacids 
were H3PO4, H4P2O7, HPO3 and H3PO3. All the prepared 
activated carbon contains more acidic oxygen function-
alities. The order of sorption capacity of trimethoprim by 
activated carbon was activated carbon–H4P2O7 > activated 
carbon–H3PO4 > activated carbon–H3PO3 > activated car-
bon-HPO3. The adsorption process followed both the Fre-
undlich and Langmuir models, which indicates that both 
chemisorption and physisorption mechanisms took place 
simultaneously on the surface of the activated carbon (Liu 
et al. 2012) (Table 3).

Table 3   List of different adsorbents for water pollutants removal

–, not available

Pollutants Adsorbent—conventional Removing capacities pH References

Cd Zeolite 2.4 mg/g – Babel and Kurniawan (2003)
Modified zeolite 123 mg/g 5-11 Nah et al. (2006)
Limestone 0.0184 mg/g 8.5 Aziz et al. (2008)
Activated carbon (olive stone) 11.72 mg/g – Alslaibi et al. (2013)

Pb Zeolite 1.6 mg/g – Babel and Kurniawan (2003)
Limestone 0.0167 mg/g 8.5 Aziz et al. (2008)
Activated carbon (coconut buttons) 92.72 mg/g – Anirudhan and Sreekumari (2011)

Zn Zeolite 0.5 mg/g – Babel and Kurniawan (2003)
Limestone 0.0115 mg/g 8.5 Aziz et al. (2008)

Ni Zeolite 0.4 mg/g 5-11 Babel and Kurniawan (2003)
Modified zeolite 8 mg/g – Nah et al. (2006)
Limestone 0.0380 mg/g 8.5 Aziz et al. (2008)

Cu Zeolite 1.64 mg/g – Babel and Kurniawan (2003)
Limestone 0.0145 mg/g 8.5 Aziz et al. (2008)
Activated carbon (coconut buttons) 73.60 mg/g – Anirudhan and Sreekumari (2011)

Cr(III) Limestone 0.0161 mg/g 8.5 Aziz et al. (2008)
Hg(II) Activated carbon (Ceiba pentandra hulls) 25.88 mg/g 6 Rao et al. (2009)

Activated carbon (sago industry waste) 55.6 mg/g 5 Kadirvelu et al. (2004)
Activated carbon (coconut buttons) 78.84 mg/g Anirudhan and Sreekumari (2011)

As (V) Iron-loaded activated carbon (jute stick) 3.0 µg/L 7 Asadullah et al. (2014)
Iron-loaded activated carbon (Charcoal) 27.78 mg/g 7 Yurum et al. (2014)
Iron-loaded red mud 11.64 mg/g 2 Kocabas and Yurum (2011)

Basic Blue 69 Natural clays 390 mg/g – El-Guendi (1996)
Basic Red 22 Natural clays 365 mg/g – El-Guendi (1996)
Diclofenac Olive-waste cakes (activated carbon) 56.17 mg/g – Baccar et al. (2012)
Naproxen Olive-waste cakes (activated carbon) 39.52 mg/g – Baccar et al. (2012)
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Challenges of conventional adsorbent

Some major disadvantages of conventional adsorbents are 
given below.

Cost

The activated carbons are commonly used to remove vari-
ous kinds of pollutants, but sometimes their applications 
are restricted because of high-quality activated carbon 
and its higher cost (Babel and Kurniawan 2003). On the 
other hand, low-quality adsorbent has generally shown low 
adsorption capabilities, so large volumes of materials will 
be required for water purification (Aksu and Kabasakal 
2004). For improvement in removal performance, acti-
vated carbon is treated with different complexing agents. 
This additional cost makes the use of activated carbon less 
attractive in small-scale industries (Babel and Kurniawan 
2003). Both physical and chemical activations have some 
shortcomings, such as physical activation needs a longer 
time as well as high temperature for activation. Chemical 
activation requires long washing for the removal of chemi-
cal agents.

Exhaustion

During the treatment of wastewater, the adsorbent (acti-
vated carbon) becomes exhausted and loses its competence 
to further adsorb the pollutants. Different techniques like 
thermal, chemical, oxidation and electrochemical are used 
for the regeneration of exhausted adsorbent for further use 
in wastewater. This regeneration process also adds extra cost 
as well as lowers the adsorption efficiency compared to acti-
vated carbon (Taiwo and Adesina 2005; Zhou and Lei 2006).

Surface modification

The surface modification also introduces some shortcom-
ings like the cost involved in the surface modification 
process, leaching of impregnated metals, regeneration of 
surface-modified activated carbon and limitation in col-
umn, pilot or full-scale study of real wastewaters, surface 
water and groundwater treatment (Bhatnagar et al. 2013). 
The presence of other metal ions reduces the adsorp-
tion capacity of activated carbon for specific pollutants 
(Makeswari and Santhi 2013). This process only trans-
fers pollutants from liquid to solid phase, where further 
treatment is required for complete removal (Homem and 
Santos 2011).

Separation of adsorbent

Convenient removal of adsorbent from treated wastewater 
is another concern for promising adsorbent. The traditional 
adsorbents are hard to remove after treatment; moreover, 
the conventional separation processes like centrifugation, 
precipitation, filtration and chromatography induce malfor-
mation like deformation and inactivation of an adsorbent. 
This operation adds extra cost and time to water purifica-
tion. Therefore, economically feasible and effective separa-
tion techniques are in urgent demand (Li et al. 2011; Liu 
et al. 2011).

Removal efficiency

Generally, activated carbon cannot reduce the concentration 
of the pollutants at ppb levels. It adsorbs only a few mil-
ligrams of pollutant per gram of absorbent. Moreover, acti-
vated carbon shows poor adsorption for inorganic pollutants 
due to its nonpolar surface (Mohan and Pittman 2006). In 
the case of activated carbon adsorption, the adsorption equi-
librium achieved very slowly due to slow pore diffusion (Lu 
and Chiu 2006; Deng and Bai 2004). In Fig. 11, activated 
carbon shows less than 1% adsorption, whereas non-func-
tionalized multiwall carbon nanotubes show a greater ability 
to adsorb Cr(VI) like 98% adsorption. The lower adsorption 
efficiency of activated carbon might be due to the filling of 
pores by water. As a result, Cr(VI) cannot retain the solid 
surface of activated carbon (Nxumalo 2006).

The above points indicate that the application of activated 
carbon in wastewater treatment also encounters various chal-
lenges. Carbon fibers were developed as second-generation 
carbonaceous adsorbents to solve the above-mentioned prob-
lems. These adsorbents show higher adsorption kinetics than 
activated carbon due to the highly porous structure, resulting 
in a shortening of the diffusion time of pollutants to adsorp-
tion sites. Carbon nanotube, an excellent third-generation 

Fig. 11   The influence of contact time on the amount of Cr(VI) 
adsorbed by each adsorbent (Nxumalo 2006)
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carbonaceous adsorbent, was synthesized in 1991 with hol-
low and layered structures. The adsorption sites are located 
both on the outer and on the inner layer surface of this nano-
structure (Liu et al. 2013).

Nanoadsorbents

Nanotechnology has successfully introduced nanoadsorbents 
for wastewater treatment, which has emerged as an enor-
mous growing and enthralling area of interest (Förstner and 
Wittmann 1985). Generally, nanotechnology is related to 
the creation, processing, characterization and application of 
materials at the nanoscale (1–100 nm) in diverse areas (Bis-
was et al. 2017, 2019; Mamalis 2007; Stander and Theodore 
2011; Padmanabhan et al. 2019; Golieskardi et al. 2019; 
Ragurajan et al. 2018; Rangari et al. 2017, 2019; Nuge et al. 
2020). Nanomaterials own exceptional properties, which are 
absent in their corresponding bulk materials. These proper-
ties are conductivity, selectivity, and catalytic, magnetic and 
optical properties and high surface area per mass ratio (Lu 
et al. 2019). Nanomaterials are chemically active due to large 
surface areas with a large number of active surface sites. 
Carbon nanotubes, ordered mesoporous carbon (OMC), gra-
phene, carbon nanofibers, titania nanotubes and their modifi-
cations are some of the popular nanomaterials that have been 
used in wastewater treatment. The higher concentration of 
surface defects arises from large surface area and facilitates 
interaction with pollutants. Sometimes, nanomaterials are 
coated with other coating agents to enhance their adsorption 
properties. For example, when TiO2 was coated with carbon 
nanotubes (CNTs), the composite showed larger surface area 
as well as high removal efficiency than their precursor in 
the as-received form (Hurt et al. 2006; Ilisz et al. 2004). 
Photocatalytic degradation of pollutants carried out by using 
TiO2-based nanomaterials results in non-toxic end products 
(Mahmoodi et al. 2007). These nanomaterials possess out-
standing absorbing capabilities and chemical stability (Chen 
et al. 2005).

Nanomaterials as adsorbent

The structural properties (porosity, surface area, pore size 
and pore volume), chemical composition and thermal sta-
bility of nanoparticles depend on the synthesis procedure 
and operating conditions. Solgel, ion sputtering, impregna-
tion, co-precipitation, spray pyrolysis, thermal spraying, arc 
discharge, chemical vapor deposition (CVD), mechanical 
alloying/milling, laser ablation, thermal plasma synthesis, 
catalytic growth and electrodeposition are the common 
methods applied for nanoparticle synthesis (Liu and Zhang 
2007; Sharma et al. 2009). The solgel method gets extra 
attention for the synthesis of nanoparticle due to its low 

cost, homogenous product formation, high purity and envi-
ronmental friendliness (Zeng et al. 1998). Different types 
of nanomaterials are synthesized and used as an adsorbent 
for pollutant removal, for example, alumina, TiO2, Al2O3, 
Fe3O4, carbon nanotube (CNT), graphene, mesoporous 
carbon, MnFe2O4, nano-zerovalent iron, magnetite, etc. 
(Sharma et al. 2009). The role of nanoadsorbent to remove 
inorganic, organic and biological pollutants is discussed 
below with recently reported data.

Removal of inorganic pollutants by nanoadsorbents

Zerovalent iron nanoparticle, iron oxide nanoparticle, tita-
nium oxide, aluminum oxide, etc., are commonly used for 
metal pollutants removal from wastewater. Zerovalent iron 
has been reported for adsorption of different metal ions like 
arsenic, chromium, cadmium, lead, selenium, silver and zinc 
(Kanel et al. 2005; Ponder et al. 2000a; Sturchio et al. 1997).

Arsenic (As)

Arsenic adulteration of groundwater is a major problem in 
whole around the world. The prevalence is the highest in 
Bangladesh, where about 35 million people are affected by 
arsenic contamination. A study carried on arsenic affected 
area/villages in Bangladesh reported that almost 90% of 
groundwater contained a higher concentration of arsenic 
than the permissible limit. Various water treatment tech-
niques have been used for arsenic removal, but none of them 
is effective in community level due to high cost and handling 
problems (Khan et al. 1997; Dhar et al. 1998; Chatterjee 
et al. 1995; Das et al. 1995). Nanoadsorbents like akaga-
neite, magnetite, maghemite and zerovalent iron nanopar-
ticle were used for the removal of arsenic pollutant from 
drinking water (Deliyanni et al. 2006; Chowdhury and Yan-
ful 2010; Machado et al. 2006; Kanel et al. 2006; Li and 
Zhang 2007). At pH 7.5, Deliyanni et al. (2003) reported 
removal of 120 mg/gm as (v) from the solution by akaga-
neite nanoparticle (2.6 nm). After adsorption, nanoadsor-
bents can be separated by membrane filtration (0.45 μm) 
(Deliyanni et al. 2006). Hristovski et al. (2007) also stud-
ied the As (v) removal by 16 metal oxide nanoparticles in 
fixed bed columns, including TiO2, NiO, Fe2O3 and ZrO2. 
Except for ZrO2, all the nanoparticles showed ~ 98% removal 
capacity. The adsorption data fitted well with Freundlich 
adsorption isotherm (Hristovski et al. 2007). Zhu et al. 
(2009) impregnated non-zerovalent iron on activated car-
bon and used it to adsorb arsenic pollutant As (III). At pH 
6.5, the composite removed approximately 1.997 mg/g in 
2.0 mg/L arsenic solution. The authors proposed this adsor-
bent as an ideal candidate to treat arsenic-polluted drinking 
water (Zhu et al. 2007). Velickovic et al. (2012) and Peng 
et al. (2005) used iron (III) oxide comprised of ethylene 
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diamine-functionalized multiwall carbon nanotubes and 
ceria nanoparticles supported on carbon nanotube, respec-
tively, for As (V) removal. Tang et al. (2013) successfully 
produced superparamagnetic ultrafine magnesium ferrite 
(Mg0.27Fe2.50O4) nanoadsorbent which shows superior arse-
nic adsorption performance on both As (III) and As (V). Its 
adsorption efficiency of As (III) and As (V) was found to 
be 127.4 mg/g and 83.2 mg/g, respectively, at pH 7.0. The 
hydroxyl group played a major role in arsenic adsorption. 
They found that the arsenic adsorption capacity of the as-
synthesized nanoadsorbent was higher than Fe2O3 nanoad-
sorbent. Moreover, this nanoadsorbent (Mg0.27Fe2.50O4) 
could be easily removed by the external magnetic field and 
could be regenerated and reused for arsenic removal (Tang 
et al. 2013). Zhang et al. produced a series of iron oxide–gra-
phene oxide composites to remove arsenate from water. They 
found that water with arsenate concentration at 51.14 ppm, 
the composites adsorb more than 95% arsenate, results in 
an absorption capacity of 23.78 mg arsenate/g of composite 
in the pH range of 4–9 (Zhang et al. 2010). Yu et al. syn-
thesized magnetic iron oxide/graphene oxide with high iron 
oxide loading (51% by wt.). They reported significantly high 
adsorption capacities 54.18 and 26.76 mg g−1 for As (III) 
and As (V), respectively. In general, graphene-based adsor-
bent materials show improved adsorption capacities because 
they offer a large surface area and inhibit the agglomeration 
of the deposited nanoparticles (Yu et al. 2015).

Chromium (Cr)

Chromium contamination is generally initiated by steel mill 
waste, erosion of natural waste, electroplating wastewater 
and dye industries. The U.S. EPA fixed the discharge limit 
of chromium to 0.1 mg/L in surface water. Among vari-
ous valence states of chromium, only trivalent, Cr(III) and 
hexavalent Cr(VI) forms are important for the environmental 
point of view. The hexavalent form exhibits more toxicity 
than its trivalent form (Browning 1969; Kowalski 1994; 
Singh and Singh 2002). Ponder et al. (2001) removed Cr(VI) 
by applying nano-size zerovalent iron (Ferragels) which is 
10 − 30 nm in diameter. They fabricated the nanoadsorbent 
using a borohydride reducing agent to reduce aqueous iron 
salt. The authors explained pseudo-first-order reaction kinet-
ics of the hexavalent chromium adsorption process. Here, 
Cr(VI) is reduced to Cr(III) by nano-size zerovalent iron. 
The author showed that the reduction rate of chromium was 
7–12 times faster by prepared nano-size zerovalent iron than 
the equivalent weight of iron powder (Ponder et al. 2000a, 
b).

In 2005, Hu et  al. synthesized and used maghemite 
(γ-Fe2O3) nanoparticles (diameter around 10 nm) to remove 
and recover Cr(VI) from wastewater. The highest adsorp-
tion performance of maghemite for Cr(VI) removal was 

19.2 mg/g of maghemite at pH 2.5, and the saturation time 
for this method was only 15 min. The adsorption of Cr(VI) 
on the maghemite was because of electrostatic interactions 
and ion exchange (Hu et al. 2005). Hu et al. (2007) synthe-
sized a group of magnetic nanoparticles of about 20 nm by 
chemical co-precipitation method. The synthesized mag-
netic nanoadsorbents are CoFe2O4, CuFe2O4, MgFe2O4, 
MnFe2O4, NiFe2O4 and ZnFe2O4. The major advantages in 
adsorption trailed by magnetic parting are rapidness, efficacy 
and easiness of the process. The author found adsorption 
equilibrium within 1 h for Cr(VI) by all kinds of nano-fer-
rites. At a similar primary Cr concentration (1000 mg/L), 
among all the ferrite nanoparticles, MnFe2O4 nanoparticles 
showed the highest Cr adsorption efficacy (99.5%) within 
the shortest adsorption time. This is because of the high 
surface area of MnFe2O4 (180 m2/g). The removal efficacy 
was extremely pH-dependent, and the optimum adsorption 
occurred at pH 2. The effects of contact time and pH on 
chromium removal by various ferrites are shown in Fig. 12. 

Fig. 12   The effect of contact time and pH on chromium removal by 
various ferrites; a absorption versus time and b absorption versus pH 
(Hu et al. 2007)
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The figure shows that the adsorption capacities of magnetic 
nanoadsorbent followed the order: ​CoF​e2​O4 < NiFe2O4 < C
uFe2O4 < ZnFe2O4 < MgFe2O4 < MnFe2O4 (Hu et al. 2007).

For the first time, Lv et al. (2011) used nanoscale zerova-
lent iron multiwalled carbon nanotube nanocomposite for 
Cr(VI) removal. In this composite, nano-zerovalent iron 
nanoparticles (20–80 nm) remain dispersed on the surface or 
into the network of multiwalled carbon nanotube (Fig. 13a). 
The study reported that this composite exhibited a 36% 
higher efficacy for Cr(VI) removal than bare nano-zerovalent 
iron or nano-zerovalent iron-activated carbon composite. 
The reason might be bare nano-zerovalent iron formed inert 
oxide film as it exposed to air or water. This oxidation layer 
prevents further reactions with contaminants. Coupling with 
multiwalled carbon nanotube prevents this oxide film forma-
tion on the surface and allowed more adsorption. This com-
posite also completely removed Cr(III) from aqueous solu-
tion. At concentration 1.09 mg/L, the composite removed 
completely Cr(III) at 15 min. The removal process depends 
on ionic strength, initial concentration of pollutants, pH 
and presence of other anions. The experiment was allowed 
to run for 4 h and found complete removal of dichromate 
ions and other anions at their high concentrations (Lv et al. 
2011). Figure 13b shows that after 2 h of reaction some 
polygon shape appeared on the nano-zerovalent iron mul-
tiwalled carbon nanotube. This is possible because of the 
co-precipitation of chromate and iron ions (Lv et al. 2011).

Chandra et al. (2010) synthesized magnetite (Fe3O4)–gra-
phene composite. The composite showed adsorption capa-
bility of 5.5 mg/g of composite that is higher than the 
unsupported Fe3O4. Goharshadi et al. used functionalized 
graphene oxide to remove Cr(VI) ions. The functional-
ized graphene oxide has a high concentration of epoxy and 
hydroxyl groups, which assist in adsorption. The adsorption 
capability was found to be 1.66 mg/g of graphene.

Cadmium (Cd)

Karimi (2013) reported the synthesis of magnetite nanorods 
(average diameter 60 nm) by the electrochemical method in 
pulsed conditions. He used this nanoparticle as an adsorbent 
for various metal pollutants removals such as Cd2+, Cu2+, 
Fe2+, Ni2+, Pb2+, Zn2+, etc. The maximum adsorption capac-
ities of this nanoadsorbent for Cd2+, Fe2+, Pb2+, Zn2+, Ni2+ 
and Cu2+ were 88.39, 127.01, 112.86, 107.27, 95.42 and 
79.10 mg/g, respectively (Karami 2013). Like the removal of 
As(V) and Cr(VI), synthetic akaganeite nanocrystals (aver-
age crystallite size 2.6 nm) also efficiently removed Cd (II) 
from aqueous waste solutions. This nanoadsorbent showed 
17.1 mg/g adsorption ability for Cd (II) ions. The sorbent 
capacity can be improved by increasing the temperature and 
pH, whereas it decreased by increasing the electrolyte ions 
in solution. Here, the adsorption of Cd (II) took place by a 
weak chemisorption process. The adsorption data fitted both 
Freundlich and Langmuir isotherms and obeyed those two 
models (Deliyanni and Matis 2005).

Recently, biodegradable and renewable organic poly-
mers are used for coating nanoadsorbents which have 
been broadly used for the separation of heavy metal pol-
lutants. These organic polymers originate from industrial 
wastes, agricultural wastes and biomass (Abdel-Halim and 
Al-Deyab 2011). Gong et al. (2012) used shellac, a biore-
newable and biodegradable resin with ample hydroxyl and 
carboxylic groups that provided the possibility of chelat-
ing heavy metal ions. The authors coated the iron oxide 
nanoadsorbent with this shellac polymer and examined its 
capacity for Cd2+ removal from waste solution. The adsorp-
tion capacity of the coated nanoadsorbent increased with 
increasing pH. At pH 8.0, it showed the highest adsorption 
capability of (18.80 mg/g). After adsorption, the coated 
nanoadsorbent can be easily regenerated by organic acid. 
Though the adsorption capability was not high enough, there 
is still much room for development such as optimizing the 
synthesis parameters to coat a thicker shellac layer. Another 

Fig. 13   a SEM and TEM 
images of nZVI supported on 
MWCNTs before adsorption, b 
SEM images of nZVI supported 
on MWCNTs after reaction 
(adsorption) with Cr(VI) 
for 2 h. The polygon shape 
appeared on the composite (Lv 
et al. 2011)
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advantage of this coated nanoadsorbent was that it can be 
used in a high saline solution for Cd2+ removal. At 3.0% 
sodium chloride solution, this adsorbent showed 10.10 mg/g 
adsorption capacity. Adsorption mechanisms followed elec-
tronic attraction as well as chemical adsorption (Gong et al. 
2012).

Pacheco et al. (2006) synthesized aluminum–silica nano-
particles by the solgel process. They used this nanoadsor-
bent for Cd2+ removal from wastewater and stated 96.4% 
adsorption on Si–Al nanoparticles. This nanoadsorbent has 
various kinds of functional groups on their surfaces, such as 
alkoxy, hydroxyl and oxy groups, and metallic ions (Cd2+) 
that interact with one group by electrostatic attraction as well 
as by ionic exchange to another group (Pacheco et al. 2006).

Mercury (Hg2+)

Mercury is harmful to the human body. It can cross the 
blood–brain barrier. Mercury poisoning can damage the 
cardiovascular system, kidney and bones as well as cause 
neuronal disorder (Miretzky and Cirelli 2009; Clarkson 
1993). Pan et al. (2012) fabricated mercapto-functionalized 
nanoscale Fe3O4 and carefully investigated the adsorptive 
characteristics of this nanoadsorbent for removal of Hg2+. 
At the optimized condition, i.e., 308 K, and at pH 3.0, this 
functionalized nanoadsorbent showed the highest adsorp-
tion capacity toward Hg2+ (522.9 mg/g) with an initial con-
centration of 500gm/L. The adsorption of Hg(II) reached 
saturation within 60 min. The results fitted well to Freun-
dlich isotherm and pseudo-second-order kinetic isotherm, 
and the process was endothermic (Pan et al. 2012). In 2013, 
Zhang et al. synthesized SiO2-coated Fe3O4 nanoparticle. 
The coatings protectedFe3O4 nanoparticles from oxida-
tion at low pH conditions, and Fe3O4 core is comprised of 
superparamagnetic and separate wastes which are magnetic 

in nature. Further, they used 3-mercaptopropyltrimethox-
ysilane, for modifying coated Fe3O4 nanoparticle to pre-
pare a unique mercaptopropyl-modified sorbents to remove 
mercury from solution. The highest adsorption capacity 
obtained from Langmuir fitting was 148.8 mg/g at pH 6.5. 
The researchers also found significant mercury removal effi-
ciency (110 mg/g) from natural wastewater samples by this 
adsorbent (Zhang et al. 2013).

Recently, carbon-based nanomaterials like graphite oxide 
attracted researchers for its potential application as adsor-
bent (Seredych et al. 2011). Kyzas et al. (2014) synthesized 
two composites: (1) graphite oxide nano-filled with chitosan 
and (2) graphite oxide–magnetic chitosan. The groups evalu-
ated the performance of untreated graphite oxide and two 
as-prepared composites to remove Hg2+ from aqueous solu-
tion. At pH 6 and 25 °C, the maximum adsorption capabil-
ity for graphite oxide, graphite oxide nano filled with chi-
tosan and graphite oxide–magnetic nanocomposite was 187, 
381and 397 mg/g, respectively. The results supported the 
Langmuir isotherm well, and the adsorption mechanism fol-
lowed chemisorption type. The authors evaluated the study 
by varying the parameters, i.e., pH, contact time and tem-
perature (Kyzas et al. 2014).

Copper (Cu2+)

Amino-functionalized magnetite nanoparticles were investi-
gated for Cu2+ removal from aqueous solution. The adsorp-
tion equilibrium achieved within 5 min of the adsorption 
process. The equilibrium data satisfactorily fitted by Lang-
muir isotherm, and the maximum adsorption was found to 
be 25.77 mg/g at pH 6 and 298 K (Mei et al. 2010). Here, 
the fast adsorption indicates that adsorption happened 
primarily on the adsorbent surface (Liu et al. 2008). The 
sorption mechanism between Cu2+ and NH2 groups on the 

Fig. 14   TEM images of a nano-
geothite and b nanohematite 
(Chen and Li 2010)
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amino-functionalized magnetite nanoparticles was the chem-
isorption process. By 0.2 mol/L HCl solution, the amino-
functionalized magnetite nanoparticles can be regenerated 
within one minute and retained the original metal removal 
capacity (Mei et al. 2010). Nanogeothite (α-FeOOH, average 
particle size 10–15 nm) and nanohematite (α-Fe2O3, average 
particle size 75 nm) were synthesized by the co-precipitation 
method (Fig. 14). The surface area of both the particles was 
71.49 m2/g and 24.82 m2/g, respectively. It was found that 
both nanogeothite and nanohematite showed good adsorp-
tion capability of 149.25 and 84.46 mg/g, respectively for 
Cu2+. Both the adsorption processes were befitting to Lang-
muir isotherm, and the adsorption onto nanomaterials was 
a spontaneous process (Chen and Li 2010).

Gum aerobic modified magnetic (Fe3O4) nanoadsorbent 
was developed for the removal of Cu2+ ions from various 
solutions. The interaction between gum aerobic and mag-
netic nanoadsorbent took place via the carboxylic groups 
present in the structure of gum aerobic and the hydroxyl 
groups present in Fe3O4. This surface modification led 
to the formation of the particle with a diameter range of 
13–64 nm. The author compared the adsorption capacity 
of both gum aerobic modified magnetic nanoadsorbent and 
naked magnetic nanoadsorbent. The maximum adsorption 
capacities were 38.5 and 17.6 mg/g, for modified magnetic 
nanoadsorbent and naked magnetic nanoadsorbent, respec-
tively. The modified magnetic nanoadsorbent adsorbed 
copper ions via complexation with the amine group of gum 
aerobic, whereas naked magnetic nanoadsorbent used sur-
face hydroxyl groups for complexation with copper ions. 
Both adsorption data fitted to Langmuir isotherm (Baner-
jee and Chen 2007).

Zhao et al. prepared few-layered graphene oxides via the 
modified Hummers method. They studied the effect of oper-
ating conditions like pH and ionic strength to remove Cd2+ 
and Co2+ ions from water. They found that the presence of 
an oxygen-containing group on the graphene surface was the 
key to the adsorption of the ions. The adsorption capacity 
at near-neutral pH for Cd2+ removal was 106.3 mg/g. They 
also calculated the adsorption of Cd2+ on graphene which 
is endothermic, and the process is spontaneous (Zhao et al. 
2011). In a separate study, Xu et al. also prepared graphene 
oxide layers for the removal of Cd2+ ions from water. The 
maximum adsorption capacity was found to be 44.64 mg/g 
at pH 4.00 with a loading of 2 g/L.

Mubarak et al. showed the comparison of the removal 
capacity of acid-functionalized multiwall carbon nanotubes 
(MWCNTs) and biochar for the Cd2+ from water. The intro-
duction of functional groups like hydroxyl and carbonyl and 
the carboxylic acid act as anchor points for the cations. The 
highest Cd2+ adsorption of f-MWCNTs was found to be 
83.33 mg/g, and it was 62.5 mg/g for the magnetic biochar at 
pH near 7 (Mubarak et al. 2015). Ramana et al. synthesized 

silver-coated MWCNT using the reduction method. The 
maximum adsorption capacity for Cd2+ removal was found 
to be 54.92 mg/g at the neutral pH (Ramana et al. 2013). 
Although graphene oxide and CNTs have shown good 
adsorption capacities, still there remains a great concern 
over their elution to the system. It has been shown that bio-
chars can stabilize them by acting as host in the nanocom-
posite. Biochars have large pore volumes and surface areas. 
Therefore, biochar–CNT and biochar–graphene composite 
were tested for Cd2+ removal. Liu et al. fabricated carbon 
nanomaterial–biochar nanocomposites (SG–PySA–CNT 
and SG–PySA–GO) via pyrolysis of sweetgum biomass pre-
treated with carbon nanotubes (CNTs) and graphene oxide 
(GO). The adsorption capacity for Cd2+ removal was found 
to be 10.2 mg/g, which is low compared to the previously 
reported values. Several modifications of graphene oxide 
have been reported. Deng and Bai prepared iron oxide–gra-
phene oxide nanocomposite for the simulation’s removal 
dyes and Cd2+. In a mono-component system, the maxi-
mum sorption capacity in ultrapure water for Cd (II) was 
91.29 mg/g (Deng and Bai 2004).

Lead (Pb)

Corrosion of domestic plumbing and natural erosion are the 
prime effects of Pb contamination. Nanoscale zerovalent 
iron was successfully used by Ponder et al. (2001) for Pb(II) 
removal. Here, Pb(II) is reduced to Pb (0). The iron nanoad-
sorbent showed 30 times higher removal efficiency than 
from iron powder on a (Fe) molar basis (Ponder et al. 2000a, 
b). Wang et al. (2007) treated MWCNTs by nitric acid and 
used these functionalized MWCNTs for Pb(II) adsorption. 
After treatment, the acid-functionalized MWCNTs become 
more negatively charged because of the formation of –OH 
and –COOH functional groups and showed adsorption 
capacity up to 91 mg/g at pH 3.5. The adsorption is due to 
electrostatic interactions (Wang et al. 2007). The hexagonal 
arrangements of carbon atoms in its graphite structure and 
its large pore size enable the high adsorption of Pb(II) by 
carbon nanotubes. This adsorption might happen in various 
places such as interstitial pore space between the grove edge 
of its boundary bundles, tube handle or outer layer surfaces 
(Stafiej and Pyrzynska 2007).

Some researchers used single adsorbent for multiple 
metal ion adsorption. Polymer-based hybrid nanoparticle 
sorbents (ZrPS-001) were synthesized by Zhang et al. (2008) 
and applied for adsorption of different metal ions (cadmium, 
lead and zinc) from aqueous solution. After the treatment, 
water met the WHO requirements as drinking water stand-
ards (Zhang et al. 2008). Another research group developed 
nanoadsorbent (2,4-dinitrophenyl hydrazine immobilized on 
sodium dodecyl sulfate-coated nanoalumina) and studied its 
feasibility for removal of metal cations like lead, cadmium, 
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chromium, cobalt, nickel and manganese from water. The 
adsorbent showed the highest removal for lead, chromium 
and cadmium ions. The adsorption data matched well with 
Freundlich and Langmuir models (Afkhami et al. 2010).

Nano-hydroxyapatite (NHA), which is a major inor-
ganic segment of human bone (Michael et al. 2016a, b), 
could also play a significant role in wastewater treatment. 
Nano-hydroxyapatite (Sairam et  al. 2008), polypyrrole 
(PPy)/Fe3O4 magnetic nanocomposites (Bhaumika et al. 
2011) and Fe–Al–Ce nanoadsorbent (Chen et  al. 2009) 
were used for defluoridation of water. Nano-hydroxyapatite 
showed a defluoridation capacity of 1845 mg/kg. The ion 
exchange and adsorption processes were the main mecha-
nisms (Sairam et al. 2008). Kassaee et al. (2011) investigated 
the removal efficiency of iron nanoparticle for nitrate ions. 
The author found that each experiment showed almost 76% 
reduction of nitrate ions after 12 h, above 90% after 24 h, 
and approximately 100% after 72 h (Kassaee et al. 2011).

Huang et al. fabricated graphene nanosheets (GNSs) via 
vacuum-assisted low-temperature exfoliation and applied to 
adsorb Pb2+ ions from an aqueous solution. They observed 
that Pb2+ ion adsorption depended on the solution pH and 
increased with it. They concluded that the Lewis basicity of 
GNSs is enhanced due to heat treatment under vacuum con-
dition and favors simultaneous adsorption of Pb2+ ions and 
protons by GNSs. GNSs showed a desorption capacity of up 
to 35.7 mg/g at pH 3.5 (Huang et al. 2011). Fang et al. pre-
pared magnetic chitosan–graphene composite and observed 
that the presence of Fe3O4 in the composites enables quick 
extraction after saturated adsorption completed. The unique 
characteristics of MCGO such as high surface area, abun-
dant functional groups and the high volume of sp2 carbon 
not only enhance its adsorption behavior but also help to 
immobilize and disperse the GO. The magnetic adsorbent 
exhibited high stability and eco-friendly having high Pb2+ 
ions adsorption and desorption capacity of 76.94 mg/g and 
90.3%, respectively. This behavior makes them an excellent 
candidate to remove Pb2+ ions from agricultural and indus-
trial wastewater (Fan et al. 2013).

Vilela et al. reported very innovative graphene-based 
microdots made from graphene sheets. Those microdots 
behaved like self-propelled structures to capture, transfer 
and remove heavy metals (i.e., lead) and its subsequent 
recovery for recycling purposes. Their structure is com-
prised of nanoscale graphene oxide, nickel and platinum 
in multilayers fashion, offering various functionalities. For 
example, the graphene oxide outer layer surface attracts lead, 
the inner layer of platinum decomposes hydrogen peroxide 
fuel for self-propulsion, whereas the middle layer of nickel 
permits external magnetic control of the microdots. Mobile 
GOx-microbots showed excellent efficiency to remove lead 
compared to non-mobile GOx-microbots. They exhibited 
excellent removal capability of lead and water pollutants 

from 1000 ppb down to 50 ppb in 60 min. Furthermore, 
the saturated microdots can be regenerated and reused by 
removing lead from the surface (Vilela et al. 2016).

Nanoadsorbents for wastewater treatment

Removal of organic pollutants using 
nanoadsorbents

Naoadsorbents are also used for organic pollutants removal 
like different types of dyes, pesticides and hydrocarbons. 
Belessi et al. (2009) prepared mesoporous TiO2 and used 
it for commercial azo dye Reactive Red 195 removal in the 
liquid phase at room temperature under dark condition. The 
mean synthesized particle size was ~ 8.8 nm. The nanoadsor-
bent exhibited the highest adsorption percentage (87.0 mg/g) 
at pH 3.0 and a temperature of 30 °C. The authors con-
sidered the influence of pH, dye concentration and adsor-
bent dose to remove dye molecules. The equilibrium data 
showed an excellent fit to Langmuir and pseudo-second-
order kinetic models. The adsorption process showed high 
electrostatic attractions between the positively charged sur-
face of the adsorbent and anionic dye (Belessi et al. 2009). 
Surfactant-coated magnetic nanoparticles have been used 
for 2-hydroxyphenyl extraction from wastewater (Bahaj 
et al. 2002). The perchloroethylene undergoes reduction by 
chemisorption on zerovalent iron nanoparticle in anaerobic 
conditions (Joo and Cheng 2006; Tratnyek et al. 2003).

Du et al. (2008) prepared chitosan nanoparticles by the 
ionic gelation method. They used a batch adsorption process 
to remove eosin Y (a model anionic dye) by this nanoad-
sorbent. Experimental results followed Langmuir isotherm, 
and the adsorption capability was found 3.333 g/g. The 
process was influenced by contact time, dye concentration, 
pH and temperature (Du et al. 2008). The Fe3O4 nanoparti-
cles–carboxymethylated chitosan conjugate (anionic mag-
netic nanoadsorbent) was synthesized by the carbodiimide 
activation process. This conjugate was studied to remove 
acid dyes, such as orange G and acid green. In both cases, it 
is found that the adsorption capability reduced with increas-
ing solution pH. The maximum adsorption capability for 
Orange G and acid green was 1883 and 1471 mg/g, respec-
tively. Here, the adsorption route followed the pseudo-sec-
ond-order kinetic model and the Langmuir model (Chang 
and Chen 2005). Due to hydrophobic nature, high surface 
area, hollow and layered structure, carbon nanotubes show 
a strong attraction to organic materials, especially to non-
polar organic materials, such as polycyclic aromatic hydro-
carbons, benzene derivatives, phenolic compounds, organic 
dyes (Nas et al. 2019a, b), naphthalene (Gotovac et al. 2007), 
phenanthrene and pyrene (Yang et al. 2006). More interested 
readers are referred to a recent review by Apul et al. (2016).
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Recently, degradation of methyl parathion (MP), methyl 
orange (MO), methylene blue (MB), sodium dodecylben-
zene sulfonate (SDBS) and bisphenol A (BPA) in aqueous 
solution has been investigated using three different grades of 
acid-functionalized CNTs of different tube diameters in the 
presence of microwave radiation. The effect of irradiation 
time, initial concentration of the organic compound, CNT 
doses, microwave power and initial pH was studied. CNTs 
having diameter ranges from 10 to 20 nm showed the high-
est catalytic behavior under microwave treatment. Further, 
complete degradation was obtained using 10–20 nm CNTs 
within 7.0-min irradiation when 25 mL solution (25 mg/L), 
1.2 g/L catalyst dose, 450 W, 2450 MHz and pH = 6.0 were 
applied. The concept of “hot spot” was believed to be behind 
the remarkable degradation by CNTs in the presence of 
microwave.

Graphene-based materials have been extensively used to 
remove organic dyes and oil from water. The high aspect 
ratio of π electronic surface favors the adsorption of organic 
contaminants on the graphene surface and their eventual 
removal from water (Nas et al. 2019a, b; Wang et al. 2016). 
Methyl orange, methylene blue, phenol, aromatic com-
pounds, hydroquinone and phenol have been adsorbed on 
graphene. Graphene was decorated with flowerlike TiO2 
microspheres using a simple surfactant-assisted hydro-
thermal process. Poly(vinyl pyrrolidone) was used as a 
surfactant. The composite was used to degrade rhodamine 
B, and its adsorption capacity was compared with the TiO2 
microsphere and Degussa P-25. Excellent removal was 
achieved using the composite.

Removal of biological pollutants

Cyanobacteria are common habitants of water. These bac-
teria produce microsystems (nonribosomal peptides) which 
also contaminate water. So far, conventional technology 
faces difficulties in removing this pollutant completely from 
the water. Carbon nanotubes showed 98% removal capac-
ity of this pollutant from water, which is four times higher 
than did granular activated carbon (GGC) (Yan et al. 2006). 

Nanoadsorbent is reported to remove viruses from infected 
water. A comparative study was carried out on four com-
mercial nanoparticles of iron oxide to remove bacteriophage 
phiX174. Among them, α-Fe2O3 showed the most efficiency 
(100% adsorption) at low initial virus concentration. The 
adsorption method followed both Langmuir and Freundlich 
adsorption isotherms. The authors also studied the effect of 
ionic strength, presence of cations and anions on the adsorp-
tion process. The presence of anion reduced the adsorption, 
whereas the reverse scenario was found in the presence of 
cation. The mechanism for adsorption of the virus on iron 
oxide nanoparticle was due to electrostatic interaction (Shen 
et al. 2010).

Singh et al. (2011) synthesized surface-modified mag-
netic nanoparticles (Fe3O4) by a soft chemical method. They 
prepared three types of surface-functionalized nanoparti-
cles—functionalized Fe3O4 nanoparticles with (1) carboxyl 
group (succinic acid), (2) amine group (ethylenediamine) 
and (3) thiol group (2,3-dimercaptosuccinic acid). These 
nanoparticles successfully removed both toxic heavy metal 
ions (As3+, Co2+, Cr3+, Cd2+, Cu2+, Ni2+, Pb2+, etc.) and 
bacterial pathogens (Escherichia coli) from water. In the 
case of a pathogen, the hydrophilic magnetic particles dam-
aged the cell wall partially and/or completely, infiltrate into 
the lipid bilayer component of the membrane and disrupt its 
structural integrity (Fig. 15) (Singh et al. 2011).

In comparison with other low-cost adsorbents, nano-
particles show low contact time (1.0–15.0 min) and low 
adsorbent dose (µg/L) and can work in various conditions 
of pH (3–9) during the adsorption process. These parameters 
ensure the fast adsorption capacity of nanoadsorbent (Ali 
et al. 2012) (Table 4).

Regeneration and separation of nanoadsorbents

Regeneration of nanoparticle offers two aspects in nanoad-
sorbent application, i.e., reusability of nanoadsorbent and 
recovery of valuable metal species. Various research groups 
investigated the reusability of nanoadsorbents for pollutant 

Fig. 15   TEM images of a E. 
coli (control) and b E. coli 
obtained after incubating these 
bacteria with carboxyl magnetic 
nanoparticle (MNP) (Singh 
et al. 2011)
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removal. Some of the findings are briefly discussed here. 
Peng et al. (2005) reported ceria nanoparticle-coated car-
bon nanotube and used it for arsenate removal. After being 
exhausted, the nanoadsorbent was regenerated by 0.1 M 
NaOH with a desorption efficiency of 94% (Peng et  al. 
2005). Through regeneration, carbon nanotubes become 
economically attractive for wastewater treatment. Zhou et al. 
(2009) modified the Fe3O4 by utilizing chitosan and α-keto 
glutaric acid to remove Cu (II). After the complete removal 
of metal pollutants, this nanoadsorbent was regenerated by 

using Na2EDTA. This regenerated nanoadsorbent reused 
without varying its removal efficiency (Zhou et al. 2009).

Maghemite nanoparticles (diameter around 10 nm) were 
successfully applied for adsorption of different metal pol-
lutants, namely Cr(VI), Cu (II) and Ni (II). This nanoadsor-
bent got saturated within 10 min. After successive adsorp-
tion, the exhausted nanoadsorbent was treated with 0.01 M 
of NaOH and 0.05 M of HCl for Cr(VI), Cu (II) and Ni 
(II) desorption, respectively. The removal efficiency was 
highly dependent on solution pH. After five consecutive 

Table 4   Nanoparticles’ applications to remove pollutants

–, not available

Pollutants Adsorbents Removing 
capacities 
(mg/g)

pH Separation of nanoadsorbent References

As (v) Akaganeite nanoparticle (2.6 nm) 120 7.5 Membrane filtration (0.45 μm) Deliyanni et al. (2006)
Magnesium ferrite (~ 3.7 nm) 83.2 7.0 External magnetic field Tang et al. (2013)

As (III) Zerovalent iron onto activated carbon 1.997 6.5 – Zhu et al. (2007)
Magnesium ferrite (~ 3.7 nm) 127.4 7.0 External magnetic field Tang et al. (2013)

Cr(VI) Maghemite (γ-Fe2O3) nanoparticles 
(~ 10 nm)

19.2 2.5 Electrostatic interactions and ion 
exchange

Hu et al. (2005)

Pb(II) HNO3 treated -MWCNT 91 3.5 Electrostatic interactions Wang et al. (2007)
Cd2+ Magnetite nano-rods (average diam-

eter 60 nm)
88.39 5.5 Electrostatic force Karami (2013)

Akaganeite nanocrystal (average 
crystallite size 2.6 nm

17.1 – Weak chemisorption process Deliyanni and Matis (2005)

Shellac-coated iron oxide nanopar-
ticle

18.8 8.0 Electronic attraction and chemical 
adsorption

Gong et al. (2012)

Hg2+ Mercapto-functionalized nano-Fe3O4 522.9 3.0 Surface complexation Pan et al. (2012)
Graphite oxide nanofiller with 

chitosan
381 6.0 Chemisorption Kyzas et al. (2014)

Thiol-modified SiO2 coated Fe3O4 
nanoparticle

148.8 6.5 – Zhang et al. (2013)

Graphite oxide–magnetic chitosan 
composite

397 6.0 Chime sorption Kyzas et al. (2014)

Cu2+ Amino-functionalized magnetite 
nanoparticles

25.77 6 Chemisorption Mei et al. (2010)

Nanogeothite (average particle size 
10–15 nm)

149.25 – – Chen and Li (2010)

Nanohematite (α-Fe2O3, average 
particle size 75 nm)

84.46 – – Chen and Li (2010)

Gum aerobic modified magnetic 
(Fe3O4) nanoparticle (diameter 
range 13–67 nm)

38.5 – Surface complexation Banerjee and Chen (2007)

Azo dye 
Reactive 
Red 195

TiO2 (∼ 8.8 nm) 87.0 3.0 Electrostatic interaction Belessi et al. (2009)

Orange G Fe3O4 nanoparticles—carboxymeth-
ylated chitosan conjugate (anionic 
magnetic nanoadsorbent)

1883 – Surface complexation Chang and Chen (2005)

Acid green 25 Fe3O4 nanoparticles—carboxymeth-
ylated chitosan conjugate(anionic 
magnetic nanoadsorbent)

1471 – Surface complexation Chang and Chen (2005)
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adsorption–desorption processes, the nanoadsorbents 
(maghemite) adsorption capacity remains almost constant 
(Hu et al. 2006).

In 2003, Deliyanni et al. used akaganeite-type nanocrys-
tals for sorption of As (V). After each regeneration of 
nanoadsorbent, the capacity decay was 25–30% of its initial 
capacity. Through this method, only 75% of metals were 
recovered (Deliyanni et al. 2003). Through the regeneration 
of nanoadsorbent, the adsorption process for water treatment 
becomes more economical. Various separation processes are 
applied for nanoadsorbent separation, such as centrifuga-
tion (Novak et al. 2001), ultracentrifugation (Tsao et al. 
2009), gel electrophoresis (Hanauer et al. 2007), diafiltra-
tion (Sweeney et al. 2006) and fractional crystallization. Due 
to the small particle size, the centrifugation process needs 
higher centrifugal force and time for sedimentation (Tsao 
et al. 2009). Among them, membrane filtration is a promis-
ing one, which provides continuous operation with small 
chemical use (Qu et al. 2013a, b). Diafiltration, a membrane-
based method, provides a convenient way for the separation 
of water-soluble nanoparticles by a single step (Sweeney 
et al. 2006). It is a continuous flow process. As a result, 
materials cannot build up on the membrane surface like tra-
ditional ultrafiltration, thus preventing membrane fouling. 
Due to simple equipment and reusability of the membrane, 
diafiltration is cost-effective, suitable and versatile (Sweeney 
et al. 2006).

Recently, nanomaterials are immobilized on different sup-
port like resin, membranes to avoid the separation. But this 
immobilization reduces their efficiency (Qu et al. 2013a, 
b). Generally, magnetic nanomaterials provide extra benefit 
over nonmagnetic nanoparticles, because these magnetic 
nanoadsorbents provide a magnetic field for effective and 
efficient separation of inorganic pollutants. After being 
exhausted, this magnetic nanoadsorbent can be removed 
from the matrix by applying an external magnetic field. 
After separation, the harmful components can be desorbed 
by acidic or basic treatment, while these nanoadsorbents can 
be recovered and recycled without varying their initial effi-
cacy (Kurniawan et al. 2006a; Ngomsik et al. 2005).

Future prospects of nanoadsorbents

Generally, the adoption efficiency and feasibility of any 
innovative technique depend on two factors: cost minimiza-
tion and involvement of potential toxicity.

Cost and market opportunities Though nanoadsorbents 
offer excellent efficiency in water treatment in some cases, 
its production and application are costly (Qu et al. 2013a, 
b). They proposed some approaches to overcome the cost 
issue. These are (1) using low-purity nanomaterials with-
out compromising adsorption efficiency. For example, Lee 
et al. (2010) prepared amino fullerene photocatalysts from 
fullerene soot rather than ultrapure C60 and saved average 
90% production cost with minimal (< 10%) loss of effective-
ness, (2) long-term use of nanoadsorbent may compromise 
their cost-effectiveness and (3) the treatment cost can be 
minimized by regeneration and reusing nanomaterials (Qu 
et al. 2013a, b).

Recently, nanoadsorbent’s synthesis increases, due to high 
demands for clean water treatment. In 2003, approximately € 
2.28 million was utilized for environmental remediation (Li 
et al. 2006). According to a recent technical market report, 
the value of nanomaterials for environmental remediation 
in 2004 and 2005 was €3.9 and €9.11 million, respectively. 
In 2009, the market predicted to reach almost double (€20 
billion). Day by day, the world population is increasing. By 
the next 50 years, the world population growth is expected to 
double with the existing population. To meet the demand of 
this huge population, water purification needs more invest-
ment. In 2015, the market value for nanomaterials related 
to environmental remediation would increase 250% (€ 1 
trillion), and by 2020 it is expected to reach €1.6 trillion 
(Li et al. 2006; German Federal Ministry of Education and 
Research 2009). The increasing trend of nanotechnology 
products may open a potential market in environmental 
industries both domestic and international levels and can 
provide job opportunities among the increasing population. 
For example, at present European Union (EU) alone made 
€227 billion from nanotechnology related to environmental 
applications, which is accounted for 2.2% of its total domes-
tic materials, and created 3.4 million employment (Roco 
2003). This increasing trend of nanomaterials in the envi-
ronmental application in positive not only in water treatment 
but also in economic competitiveness.

Nanotoxicity Nanoparticles attracted researchers for their 
efficient capacity to remove water pollutants. But due to its 
new identities in the water system, it might be a new concern 
soon. It may release in the environment from the synthesis 
process, application or disposal management. The special 
attributes such as small size and shape and the high surface 
area of nanomaterials are responsible for their toxicities also 
(Ali et al. 2012). For example, titanium dioxide (TiO2) is a 
biologically inert chemical and has no toxicity effect in rat’s 
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lung at a single instilled dose (5 mg/rat) (Ferin and Ober-
dorster 1985). On the other hand, nano-size TiO2 particles 
could be responsible to produce more pulmonary toxicity 
compared to their bulk counterparts (Ali et al. 2012).

The enhancement of the surface area provides a potential 
number of reactive groups on the particle surface. These 
properties make them chemically and biologically reactive, 
which consequences more reactive oxygen species (ROS) 
production. This reactive oxygen species is the primary 
mechanism of nanotoxicity. Due to its small size, it gets easy 
excess in the living systems. It is reported that nanoparticles 
may initiate oxidative stress, inflammation, DNA mutation, 
major structural injury to mitochondria and cell death (Savić 
et al. 2003; Li et al. 2003; Geiser et al. 2005; Ali et al. 2012).

So far, there is a lack of specific tests or systems devel-
oped for ascertaining non-toxicity. So, the safe and care-
ful strategy should be undertaken during handling and 
deposal. In 2003, the Environmental Protection Agency 
(EPA, USA) launched a research plan to study the harmful 
effect of nanoparticles on the environment. At this moment, 
there is no specific guideline for dealing with nanoparticles. 
In 2010, Schmidt-Ott et al. mention some facts regarding 
nano-handling and disposal (Schmidt-Ott et al. 2010). For 
eco-friendly synthesis and application, the following precau-
tions can be taken for minimizing the nanotoxicity (Table 5) 
(Schmidt-Ott et al. 2010; Freeland et al. 2012).

Conclusion

With the expansion of industrialization and agricultural 
activities meeting the demand for continued population 
growth in the world, water pollution has become a major 
global concern for the last few decades. Techno-economic 
assessment of various water treatment methods suggests 
that the adsorption process can be an efficient tool for water 
purification. However, the conventional adsorbents inherit 
some limitations such as high cost of adsorbent, exhaus-
tion, poor separation efficiency, costly regeneration and so 
on. Recently, nanoadsorbents have received tremendous 
momentum in the water treatment process because of their 
unique properties like high surface/volume ratio with active 
sites, selectivity, catalytic and magnetic properties, etc. The 
exotic properties of nanoadsorbents and their incorporation 
with current technologies have added a new dimension in the 
revolutionization of the water treatment process around the 
world. So far, a wide range of nanoadsorbents has already 
been used successfully to remove inorganic, organic and 
biological pollutants. The regeneration and separation of 
magnetic nanoadsorbents after treatment make the process 
more user-friendly (i.e., convenient and cost-effective). The 
adsorbents show excellent results in the batch adsorption 
process. However, more pilot and industrial-scale studies Ta
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are essentially important to evaluate the overall efficiency 
of large-volume water treatment. Though the economic 
value of nanoadsorbents for environmental remediation is 
well recognized, still it requires appropriately safe and suit-
able strategies to avoid harmful effects (e.g., toxicity, etc.) 
of nanoadsorbents in the water treatment process.
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