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Abstract
This work describes preparation of bacterial cellulose membranes and their use as filters for water remediation. The samples 
were tested as filters using natural specimens that were extracted from the Igarassu River basin in Pernambuco, Brazil, and 
using suspensions with a high load of Escherichia coli and raw industrial effluents from the dairy and textile industries. The 
bacterial cellulose membrane performance was compared with commercial membranes that are used in sterile environments 
with better results. The membranes were shown to be effective for removing E. coli and dye effluent for up to ten cycles. 
When the samples that were extracted from the river were studied, no microorganisms were detected after the filtrate was 
inoculated into a culture medium. The results reported here show that the bacterial cellulose membranes are effective for 
the remediation of samples with different compositions.
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Introduction

Water contamination remains a critical issue mainly in 
developing countries. The United Nations has identified 
improving water quality as one of the eight Millennium 
Development Goals (MDGs) (Pandey et al. 2014). Accord-
ing to the World Health Organization (WHO), 2 billion peo-
ple consume drinking water that is contaminated with feces, 
and polluted drinking water causes nearly 502,000 diarrheal 
deaths each year worldwide. In 2015, 2.3 billion people did 
not have access to essential sanitation services (WHO 2018). 
This is a consequence of unplanned urbanization and inad-
equate disposal of domestic and industrial waste, leading 
to water contamination, which mainly occurs in rivers and 
lakes (Schwarzenbach et al. 2006; Franco et al. 2018).

For industrial wastewater, effluents from both textile and 
dairy activities are especially concerning because facto-
ries consume enormous amounts of water, and the result-
ing effluents must be treated appropriately so that they can 
be reused or released into the environment (Dasgupta et al. 
2015; Yaseen and Scholz 2019; Wang and Serventi 2019).

In Pernambuco State in the Northeast Region of Brazil, 
the textile and dairy industries play a significant role in the 
economy. Most activity occurs in small and medium facto-
ries where a high amount of effluent is frequently discarded 
directly into nearby rivers. According to the Pernambuco’s 
State Environmental Agency (Lima et al. 2005), in the tex-
tile sector, nearly 70% of the effluents are directly disposed 
into the environment. It is estimated that 32 million liters of 
water is consumed daily. The dairy industry processes 1.8 
million liters of milk each day, and 10 L of milk is needed 
to make 1 kg of cheese.

Several different approaches are currently used for water 
remediation, such as ozonation, chlorination, and UV radia-
tion. These technologies usually require a high investment, 
sophisticated equipment, and skilled labor with the use of 
large quantities of chemical reagents that are harmful to the 
environment (Caslake et al. 2004).

Membrane-based processes, however, are intrinsically 
simpler than competing technologies, and they are scala-
ble, do not generate secondary pollutants, and are accepted 
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as environmentally friendly technologies (Dasgupta et al. 
2015). They are also widely used in water purification and 
effluent treatment because of their lower energy consump-
tion and efficiency (Ulbricht 2006; Collivignarelli et al. 
2018). Moreover, membranes can also be combined with 
biological treatments using membrane bioreactor technolo-
gies, which have been successfully employed to treat both 
dairy and textile effluents (López et al. 2004; Andrade et al. 
2014).

Microporous membranes were first used for water quality 
control during World War II (Baker 2004). In 1953, cellulose 
acetate membranes were reported to be a highly efficient 
material for saline solution retention in reverse osmosis 
systems, increasing researchers’ interest in developing new 
products with an efficient filtering capability and low cost 
(Matsuura 2001). Currently, polymer membranes based on 
cellulose acetate, cellulose nitrate, polyethylene terephtha-
late, polyethylene, polyvinylidene fluoride, polyethersul-
fones, poly(vinyl alcohol), polyacrylonitrile, and activated 
carbon have been extensively used to purify contaminated 
water (Zaini et al. 2010; Pendergast and Hoek 2011; Car-
penter et al. 2015).

Bacterial cellulose or biocellulose (BC) membranes, 
which are formed directly as a result of metabolism of 
several types of bacteria (Sulaeva et al. 2015), can be an 
attractive, sustainable alternative to synthetic polymer-based 
membranes, aiming to develop bio-based and environmen-
tally friendly new filters that are suitable for water treatment. 
BC membranes result from sugar fermentation processes; 
thus, their production is compatible with the perspectives 
of a bio-based economy where chemicals are fabricated 
using renewable carbon sources (Koutinas et al. 2014). BC 
production can be scaled up using agro-industrial wastes as 
raw materials, as recently reviewed by Hussain et al. (2019).

Gluconacetobacter xylinum is the most widely used 
microorganism for BC production, and it is able to produce 
up to 200,000 molecules of glucose per second (Hestrin and 
Schramm 1954). The biopolymer comprises glucose mono-
mers that are linked by glycosidic β-1,4 bonds with a three-
dimensional arrangement of nanofibrils (6–10 nm thick and 
30–50 nm wide) where inter- and intramolecular hydrogen 
bonds provide excellent mechanical and thermal stability, 
and high tensile strength compared to plant cellulose (Moon 
et al. 2011). It is also non-toxic, hypoallergenic, biodegrad-
able, and has a high capacity to absorb up to 100 times its 
weight in water (Huang et al. 2013; Çakar et al. 2014; Napa-
vichayanun et al. 2015).

Because of the high number of surface hydroxyl groups, 
BC can readily undergo chemical modification, thereby 
expanding its potential applications. Taha et  al. (2012) 
developed an NH2-functionalized cellulose acetate/silica 

composites for Cr(VI) removal. Sai et al. (2015) produced 
aerogels of modified BCs using trimethylchlorosilane to 
remove oils and organic solvents from the environment, and 
it had a capacity to remove up to 185 times its own weight 
in oils and solvents. Hassan et al. (2017) studied the utiliza-
tion of BC to remove oil from oil-in-water emulsions. Liu 
et al. (2017) produced a filter for particulate removal from 
the air that was composed of BC modified with an isolated 
soy protein.

The most investigated BC applications, however, are in 
the field of biomedicine. For example, it has been used as 
artificial skin, wound dressings (commercial applications are 
already available), antimicrobial materials, artificial blood 
vessels, scaffolds for tissue regeneration (bone and carti-
lage), and artificial dura mater membrane (Czaja et al. 2006; 
Lin et al. 2013; Sulaeva et al. 2015; Kwak et al. 2015). This 
topic has been reviewed by several authors (Petersen and 
Gatenholm 2011; Fu et al. 2013; Torgobo and Sukay 2018; 
Wang et al. 2018).

Applications of BC as separation membranes have been 
reported by Takai et al. (1991), who investigated their use in 
separating polyethylene glycol (PEG), and Wanichapichart 
et al. (2002) used BC to filter Chlorella sp. and bovine serum 
albumin efficiently. BC modification with acrylic acid was 
shown to be useful in the removal of metallic ions, including 
heavy metals (Choi et al. 2004).

There are no reports that investigated BC applications 
as filters that aimed to remove pathogenic microorganisms. 
Additionally, to the best of our knowledge, no real wastewa-
ter samples from domestic or industrial effluents have been 
tested with BC membranes. Ideally, the filters should be 
capable of concurrently eliminating the pathogenic micro-
organisms, toxic organic compounds, and heavy metal ions 
(Mohmood et al. 2013). To achieve the desired performance, 
the membrane pore size should be smaller than the typical 
size of bacteria, which ranges from 0.3 to 3.0 µm (Baker 
2004), and must have chemical functionalities that allow 
them to react with organic radicals and metallic cations.

The BC pore size reported in the literature has a vast 
range, as follows: 45–800 Å (N2 adsorption method, BET) 
(Phisalaphong and Jatupaiboon 2008); 12–24 nm (BET) 
(Guo and Catchmark 2012); 240–430 nm (scanning electron 
microscopy, SEM) (Li et al. 2015); and 10–20 µm (SEM) 
(Yin et al. 2012). The resulting pore size is dependent on 
the experimental parameters, and even a single membrane 
will present different pore sizes when examined under the 
electron microscope from its bottom and upper sides, as 
reported by Li et al. (2015). The pore sizes are convenient 
for the retention of bacteria that are commonly detected in 
water, such as Escherichia coli, Shigella spp., Salmonella 
spp., Pseudomonas, and Enterobacter.
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In this work, we report the preparation of BC membranes 
and their use as filters for water decontamination. The mem-
branes were tested against samples with a high concentration 
of E. coli (108 cells mL−1) that simulates a sanitary efflu-
ent (Payment et al. 2001), and they were also tested against 
textile and dairy industry effluents and natural samples col-
lected from different points in the hydrographic basin of the 
Igarassu River, in Pernambuco State, Brazil, that receives 
daily effluents from textile, food, metallurgical, sugar, and 
alcohol industries and also domestic effluents (State Agency 
for the Environment 2016). The samples were collected 
between October 2018 and January 2019. The dairy and 
textile effluents were collected in Garanhus and Caruaru, 
which are located in Pernambuco State, Brazil.

Materials and methods

Reagents and solutions

All of the following reagents were of analytical grade: agar 
Mueller–Hinton, nutrient agar, potato dextrose agar, lactose 
broth, and brilliant green bile broth 2% (Kasvi). EC medium 
(Acumedia), succinic acid 99% (Moderna), absolute etha-
nol (Neon), yeast extract (Micro-Med), sodium phosphate 
98% (Dynamics), and glycerol (Alphatec) were all used as 
received.

Production of BC membranes

BC membranes were produced in a culture medium con-
taining 30.00 g L−1 glycerol, 16.00 g L−1 yeast extract, 
4.00 g L−1 sodium phosphate, and 3.50 g L−1 succinic 
acid. The resulting solutions were autoclaved at 121 °C for 
20 min. Gluconacetobacter xylinus (ATCC 23769), which 
was acquired from the André Tosello Foundation, Campi-
nas, SP, Brazil, was used to prepare the membranes. For 
microorganism activation, the inoculum was incubated in 
culture medium at 10% (v/v) and 30 °C for 24 h, and this 
process was repeated three times. BC membranes were then 
produced at 30 °C for 72 h. The resulting samples (6.0 cm 
in diameter, 0.15 mm thick) were washed with hot water 
(80 °C), 0.10 mol L−1 NaOH aqueous solution, and deion-
ized water up to pH 7.00.

Characterization

SEM images were acquired using a FEI Quanta 200F elec-
tron microscope. The samples were previously lyophilized, 
and a thin gold layer was sputtered before the analysis. 
The Fourier transform infrared spectroscopy (FT-IR) spec-
tra were collected using a Bruker model IF66, within the 
4000–400 cm−1 spectral range, from milled samples that 
were dispersed in KBr pellets.

BC membrane performance for water remediation

The performance of the BC membrane filtration was tested 
against four different samples: (1) an E. coli suspension 
that simulated a sanitary effluent; (2) natural water sam-
ples collected from a river; (3) dairy industry effluents 
collected from a cheese factory; and (4) textile industry 
effluents with two different pigments.

1.	 E. coli suspension: the bacteria were cultured in Muel-
ler–Hinton agar medium and incubated at 35 °C for 
24 h. An initial absorbance of 0.66 was standardized for 
all suspensions, which corresponds to 108 cells mL−1, 
according to the measurements performed in a Neubauer 
chamber. The absorbance was measured in a Thermo 
Biomate spectrophotometer at 660 nm, using sterile dis-
tilled water as the blank. The cell counts were performed 
using a Leica CME optical microscope. E. coli was pro-
vided by the Department of Antibiotics of the Federal 
University of Pernambuco (UFPEDA 224). Cellulose 
acetate commercial membranes (CM) with an average 
pore size of 0.22 µm were also tested for comparison.

2.	 Samples collected from the Igarassu River, in Per-
nambuco State, Brazil: the samples were collected by 
the State Environmental Agency (CPRH) during the 
dry season. The sampling points are shown in Fig. 1. 
The quantification of E. coli was performed using the 
most probable number (MPN), according to the stand-
ard methods procedure (APHA 2012) before and after 
filtrations. The methodology was used to evaluate the 
mean density of viable coliform bacteria in the samples, 
which is related to the sanitary quality of water. The 
filtrates (100 μL) were inoculated into Mueller–Hinton 
agar medium and incubated at 35 °C for 24 h (Bartram 
et al. 2004).

3.	 Effluents from the dairy industry (cheese factory) col-
lected in Garanhuns, Pernambuco, Brazil: raw samples 
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(100 μL) and filtrates (100 μL) were inoculated into 
Petri dishes containing the nutrient agar medium, potato 
dextrose agar, and Mueller–Hinton agar, and they were 
incubated at 35 °C for 24 h. The absorbance was meas-
ured in a Thermo Biomate spectrophotometer at 660 nm, 
using sterile distilled water as the blank.

4.	 Effluents from a textile industry collected in Caruaru, 
Pernambuco, Brazil: the samples present a high load 
of red and blue pigments. The absorption spectra were 
acquired before and after each filtration using an Agi-
lent 8453 spectrophotometer in the 200 to 800 nm range 
against distilled water.

Results and discussion

BC membrane characterization

The membranes are strong enough not to tear during manual 
manipulation, which is a result of the entanglement of the 
fibers. The typical Young’s modulus and tensile strength 
of the BCs are in the range of 15 to 45 GPa and 200 to 
300 MPa, respectively, according to Vitta and Thiruven-
gadam (2012). The BC membranes show that the nanofi-
brilar morphology is composed of a three-dimensional net-
work, as shown in the SEM image in Fig. 2 and as described 

Fig. 1   Location map of the sampling points along the hydrographic basin of the Igarassu River, Pernambuco State, Brazil
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previously in the literature (Sulaeva et al. 2015; Stumpf et al. 
2018). The fiber diameters ranged from 50 to 100 nm, which 
was similar to those reported by He et al. (2018).

The FT-IR spectrum of a BC membrane is presented 
in Fig. 2. All the following features, which were reported 
previously, can be observed: (1) 3410 cm−1 attributed to 
OH stretching and hydrogen bonds; (2) 2896 cm−1 corre-
sponding to C–H stretching of CH2 groups; (3) 1643 cm−1 
referring to water OH bending mode; (4) 1427 cm−1 cor-
responding to CH2 symmetric bending; (5) 1369 cm−1 
from the C–H bending; (6) at 1338 cm−1 attributed to 
O–H in-plane bending; (7) at 1315 cm−1 correspond-
ing to CH2 wagging; (8) at 1155 cm−1 from antisym-
metric bridging C–O–C stretching mode; (9) 1111 cm−1 
and 1032 cm−1 attributed to C–O; and (10) stretching at 
667 cm−1 and 617 cm−1 corresponding to OH out-of-
phase bending (Barud et al. 2008; Castro et al. 2011; 
Figueiredo et al. 2015; Qiu et al. 2016).

Fig. 2   a SEM image of a BC membrane; b FT-IR spectrum of a BC membrane

Fig. 3   E. coli suspension filtra-
tion with BC membranes. a BC 
membrane before the filtration; 
b E. coli suspension before and 
after filtration; c BC membrane 
after filtration

Fig. 4   Output absorbance (at 660  nm) of the of E. coli suspension 
after filtration (● BC; ○ CM), the E. coli output count in the Neu-
bauer chamber after filtration (■ BC; □ CM), and the variation as a 
function of the number of filtrations
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Table 1   Quantification of E. 
coli in the samples collected 
in the hydrographic basin of 
the Igarassu River before and 
after filtration with BC and 
commercial membranes

The confidence interval is 95% for all samples
a MPN most probable number multiplied by 100 due to dilution

Sample Before filtration 
(MPN/100 mL)a

After filtration/BC membrane 
(MPN/100 mL)

After filtration/commercial 
membrane (MPN/100 mL)

IG 01 200 < 180 < 180
IG 02 1700 < 180 < 180
IG 03 2200 < 180 < 180
IG 04 3100 < 180 < 180

Fig. 5   Petri dishes (Muel-
ler–Hinton culture medium) 
inoculated with samples from 
the Igarassu River hydrographic 
basin before and after filtration 
using BC and CM membranes
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BC membrane performance for water remediation

Escherichia coli suspensions

Figure 3 shows a BC membrane and the E. coli suspension 
before and after ten filtration cycles. A clear transparent 
liquid was collected from the initially turbid sample. The 
part of the membrane that was exposed to the E. coli sus-
pension was opaque because of bacteria accumulation in 
the membrane, while the outer part that was not exposed 
to the suspension retained the typical transparency of a wet 
membrane.

Figure 4a shows the output count and the output absorb-
ance (at 660 nm) for the filtrates that were obtained using 
the BC and CM membranes to filter the E. coli suspension. 
The output count and the output absorbance (at 660 nm) 
were nearly zero for the BC membrane. The CM, however, 
presented an output that is related to the presence of micro-
organisms in all measurements. The CM is frequently used 
to produce sterile water with excellent results. However, the 
bacteria amount in the samples that were investigated here 
is similar to what is found in sanitary effluents.

The hydrophilic nature of cellulose acetate membranes 
makes them suitable for several laboratory applications such 
as protein separation, which is compatible to automated pro-
cesses under pressure conditions at reasonable flow rates. 
However, these membranes are not used to filter effluents. 
There are some reports about membranes that are based on 
cellulose nanofibers or activated carbon that were effectively 
used to remove E. coli from water, as reported by Hassan 
et al. (2017).

BC-based membranes modified using polymers such as 
chitosan (Yin et al. 2020) and polyethyleneimine (Wahid 
et al. 2020) or nanoparticles (ZnO, CuO, and Ag) have been 
recently shown to have interesting antibacterial properties 
against E. coli (Mohammadalinejhad et al. 2019). The results 
described above show, for the first time, that BC membranes 
are promising for such highly contaminated samples.

Igarassu river samples

Quantification of E. coli in the samples that were collected 
from the Igarassu River basin before and after the filtration 
is presented in Table 1. The presence of such bacteria is the 
primary indicator of fecal contamination, which can cause 
severe gastrointestinal diseases that can lead to death (Khan 
et al. 2018). Both BC and CM were efficient for E. coli reten-
tion with an undetectable bacterial count after filtration.

As expected, all the inocula from the four samples col-
lected from the Igarassu River showed positive results for 
heterotrophic bacteria (Fig. 5a, d, g, j). After filtration 
through BC membranes, no microorganisms were observed 
up to the detection limit (10 CFU/mL). When the CM mem-
brane was used, the filtrates from samples IG03 and IG04, 
which had higher contamination levels, showed positive 
results (Fig. 5k, l).

This result is consistent with the use of the CM in sam-
ples with moderate microorganism concentrations, and it 
demonstrates that BC membranes are also efficient for real 
samples that present a much more complex composition 
compared to the suspensions that were prepared in the labo-
ratory environment.

Dairy effluent

Figure 6 (left) presents inocula of the dairy effluent in agar 
Mueller–Hinton nutrient agar and potato dextrose agar 
before filtration. These culture media allow for the identifi-
cation of bacteria, yeast, and molds, and fungi, respectively 
(Babu et al. 2006; Shivsharan et al. 2013). A colorless fil-
trate was collected after filtration through the BC membrane 
(Fig. 6, center), the absorbance at 660 nm decreased from 
0.655 to 0.004, and no microorganisms growth was observed 
in any of the three the culture media after filtration (Fig. 6, 
right).

Raw effluents from the dairy industry showed high loads 
of microorganisms, including Bacillus subtilis, Staphylococ-
cus aureus, E. coli, Lactobacillus sp., Candida, Cryptococ-
cus, and Streptococcus faecalis (Babu et al. 2006; Porwa-
let al. 2015; Garcha et al. 2016), and high concentration 
of lipids, carbohydrates, and organic materials (Wang and 
Serventi 2019).

Several methodologies have been used to treat dairy 
industry wastewater, including photocatalysis (Abreu et al. 
2013), aerobic or anaerobic digestion (Dabrowski et al. 
2017), and physicochemical treatments (Wang and Serventi 
2019). These technologies are complex and require profes-
sional equipment that has a high operating cost. Sarkar et al. 
(2006) used a cellulose acetate membrane and coagulants to 
treat dairy effluent. The use of these two techniques proved 
to be efficient for removing the color and odor from the 
sample. Hatimi et al. (2020) reported the use of inorganic 
membranes that were composed of clay to treat dairy efflu-
ent, and they reported that this method showed efficiency in 
removing turbidity, conductivity, and oil and grease index. 
Bortoluzzi et al. (2017) used an integrated membrane sys-
tem that was composed of a hollow fiber-type polymeric 
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membrane, poly(ether sulfonate)/poly(vinyl pyrrolidone) 
membrane, and polyamide membrane showing efficiency in 
reducing the sample color and turbidity. No study showed 
a microbiological evaluation of these samples, based on fil-
tration with BC membranes. None of the studies described 
above presented information about a microbiological evalu-
ation of the filtrates.

Textile effluents

Figure 7 shows the blue textile effluent before and after 
filtration and the membrane after ten filtration cycles. The 
effluent was also filtered in its raw form. The BC membranes 
were shown to have the capability to retain most of dyes and 
solids. The UV–Vis absorption spectra from red and blue 
effluents before and after filtration are shown in Fig. 8. In 
both cases, the absorbance decreased in the entire 200 to 

Fig. 6   (left) Inocula from the dairy effluent in nutrient agar, potato 
dextrose agar, and Mueller–Hinton agar culture media before filtra-
tion; (middle) dairy effluent sample before and after filtration; (right) 
nutrient agar, potato dextrose agar, and Mueller–Hinton agar media 
inoculated with the filtrate

Fig. 7   Images of the sample textile effluent before filtration (a); the 
results of dye retention on the membrane after filtration (b); and the 
sample after filtration (c)

Fig. 8   UV–Vis absorption spectra of blue and red textile effluent before and after filtration with BC (a), and the UV–Vis absorption spectra of 
blue textile effluent after ten filtrations
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800 nm range. The blue sample spectrum shows presents 
maxima at 242 and 624 nm, and there was a 67.8 and 100% 
decrease, respectively, after filtration, while in the red sam-
ple, the decrease was about 67.1%. The filtrates collected 
from the blue effluent were transparent to the naked eye even 
after ten filtration cycles. The membrane was not washed 
between two successive cycles.

According to Neamtum et al. (2002), textile industry 
effluents present a complex composition with a high concen-
tration of dissolved salts, surfactants, solids in suspension, 
and organics with high potential to harm the environment 
if not correctly handled. The results presented here dem-
onstrate that the BC membranes are capable of efficiently 
retaining dye contaminants.

Cellulose-based compounds are efficient in removing 
contaminants from the textile industry, as reported by Li 
et al. (2019), who used carboxylated cellulose fabricated 
with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) to 
remove dyes from simulated wastewater. Saranya et al. 
(2015) used zero-valent iron-impregnated cellulose acetate 
mixed-matrix membranes for remediation of textile indus-
try effluent. Goel et al. (2015) reported the use of cotton 
cellulose for the treatment of textile dye wastewater.

The in  situ reduction of cationic polyethyleneimine 
combined with platinum nanomaterials that are placed 
onto the BC membrane was recently shown to be effective 
for adsorbing anionic dyes (Huang et al. 2020). BC/TiO2 
nanocomposites showed almost 90% removal of methylene 
blue in aqueous solution by photocatalysis (Brandes et al. 
2018).

To the best of our knowledge, there is no published article 
that investigated a membrane that had a filtering capacity that 
was as efficient as reported here. This is the first report that 
investigated BC membranes as filters for treating samples of 
different natures; the BC membranes were shown to be effi-
cient in removing microorganisms from natural water and 
industrial wastewater sources.

These applications require development for large-scale 
BC membrane production. Thus, the use of effluents as raw 
materials for the BC membrane production has been pursued, 
and some successful attempts have already been reported in 
the literature. BC has been produced using distillery efflu-
ents (Gayathri and Srinikethan 2010; Jahan et al. 2018) or 
corinthian currant finishing side-stream and cheese whey 
(Bekatorou et al. 2019). The production of BC membranes 
using industrial waste (from agriculture, food, brewery, sugar 

industries, lignocellulosic biorefineries, textile, and pulp mills) 
was reviewed recently by Hussain et al. (2019), and there is 
a good potential for large-scale production BC membranes in 
the near future.

Conclusion

The BC membranes were shown to be efficient as filters for 
microorganism removal from natural and industrial samples 
and from a simulated effluent with a high E. coli load. The 
membranes retained their efficiency even after ten filtration 
cycles for the E. coli suspensions and the blue pigmented 
textile effluent, which makes them good candidates for water 
treatment. The excellent performance of the BC membranes 
in retaining contaminants from E. coli suspensions, natural 
samples extracted from a river, and textile and dairy wastewa-
ter demonstrated their versatility for a wide range of applica-
tions. The use of industrial wastes to fabricate BC membranes 
and their use for wastewater remediation can potentially be an 
essential contribution of bio-based technological development 
in the circular economy.
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