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Abstract
Groundwater quality, as major source of freshwater, is an important factor in sustainable development and water resources 
management. Due to increase in water demand in developing countries and overexploitation, groundwater quality has 
decreased in many aquifers in the world. One of the most important factors which decrease the groundwater quality is 
salinization. The aim of this study is to comprehensively review the sources and mechanisms of salinization. Based on our 
review, the major sources of groundwater salinization consist of marine sources (e.g., connate saline groundwater, marine 
transgressions, incidental flooding by seawater, lateral seawater intrusion and seawater sprays), natural continental sources 
(e.g., evaporation, soluble minerals, membrane effects and geothermal origin), anthropogenic activities and multiplicity 
sources. Research approaches in groundwater salinization include hydrogeochemical and isotopic tracers, hydrogeochemi-
cal models and groundwater dating isotopes (radioisotopes). The simple and clear guideline presented in this paper can be 
applied to investigate the groundwater salinization by researchers in the world.
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Introduction

Groundwater quality is an important factor in sustainable 
development and water resource management (Mirzavand 
et  al. 2014; Mirzavand and Ghazavi 2015). Groundwa-
ter salinization is one of the most important reasons of 
diminishing groundwater quality (Vengosh et al. 2002a, b). 
Salinization is a long-term process, and during the last dec-
ades many aquifers in the world have become unsuitable 

for human use due to overpumping and salinization. Future 
exploitation of aquifers in many water-scarce regions, such 
as the arid and semiarid environment, depends mainly on the 
rate of salinization. The term “groundwater salinization” is 
used to specify an increase in overall chemical content over 
background levels in groundwater (van Weert et al. 2009). 
Generally, the word “saline groundwater” includes brack-
ish to brine groundwaters. The groundwater can be classi-
fied into four categories based on levels of salinity (Fig. 1) 
(Clark 2015; Freeze and Cherry 1979). Proper management 
of accessible groundwater resources is impossible without 
knowledge of the distribution of fresh and saline ground-
water and the processes that lead to salinization (Clark 
2015). Saltwater intrusion is a long-term process and could 
degrade groundwater system and restrict the availability of 
useable water for drinking, irrigation and industry (Vengosh 
2014). Proximity of groundwater system to seawater, salt 
lake, mineral dissolution and anthropogenic activity (such 
as overpumping) in coastal aquifer could destroy freshwater 
resources (Vengosh 2003, 2014). Chemical composition of 
groundwater in a coastal aquifer is a function of the rate of 
fresh/saltwater mixing from different salinity sources such 
as water–rock interaction, cation exchange, redox reaction, 
carbonate and evaporate mineral dissolution, old salty water 
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tapped in the aquifer and seawater/salt lake intrusion (Bagh-
eri et al. 2014; Clark 2015; Mirzavand et al. 2018a, b; Nadri 
et al. 2014; Vengosh 2003). For the effective management 
of groundwater resources, especially in arid and semiarid 
regions, policies depend on understanding the sources and 
mechanism of groundwater system salinization (Bagheri 
et al. 2019; Clark 2015). Hence, many researchers all over 
the world use hydrogeochemical mixing diagrams, geoelec-
tric modeling and isotopic techniques for determining the 
origin and mechanism of groundwater salinization (Zarroca 
et al. 2011; Tomaszkiewicz et al. 2014; Amiri et al. 2016a, 
b, c). 

Numerous summits and conferences are held every 
year around the world to deal with the problem of aquifers 
salinization, especially coastal aquifers. The most important 
meeting on the influx of saltwater intrusion (SWIMs) into 
groundwater systems was established in 1968 (Mirzavand 
2018). Recently, the SWIMs are more discussed about mod-
eling of water resources, hydrogeology, hydrogeochemistry 
and isotopic studies of the groundwaters. Also, a special 
group in Cartagena was established since 2001 which called 
saltwater intrusion in coastal aquifers (SWICA) to investi-
gate the issue of saltwater intrusion on a global scale. (Mir-
zavand 2018). So, as could be seen, the issue of groundwater 
salinization is a global concern (Vengosh et al. 2002a, b; 
van Weert et al. 2009) and a serious problem especially in 
arid and semiarid areas, where the ground water is a vital 
resource. Not only will many job opportunities disappear 
due to groundwater salinization, but also many species of 
wildlife will be extinct. Therefore, with regard to harmful 
effects of groundwater salinization as a global concern, this 
paper aims to provide a comprehensive overview of the 
sources and mechanisms of groundwater salinization and to 
provide better insight for the interested readers. Hence, the 
review aims to summarize the sources and mechanism of 

saltwater intrusion and provides an overview of hydrogeo-
chemical and isotopic techniques for groundwater saliniza-
tion. Based on this review, the researchers would be able to 
know and study the groundwater salinization process and 
dating.

It is needed to mention that this is the first overview 
of groundwater salinization in this view, and the previous 
overview (Werner et al. 2013) focused on coastal saltwa-
ter intrusion and numerical models. But, in this paper, we 
describe and interoperate all kinds of salinity sources and 
mechanisms, hydrogeochemical, isotopic (stable and radio-
active) and geophysical approaches, which are important in 
groundwater salinization studies.

Results and discussion

Groundwater salinization

The main sources of groundwater salinization which com-
monly deteriorate fresh groundwater include three major 
classes of natural continental sources, marine sources and 
anthropogenic sources (Fig. 2) (Mirzavand 2018; van Weert 
et al. 2009). In the following, the different salinity sources 
are discussed in details.

Saline groundwater with marine source

The marine source can salinize the groundwaters via dif-
ferent mechanisms such as connate saline water and sea-
water spray mechanism (Fig. 2).

• Connate (residual) saline groundwater

Fig. 1  Water quality classification based on TDS variation (Amiri et al. 2016b)
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  The origin of saline groundwater in deep sedimen-
tary environments can be residual waters that are stored 
simultaneously with sedimentation in a saline environ-
ment (Monjerezi 2012). However, the saline groundwa-
ter is intrinsically connate because of various chemi-
cal and physical changes that occur after sedimentation 
(Bagheri et al. 2013). Residual brines can be part of 
evaporated continental or marine waters that have been 
buried or infiltrated into the ground (Freeze and Cherry 
1979; Jones et al. 1999). In polar areas, connate brines 
can be derived from isolated continental surface waters 
and freezing of seawater (Bein and Arad 1992; Bot-
tomley et al. 1999; Herut et al. 1990; Marison et al. 
1999; Matsubaya et al. 1978; Nelson and Thompson 
1954; Richardson 1976; Stein et al. 1997; Yaqing et al. 
2000). Fluids from these sedimentary and crystalline 
environments are usually characterized as Na–Cl, Na–
Ca–Cl, Ca–Na–Cl or Ca–Cl2 brines (Bottomley et al. 
1999; Davisson and Criss 1996; Wilson and Long 
1993; Yaqing et al. 2000). Residual brines are often 
not found in shallow subsurface due to natural flushing 
in the formations by precipitation over time. Normally, 
natural salinity in groundwater increases with the depth 
due to residence time, chemical reactions and mixing 
process (Clark 2015).

• Saline groundwater originating from marine transgres-
sions

  Seawater intrusion is one of the main causes of 
groundwater quality degradation in coastal aquifers (Kim 
et al. 2003; Vengosh et al. 2002a, b; Wicks and Herman 
1996). Normally in coastal aquifers, groundwater flows 
toward the sea/ocean water due to the hydraulic gradient 
and dynamic equilibrium between freshwater and seawa-
ter (Hubbert 1940; Kohout 1960). But, due to changing 

in sea/ocean level or water table decline, this hydraulic 
gradient and dynamic equilibrium can be changed over 
geological time. As a result, coastal aquifers become sub-
merged with the advent of seawater. In these conditions, 
saltwater penetrates the groundwater system, and as long 
as this trend continues, coastal aquifers remain salinize 
(Monjerezi 2012).

• Incidental flooding by seawater
  Like groundwater, which has become saline as a result 

of seawater level rising, this origin is also caused by the 
rise of seawater level (Monjerezi 2012). But this hap-
pens over a shorter period of time. When the sea level 
is exceptionally high, like when the tsunami phenom-
enon occurs, or as the coastal walls are degraded as a 
result of tide, the salt water intrudes the coastal plains. 
Even though the flooding time is short relative to the rise 
of seawater level during the seawater rising, a greater 
region of coastal aquifers may be affected by flood. 
Consequently, flushing the sea salt on the surface of the 
floodplain can increase the salinity of groundwater in 
coastal aquifers. As this process is repeated, not only sur-
face water is salted, but also salty water infiltrates deep 
parts of the aquifers (Monjerezi 2012). This can happen 
in coastal aquifers in arid and semiarid regions which 
are close to inland salt lakes. In this case, as a result of 
historical flood, the salt lake water level rises and sedi-
mentation will occur in a wider area. Finally, evapora-
tive minerals can be deposited on the margin of these 
lakes and penetrate the deep layers of adjacent aquifers 
by flushing process (Mirzavand 2018).

• Laterally seawater intrusion
  This type of salinization happens in coastal zones due 

to interaction between sea and coastal aquifer. Lateral 

Groundwater 
salinization

Natural continental 
sources

Evaporation

Geothermal origion

Dissolution of subsurface salts

Salt filtering membrane effects

Marine 
sources

Seawater spray

Connate source

Intruded by marine transgression

Laterally intruded seawater

Incidental flooding 
by the sea

Anthropogenic sources

Fig. 2  The potential sources of groundwater salinization
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intrusion may be enhanced through surface and ground-
waters that flow to the sea (van Weert et al. 2009).

• Seawater spray
  In coastal areas, atmospheric moisture may be rich 

in sea salts through seawater sprays. These salty aero-
sols are mixed by the rain and are absorbed in recharge 
regions of groundwater causing groundwater salinization 
(Monjerezi 2012).

Groundwater salinization with natural continental sources

This class of saline groundwaters subdivides into four 
classes:

• Evaporation at or near land surface
  Evaporation is the most important process for soil and 

groundwater salinization (Deverel and Gallanthine 1989) 
in areas with the shallow water table depth (< 5 m) and 
high evaporation potential (Yechieli and Wood 2002; 
Sowayan and Allayla 1989). In closed basins, brines in 
evaporative minerals (e.g., calcite and halite) dissolve 
in recharge zone and increase the groundwater salinity 
over time. Due to overpumping and negative water bal-
ance, salinity content increases from recharge zone to 
discharge areas, and so hydrochemical faces change from 
Ca–HCO3 to Na–Cl (Monjerezi 2012). The differences 
in chemical component are mainly due to alterations and 
reactions through flow direction in aquifer (Berner and 
Berner 2012). Nevertheless, in most cases, the concentra-
tion of salts, especially chlorides, increases until halite 
saturation state (Richter and Kreitler 1993) with hydro-
chemical faces of Na–Mg-Cl–SO4 (Jones and Vanden-
burgh 1969).

• Dissolution of naturally occurring soluble minerals
  In sedimentary basins, the dissolution of evapora-

tive minerals is a known cause of salinization (Bagh-
eri et  al. 2014; Herczeg et al. 1991; McManus and 
Hanor 1993; Nesbitt and Cramer 1993; Vengosh et al. 
2002a, b) and the reason is that many sedimentary 
basins have halite salt as bedrock of aquifer. However, 
the salt dome may develop as a result of the uplift of 
salt to the ground surface (Richter and Kreitler 1993). 
Depending on the date of deposition, halite deposits 
might be associated with other salts such as chloride 
salts (Carnalite  KMgCl3·6H2O) or sylvite (KCl), sul-
fates (polyethylene  (K2Ca2Mg(SO4)-4·H2O)), anhydrite 
 (CaSO4), gypsum  (CaSO4·2H2O), carbonates (such as 
dolomite (CaMg(CO3)2 and/or calcite  (CaCO3)). Halite 
and these salts can change the chemical composition 
and increase the salinity of groundwater (McManus 
and Hanor 1993; Richter and Kreitler 1993) (Bennetts 
et al. 2006). These types of brines may be discharged 

to the surface or become part of a groundwater system 
(Mirzavand 2018; Richter and Kreitler 1986, 1993). In 
arid and semiarid regions where evaporation is higher, 
evapotranspiration increases the concentration of salt 
in surface water bodies and shallow groundwaters. As a 
result, seasonal rainfall flushes these salts into ground-
water resources (Mirzavand 2018).

• Membrane effects
  The principle of reverse osmosis membrane filtra-

tion was applied to describe the salinity source of 
deep brines in sedimentary basins (Richter and Kre-
itler 1993). This process involves the formation of a 
hydraulic fluid flow from brines through a semiper-
meable environment such as shale and clay sediments 
(Graf 1982; Manheim and Horn 1968). As a result, the 
neutral water molecules pass easily over the shale or 
clay layers in comparison with dissolved ions. This salt 
filtration is due to electrostatic repulsion of dissolved 
ions as a result of double electrical layers around clay 
particles (Kharaka and Hanor 2005). In this case, as 
the fluid passes through the membrane, filtration of 
the selected cations and anions causes one side of the 
membrane to become gradually more saline from the 
other side (Bagheri et al. 2019; Mirzavand et al. 2018a, 
b). In deep alluvial basins, clay or shale layers may be 
very compact and act as semipermeable membranes 
(Berry 1973; Hanshaw and Hill 1969; Kharaka and 
Berry 1973; McKelvey and Milne 1969). Although 
the reverse osmosis mechanism in deep brine sedi-
mentary basins has been investigated as a salinization 
mechanism (Berry 1973; Graf 1982), the significance 
of membrane filtration in the modification of chemical 
compounds of groundwater is still controversial (Hanor 
1987).

• Geothermal activity
  In some areas where igneous rocks are dominant, 

groundwater can become highly mineralized. In such 
cases, these water sources are rich in minerals and 
called thermo-mineral waters. Therefore, these types 
of hydrothermal water-based systems can convey saline 
and hot groundwater to the surface. In addition to chlo-
ride content, hot springs are often rich in bromine, fluo-
ride, sodium, arsenic and other pollutants that threaten 
the quality of freshwater (Edmunds et al. 2003; Ven-
gosh et al. 2002a, b).

Groundwater salinization due to anthropogenic activities

Significant examples of salinization of groundwater 
resources due to anthropogenic activities include domestic, 
agricultural and industrial effluents; desalinization plants; 
road salt; and oil and gas field brines (Clark and Fritz 1997; 
Hanor 1987; Mirnejad et al. 2011; Vengosh et al. 2002a, 
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b). These types of activities often lead to local salinization 
of groundwater resources. The dissolution of the salts used 
on the road surface in order to deice (defrost) the roads is 
an important source of salinity of surface water (Richter 
and Kreitler 1993). Another major concern is the salinity 
of domestic wastewater caused by the use of detergents and 
salts (Vengosh et al. 1994). In areas where there is water 
crisis, most of these polluted water sources are used for irri-
gation, which ultimately leads to soil and groundwater salin-
ity (Beltran 1999; Ronen et al. 1987; Zalidis et al. 2000). 
Agricultural activities may cause groundwater and soil 
salinity due to the degradation of natural vegetation cover 
and farm irrigation with salt water. The soil salinization of 
irrigation and dryland area occurs when the water table of 
the saline groundwater is close to the surface (Jenkin 1981; 
Peck and Williamson 1987; Ruprecht and Schofield 1991). 
As a result, due to the property of capillarity, salt is trans-
ported to the surface and the concentration of salt increases 
during evaporation (George et al. 1997). In fact, the salin-
ity of agricultural wastewaters depends on (1) the balance 
between the input and the output salt of the soil, (2) salinity 
of the soil, (3) the quality of irrigation water and (4) the rate 
of application of manure and fertilizers in agricultural lands 
(Hern and Feltz 1998).

Naturally, in arid and semiarid regions, the irrigation 
of saline soil lands could lead to the flushing of salts into 
groundwater resources (Monjerezi 2012). The contamina-
tion of groundwater by the oil and gas field’s brines hap-
pens during the mixing between brine and freshwaters due 
to oil or gas extractions. Disposal approaches such as sur-
face disposal, uncoated surface pits and injection wells may 
also result in salinization (Richter and Kreitler 1993). Salt 
flushing from such pits and long-term use of them leads to 
the introduction of brines into groundwater resources and, 
consequently, salinization of aquifers. Of course, it should 
be noted that the salinization of water resources by injectable 
wells in oil and gas fields occurs only when the hydraulic 
connection between oil and gas and aquifer is established 
(Richter and Kreitler 1993). Another anthropogenic activ-
ity that affects the salinity of water resources is land use 
changing and excessive pumping from coastal aquifers. By 
increasing the depth of agricultural wells and overpumping 
of groundwater resources, the hydraulic gradient between 
surface water and groundwater changes, and as a conse-
quence, deep groundwater brines will mix with freshwater 
through upcoming process (Mirzavand 2018).

Saline groundwater produced as a result of multiplicity 
source

The origin of groundwater salinization may be multiplic-
ity source. In this type of salinization, a combination of 
above sources is simultaneously affecting the groundwater 

salinization (Mirzavand 2018). Given the characteristics 
of resident time of groundwater, when the source of saline 
water is determined, the effect of time should not be ignored. 
In other words, groundwater dating should be done in order 
to identify and distinguish different sources of salinization 
(Weert et al. 2009).

Groundwater salinization investigation 
approaches

The multiplicity of salinity sources makes delineation of 
origin and mechanism of groundwater salinization highly 
complex (Richter and Kreitler 1993). Study of spatiotempo-
ral distribution of stable and radioactive isotopes (O, H, C, S, 
Sr, Br, B, Sm, Nd, U, Th, Cl and I) is a useful tool in deter-
mining the sources and mechanism of groundwater salini-
zation (Banner et al. 1989; Clark 2015; Mirzavand 2018; 
Sheppard 1986; Vengosh et al. 2002a, b). The basic principle 
in isotopic and chemical techniques used for tracing salinity 
sources is based on the hypothesis that the fingerprint of the 
original source is conserved during the salinization process. 
However, processes such as evaporation, water–rock inter-
action and membrane filtration could change the original 
isotopic and chemical composition of the salinity source. 
As such, the combination of isotopic and hydrogeochemical 
techniques provides imperative and integrated information in 
identifying the source and mechanism of groundwater salini-
zation (Mirzavand 2018; Vengosh et al. 2002a, b). Beside 
the hydrochemical and isotopic approaches, the geophysics 
technique could also be useful in groundwater salinization 
study.

Geochemical tracers

The main principle in all the hydrogeochemical techniques 
is that the chemical properties of the source of salinity are 
assumed to be maintained during the process of ground-
water salinization. However, the water–rock interaction 
may change the composition of the source of salinity, and 
consequently, determination of the source and mechanism 
of salinity becomes rather complicated (Mahmoodzadeh 
and Karamouz 2019; Vengosh 2005). Composite plots of 
minor and major ions such as  Na+/Cl−,  Br−/Cl−, I/Cl−, 
 SO42−/Cl−,  Ca2+/Cl−, B/Cl−,  Mg2+/Cl−,  Cl−/NO3

−,  K+/
Cl− and  (Ca2++Mg2+)/SO4

2− could be used to separate the 
major sources of salinity and determine the mechanism of 
groundwater salinization (Alcalá and Custodio 2008; Bagh-
eri et al. 2013; Bennetts et al. 2006; Harkness et al. 2017; 
Isawi et al. 2016; Lai et al. 2017; Mirzavand 2018; Naseem 
et al. 2017; Petalas et al. 2009; Raju et al. 2015; Sridharan 
and Senthil Nathan 2017; Zarei et al. 2013). The minor and 
major elements exist in distinct ratios in diverse sources of 



2468 International Journal of Environmental Science and Technology (2020) 17:2463–2476

1 3

salinity. Nevertheless, these composite plots can be used as 
geochemical tracers once there is insignificant impact of 
geochemical reactions after mixing between fresh ground-
water and particular salinity sources.

As such, these composite plots are useful tools at high 
salinity content (Richter and Kreitler 1993). In other cases, 
relatively conservative chemical parameters such as bro-
mide, lithium, chloride and iodide are normally used. Cl–Br 
relationships are normally applied to separate nonmarine 
and marine origins of salinity (Bagheri et al. 2014). Cl is 
preferentially partitioned over Br into Na, K and Mg halo-
gen salts throughout precipitation (Siemann and Schramm 
2000). Hence, brines made by the dissolution of NaCl are 
associated with low Br/Cl ratios (Bagheri et al. 2013; Han-
shaw and Hill 1969; Mirzavand 2018; Worden 1996).

In other words, brines produced from evaporated seawater 
are categorized by high Br/Cl (Bagheri et al. 2013). The 
seawater evaporation trend (SET) has been extensively used 
to determine the origin of the salinity in different basins 
(Bagheri et al. 2014; Kharaka and Hanor 2005). Normally, 
waters affected by halite dissolution and mixing between 
halite dissolution brine and freshwaters fall above the SET, 
while the saline water originated from the evaporated sea-
waters lies on the SET (Bagheri et al. 2013; Carpenter 1978; 
Mirzavand 2018). The Na/Cl molar ratio anticipated from 
the salt dissolution would be about 1 (Bagheri et al. 2013; 
Richter and Kreitler 1993). While the Na/Cl and Na versus 
Cl molar ratios of investigated water samples vary close to 
this value, suggesting that halite dissolution is a likely origin 
of salinity. Water samples with high Cl concentrations yet 
with Na/Cl molar ratios less than 1 may have experienced 
cation exchange (Bagheri et al. 2014).

Isotope tracers

Due to the stability of stable isotopes over time, they are 
valuable tracers for determining the source and mecha-
nism of salinization (Clark 2015). For this purpose, the 
most widely used isotopes in the hydrogeological studies 
are presented. The variations in δ18O and δD of water are 
used to trace sources of water (Ayadi et al. 2016; Bagh-
eri et al. 2013; Bouchaou et al. 2009; Clark 2015; Farid 
et al. 2015; Gil-Márquez et al. 2017; Isawi et al. 2016; Li 
et al. 2011; Mirzavand 2018; Nunes et al. 2017; Tweed 
et al. 2011), but the original values of water molecules 
isotopes are usually modified by dilution during mixing 
(Banner et al. 1989; Clark and Fritz 1997; Hanor 1994). 
Also, δD-δ18O relationships can be used for calculat-
ing mixing ratio between fresh groundwater and saline 
or brines during saltwater intrusion (Yechieli and Wood 
2002) or investigating irrigation return flows (Mirzavand 
2018; Vengosh 2014). The δD-δ18O relationships may also 
be used for studying the water–rock interaction (Bagheri 

et al. 2013; Vengosh 2014) and investigation of seawater 
evaporation effect (Bagheri et al. 2013), direct seawater 
intrusion (Najib et al. 2017) and upconing process (Amin 
Sharaf et al. 2001; Marandi and Vallner 2010; Mirzavand 
2018). These isotopes may also be used to study the effect 
of evaporation and membrane filtration on groundwater 
salinization (Bagheri et al. 2013; Mirzavand 2018; Ven-
gosh 2014).

The 11B/10B ratio can be used to separate natural fresh 
and saline waters (Barth 1998; Bassett et al. 1995; Bouchaou 
et al. 2008; Harkness et al. 2017; Hogan and Blum 2003; 
Mahlknecht et al. 2017; Warner et al. 2013). Boron has a 
tendency to be adsorbed by oxides and clay minerals, mainly 
in high saline settings. The δ10B is preferentially incorpo-
rated into adsorption settings, while the remnant dissolved B 
is enriched in the δ11B (Barth 1998). The δ7Li may be used 
to separate natural fresh and saline waters (Harkness et al. 
2017; Hogan and Blum 2003). 87Sr/86Sr are used to identify 
weathering processes and the origins of strontium (Andrew 
et al. 2005, 2017; Bagheri et al. 2013; Bouchaou et al. 2008; 
Harkness et al. 2017; Lyons et al. 1995; Mahlknecht et al. 
2017; Warner et al. 2013; Wiegand 2009), mixing process of 
groundwater in a basin with diverse geology formations and 
flow-paths (Bagheri et al. 2013; Jones et al. 1999). 87Sr/86Sr 
can also be used to delineate salinization process by return 
flow from farms (Böhlke 2002).

Several projects have been carried out related to δ34SSO4 
signature in groundwater system (Han et al. 2011; Hosono 
et al. 2015; Jakóbczyk-Karpierz et al. 2017; Kaown et al. 
2009; Li et al. 2011; Mirzavand 2018; Nunes et al. 2017; 
Samborska et al. 2013; Tostevin et al. 2016) with the aim of 
determining the origin of sulfate and salinization. Generally, 
sulfate reduction and sulfide oxidation make enrichment and 
depletion in δ34SSO4, respectively (Deverel and Gallanthine 
1989).

δ37Cl is preferentially fractionate into the solid phase 
by deposition of halite from seawater evaporation; hence, 
δ37Cl of the remnant brines and of subsequently deposited 
halite would be lighter. (Bagheri et al. 2013; Hanlon et al. 
2017). Meteoric chloride is then considered by a high 37Cl/
Cl signature that is conserved through evaporative concen-
tration and salts recycling through precipitation–dissolution 
(Bagheri et al. 2013). In contrast, additional saline and brine 
sources such as oilfield brines and road salts are significantly 
depleted in 37Cl/Cl ratios. Likewise, modern meteoric water 
(MMW) is projected to be enriched in 129I/127I than fossil 
waters (Clark 2015; Monjerezi 2012).

δ81Br is used for salt precipitation investigation (Bagh-
eri et al. 2013). The 143Nd/144Nd isotopes are used to sepa-
rate multiple salinity sources and determine the amount of 
water–rock interaction, mixing processes and mixing history 
in aquifer (Négrel et al. 2000, 2001).
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Salt effect correction on the measurement of δ180 
and δ2H

In saline waters, the hydration of the ion results in the deple-
tion of the water isotopes. Simultaneously with the deposi-
tion of salts, water crystallization has a greater effect on the 
process. On the other hand, by analyzing deuterium and oxy-
gen-18 by the Gasbench + DeltaPlusXP method, oxygen-18 
and deuterium are measured in carbon dioxide and hydrogen 
equilibrated with water. Therefore, these measured isotope 
values represent the deuterium and oxygen-18 activity. The 
isotope activity of saline waters decreases with increasing 
salinity while the concentration remains the same. Hence, 
the amount of activity obtained should be modified so that 
it can be expressed as a concentration (Clark and Fritz 1997; 
Sofer and Gat 1972). The equations are presented below:

where m is molality of ion concentration.

Geophysics groundwater investigation

The geoelectric resistivity measurement method was origi-
nally developed by Schlumberger, a professor of physics at 
the Paris School of Advanced Mine in 1912 (Sikdar et al. 
2001). Typically, geophysical methods (for example, elec-
trical and electromagnetic methods) are used to identify 
the extent of the aquifer and its thickness, the quantity and 
quality (the boundaries) of the reservoir water as well as the 
determination of the profile and depth of the aquitard (Mirza-
vand 2018). The electrical resistivity method is very sensitive 
to the salinity of water between pores beneath the surface of 
the ground and is therefore a suitable method for differentiat-
ing salty and freshwater sources and their interface (Banner 
et al. 1989; Ma et al. 2007). A disadvantage of geophysical 
methods is impossibility to determine the origin and mecha-
nism of groundwater salinization (Mirzavand 2018).

Hydrogeochemical modeling techniques

Mass transfer models (MTM)

The thermodynamic method of mineral solubility and 
equilibrium speciation codes can be extended to include 

(1)

�
18Ocorrected =

(

1.11 mMg + 0.47 mCa − 0.16 mK

1000

)

⋅ (�18Omeas + 1000) + �
18Omeas

(2)

�
2Hcorrected =

(

−0.4 mNa − 5.1 mMg − 6.1 mCa − 2.4 mK

1000

)

⋅ (�2Hmeas + 1000) + �
2Hmeas

mass transfer models (MTM). These models allow us to 
simulate the effects of geochemical processes such as min-
eral dissolution and precipitation, groundwater mixing, 
cation exchange, gas exchange or degassing (Clark 2015). 
The concept of MTM is based on the speciation codes, 
with the loss or gain of mass controlled by precipitation 
or dissolution of minerals through gas exchange with the 
open atmosphere or soil (Clark 2015). One of these mod-
els is PHREEQE that let us model mixing and reaction 
pathways and includes effects of hydrodynamic dispersion 
(Parkhurst 1995). SOLMINEQ. 88 (Kharaka et al. 1988) 
and PHRQPITZ (Plummer et al. 1988) were developed 
to accommodate the Pitzer (1987) (Pitzer 1973) relations 
needed for speciation modeling of brines with high ionic 
strength.

Hydrogeochemical faces evolution diagrams

For hydrochemical facies evolution, different models have 
been proposed such as Piper (1944), Durov (1948), Stiff 
(1951) and hydrochemical facies evolution diagram (HFE-
D) (Giménez-forcada 2010). The Piper and Durov diagrams 
were conceived to be diagrams for water classification, 
delineation of potential water mixing between salt/freshwa-
ter end-members and to aid in the determination of reactions 
controlling water quality (Shelton et al. 2018).

HFE-M gives more effective information about freshen-
ing and intrusion processes (Amiri et al. 2016a; Mirzavand 
2018). The HFE-M provides an effective way to recognize 
intrusion/freshening phases during saltwater intrusion and 
freshening which are recognized by the distribution of cation 
and anion percentages in the square model (Fig. 3). The 
HFE-D reflects the percentage of the main anions  (Cl−, 
 SO42− and  HCO3−) and cations  (Na+ and  Ca2+) which con-
trol the dynamics of intrusion (Amiri et al. 2016a, b, c). In 
this model, the groundwater system is affected through two 
processes: (1) reverse cation exchange (line II) and (2) direct 
cation exchange (line II’). The hydrogeochemical faces 
evolve from freshwater (Ca-HCO3) toward saline/saltwater 
(Na–Cl) (Giménez-forcada 2010).

Groundwater dating and discrimination of the role 
of different contaminations

Groundwaters can have fast (daily) or long recharge cycle 
(thousands or millions of years) according to aquifer char-
acteristics, regional climate and geographical conditions 
(Clark 2015). Most of the aquifers have a short recharge 
time, but some of them, including deep aquifers and fossil 
groundwaters, have a high residence time, and the recharge 
time of these aquifers may be tens of million years (IAEA 
2013). Also, in aquifers located in arid and desert regions, 
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due to climate changes from a moderate or high rainfall 
regime to very low rainfall and severe evaporation in 
these areas, the infiltrated part of the precipitation may 
be affected by evaporation and has no role in the water 
table, so virtually this type of aquifer will also have a high 
resident time (Mirzavand 2018) (Table 1).

Groundwater dating or the average residence time in the 
aquifer is important for several reasons. By determining the 
age of the groundwater, the aquifer’s recharge cycle will be 
identified, and as a result, the management of groundwater 
and aquifer artificial recharge programs will be improved 
more efficiently. Also, it is possible to separate the role of 
different sources of contamination in the aquifer and to 

Fig. 3  HFE diagram (Warner et al. 2013)

Table 1  The most common 
stable environmental isotopes 
in groundwater investigation 
(Clark 2015)

VSMOW, Vienna Standard Mean Ocean Water; VPDB, Vienna Pee Dee Belemnite, fossil carbonate; CDT, 
Canon Diablo Troilite; FeS from meteorite; LSVEC, lithium carbonate standard (Stiff 1951; Tamborski 
et  al. 2017), now also used as a carbonate standard (Tomaszkiewicz et  al. 2014); NBS-951, boric acid 
standard, also SRM 951, National Bureau of Standards; SMOC, Standard Mean Ocean Chloride (Ma et al. 
2007)

Isotope Ratio Abundance% Reference (abundance ratio) Common sample types

D or 2H D/H 0.015 VSMOW (1.5575 × 10−4) H2O,  CH4, clays
13C 13C/12C 1.11 VPDB (1.1237 × 10−2) DIC,  CO2,  CaCO3,  CH4, organic C
18O 18O/16O 0.204 VSMOW (2.0052 × 10−3) H2O,  NO3

−,  SO4
2−,  O2, minerals

34S 34S/32S 4.21 CDT (4.5005 × 10−2) SO4
2−,  H2S, gypsum, sulfide minerals

3He 3He/4He 0.000138 AIR (1.38 × 10−6) Minerals, groundwater
6Li 6Li/7Li 7.6 LSVEC (0.08215) Minerals, brines, water
11B 11B/10B 80.1 NBS 951 (4.044) Minerals, brines, water
37Cl 37Cl/35Cl 24.23 SMOC (0.324) Brines, water, solvents
81Br 81Br/79Br 49.314 SMOB Brines, water, biocides
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optimize management to prevent the occurrence of vari-
ous contaminations by groundwater dating (Clark 2015). 
It should be noted that the determination of the method 
and technique of groundwater dating using radioisotopes 
depends on the characteristics of the aquifer (Clark 2015). 
Figure 3 and Table 2 provide valuable information on the 
half-life and other characteristics of the radioisotopes used 
in groundwater dating.

The most common isotopes in groundwater dating are: 
224Ra (T1/2 = 3.63 day) and 222Rn (T1/2 = 3.82 day) (Tambor-
ski et al. 2017), 14C (T1/2 = 5730 year) (Awaleh et al. 2017; 
Bhandary et al. 2015; Bouchaou et al. 2008, 2009; Car-
reira, et al. 2014; Han et al. 2011; He et al. 2013; Samad 
et al. 2017; Stewart 2012), 3H (T1/2 = 12.32 year) (Awaleh 
et al. 2017; Bouchaou et al. 2008, 2009; Carreira et al. 
2014; Han et al. 2011; Nunes et al. 2017; Stewart 2012), 
36Cl (T1/2 = 301,000 year) (Khaska et al. 2013; Louvat et al. 
1999; Reich et al. 2008), 234U/238U (T1/2 = 245,500 years) 
(Samad et al. 2017), T-4He (Batlle-Aguilar et al. 2017), 20Ne 

(Batlle-Aguilar et al. 2017), 40Ar (Batlle-Aguilar et al. 2017), 
129I (T1/2 = 157.105) (Clark 2015), 49Ar (T1/2 = 170 ms), 
136Xe (T1/2 = 2.4.1021  years), 81Kr (T1/2 = 229.103  year), 
32Si (T1/2 = 153 years), 39Ar (T1/2 = 269 y), CFC, SF6, 85Kr 
(T1/2 = 10.73 years) and T-3He, 35S (T1/2 = 87.51 day) (Clark 
2015). Also, δ13C is a stable isotope used with radioac-
tive isotope of 14C for groundwater dating (Bhandary et al. 
2015; Carreira et al. 2014; Mirzavand 2018; Nunes et al. 
2017). Different half-lives of various isotopes may confuse 
researchers, but researchers should select the best radioiso-
topes for dating according to hydrogeological and geologi-
cal settings, regional climate and geographical conditions of 
study area. It means, for arid and semiarid regions with deep 
groundwaters such as Nubian Sandstone Aquifer System 
(NSAS), researchers should use the isotopes with long half-
life such as 14C and 81Kr but for shallow groundwaters short 
half-life like 3H should be use (Ayadi et al. 2016) (Fig. 4).

Table 2  The most common 
environmental radioisotopes 
in groundwater dating (Clark 
2015)

Isotope Activity (Bq) Atmospheric ratio Decay Half-life (year)

85Kr 1.5 Bq/ccKr 85Kr/Kr = 2.7·10−11 −β 10.76
3H or T 0.12 Bq/L T/H = 10−17 −β 12.32
39Ar 1.8·10−6 Bq/ccAr 39Ar/Ar = 8.2·10−18 −β 269
14C 0.226 Bq/gC 14C/C = 1.18·10−12 −β 5730
81Kr 1.34·10−6 Bq/ccKr 81Kr/Kr = 5.2·10−13 EC 229·103

36Cl  10−6Bq/L (10 ppm Cl) 36Cl/Cl ~ 10−13 −β 301·103

129I  10−4 Bq/L (1 ppm I) 129I/I ~ 10−8 −β 157·105

Fig. 4  Age range for groundwater dating by anthropogenic gases and experimental, routine and nonroutine radioisotopes (Clark 2015)
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Conclusion

Groundwater is a finite resource, and it is becoming a 
scarce commodity in many parts of the world. One of the 
most important management programs in water resources 
is the conservation and sustainable development of these 
resources especially coastal aquifers. During the last dec-
ades due to low precipitation and changing precipitation 
regime, the groundwater in several aquifers of the world, 
especially coastal aquifers, has become unsuitable for 
human consumption due to overexploitation and saliniza-
tion. The term of groundwater salinization is used to spec-
ify an increase in overall chemical content over background 
levels in groundwater. Adverse effects of groundwater 
overdraft include, uneconomic pumping conditions, water 
quality degradation through induced intrusion of saline 
or poor quality groundwater, land subsidence and gradual 
depletion of groundwater storage. The salinization risks 
limit the groundwater withdrawals from aquifer in some 
areas, threatening the future sustainable development of 
regions. Monitoring and identifying the origin of the salin-
ity and salinization mechanism are crucial for both water 
management and remediation. The multiplicity of salinity 
sources and the influence of geochemical reactions within 
the aquifers as well as groundwater mixing cause a high 
degree of complexity to the task of identifying the origin 
and mechanism of salinization. The most important sources 
of groundwater salinity in most aquifers are (1) marine 
sources (e.g., connate saline groundwater, marine trans-
gressions, incidental flooding by seawater, laterally seawa-
ter intrusion and seawater sprays), (2) natural continental 
sources (e.g., evaporation, soluble minerals, membrane 
effects and geothermal origin) and (3) anthropogenic activ-
ities. Delineation of aquifer systems and gathering infor-
mation on their hydrogeology and hydrogeochemistry is 
essential for planning strategies in development programs 
for future exploitation and effective management of the 
groundwater resources in many water-scarce regions. Apart 
from the chemistry of the aquifer water, stable and unstable 
isotopes can be used as conservative environmental trac-
ers in order to better understand the origin of the water, its 
recharge mechanisms and the hydrodynamic behavior of 
the aquifers. The groundwater salinization mechanism can 
be described using hydrogeochemical and isotopic tracers 
and hydrogeology and hydrogeochemical evaluation mod-
eling. Beside the hydrogeochemical and isotopic investiga-
tion, geological and geophysical information was described 
as useful tools in groundwater salinization investigation. 
Decreasing the exploitation of groundwater is an effective 
way to control and mitigate the risks of salinization for 
the sustainable management of the groundwater aquifer in 

the future. It is recommended to apply the comprehensive 
methods developed in this study to crucial aquifers with 
a deteriorating water quality, especially when they are 
located in arid and semiarid regions in order to improve our 
understanding of overexploitation hazards and salinization 
risks that pose threats to the environment.
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