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Abstract
Phytoremediation is an effective and low-cost technique for the rehabilitation and cleanup of lands polluted with heavy 
metals. Selection of native plant species could avoid the ecological risks that are associated with the usage of non-native 
species. However, utilizing native species in phytoremediation and restoration of lands polluted by heavy metals requires 
information about their seed germinability and propagation requirements. The aim of this work was to assess the effects 
of four heavy metals (cadmium, chromium, lead and zinc) on the germination and early seedling growth of Peganum 
harmala L., a native Mediterranean species that has the potential to restore arid degraded lands. The results display that 
the germination characteristics (percent seed germination and Timson’s index) and growth parameters (hypocotyl and 
radicle lengths) worsened as the concentrations of all the heavy metals increased. Cadmium was found to be the most 
toxic element regarding these parameters, with toxicity decreasing in the following pattern: Cd > Pb > Cr > Zn. Radicle 
growth was more affected by the heavy metals compared to hypocotyl growth and the seedlings appeared to be more 
resistant to Zn. The germination ability of P. harmala over a wide range of heavy metals suggests that this species can 
grow easily in polluted soils.

Keywords Arid land restoration · Native species · Metal tolerance index · Timson’s index · Phytoremediation

Introduction

Arid and semiarid lands around the world can support many 
woody and herbaceous species highly tolerant to harsh envi-
ronmental conditions, e.g., drought, salinity and heavy metal 
contamination, which can be used for land rehabilitation and 
restoration (Barakat et al. 2013; Nedjimi 2016; Bhatt and 
Santo 2017).

Heavy metal pollution caused by anthropogenic prac-
tices like mine tailings, chemical applications (insecticides 
and fungicides), sludge and industrial waste production 
is one of the major environmental threats and leads to 

agro-ecosystem pollution and land degradation, particularly 
in arid areas (Liang et al. 2017; Dotaniya et al. 2018; Ghori 
et al. 2019).

Certain heavy metals (HMs) such as cadmium (Cd) and 
lead (Pb) are non-essential for plant growth and are highly 
toxic when their levels exceed critical threshold values (Sar-
war et al. 2016). Other HMs such as zinc (Zn) and copper 
(Cu) are indispensible micro-nutrients for plants at low con-
centrations but at higher levels, they can lead to toxicity and 
induce metabolic perturbations and growth suppression for 
most plant species (Kabata-Pendias 2011).

Phytoremediation is a sustainable strategy that uses some 
hyper-accumulator plants and their rhizospheric microbes to 
stabilize, transform or degrade pollutants in air, soil, water 
and the environment (da Silva et al. 2018; Hesami et al. 
2018; Khanoranga 2019). Removing HMs from soil, water 
or even from air using plants is considered an environmen-
tally cost-effective approach (Morikawa and Erkin 2003; 
Branquinho et al. 2007). However, physical and chemical 
methods have several limitations or disadvantages due to 
higher cost and labor intensiveness (Hesami et al. 2018). 
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Utilizing native species, which are well-adapted in terms of 
growth, survival and reproduction under such environmen-
tal stress, could be a better choice, and hence, identifying 
the native species which have tolerance ability to HMs is 
required. Until now, there have been few studies evaluating 
phytoremediation capacities of native desert plants (Badr 
et al. 2012; Ibrahim et al. 2013; Padmavathiamma et al. 
2014).

Generally, seeds are well-protected against various 
stresses until the imbibition and subsequent seedling growth 
(Li et al. 2005). However, germinating seeds and initial seed-
ling stage are much more vulnerable to HMs than mature 
plants, since their defense mechanisms are not yet fully 
developed (Li et al. 2005). Therefore, comprehending the 
plant sensitivity/tolerance to HMs stresses during germina-
tion and initial growth stage can determine its success or 
failure of propagation and survival in metal-contaminated 
lands.

Seed germination is the plant growth period that is 
most highly sensible to abiotic stresses including HMs 
pollution (Kranner and Colville 2011). Numerous reports 
have shown that HMs stresses dramatically affect the seed 
germinability and initial seedling development of many 
plant species such as Miscanthus floridulus (Hsu and Chou 
1992), Festuca rubra (Hatamzadeh et al. 2012), Linum usi-
tatissimum (Jain 2013) and Pinus sylvestris (Makhniova 
et al. 2019).

HMs can affect growth and plant productivity (Hasanuz-
zaman and Fujita 2012). However, some plants known as 
hyper-accumulator species survive spontaneously in a wide 
range of polluted lands (Maestri et al. 2010; Hesami et al. 
2018). These species, which comprise annuals and per-
ennial plants, exhibit different levels of tolerance against 
HMs (Peer et al. 2003; Nedjimi 2018). For landscaping 
programs, it is very useful to select plants that have spon-
taneously colonized polluted soils (Conesa et al. 2007; 
Nedjimi 2016).

Peganum harmala L. (family of Nitrariaceae ex. Zygo-
phyllaceae) is a native species that occurs naturally in 
degraded and metalliferous lands in arid and semiarid 
regions around the Mediterranean basin (Suleiman et al. 
2011; Nedjimi et al. 2012). Due its high contents of alka-
loids, including harmine, harmol, harmaline and peganol 
(Moloudizargari et al. 2013), seeds of this species are used 
in traditional medicine from ancient times to treat large 
human diseases. These include hypoglycemic, antispas-
modic, antidepression (epilepsy and Parkinson’ disease), 
antitumoral and antileishmaniasis effects (Zaker et al. 2007; 
Singh et al. 2008; Astulla et al. 2008; Rahimi-Moghaddam 
et al. 2011). Peganum harmala is found in polluted soils, 
which presumably means it is more able to cope with HMs 
than other plants species. However, information about its 
germinability and initial growth characteristics are scarce. 

Thus, conducting the seed germination of P. harmala under 
different metal stresses could be helpful to evaluate their 
potential for utilizing them in metal-contaminated areas of 
arid regions.

Therefore, the objective of the present investigation was 
to assess the phytotoxicity of Cd, Pb, Cr and Zn on germi-
nation and initial seedling growth of P. harmala, thereby 
testing its tolerance to HMs for the possible use in reha-
bilitation of Algerian arid lands where the occurrence of 
these HMs is frequent. This information could be useful to 
establish restoration programs by selecting the most suita-
ble plant species to revegetate the contaminated lands. This 
study was conducted at the Faculty of Science of Nature 
and Life, University Ziane Achour of Djelfa (Algeria) from 
2015 to 2016.

Materials and methods

Study species and seed collection

Peganum harmala is a native herbaceous plant (Fig. 1) that 
can grow up to 0.30–0.80 m tall. The dark-green leaves 
are arranged alternately on stiff twigs. In xeric soils, the 
root system can reach a depth of 5–6 m. Peganum harmala 
flowers in late spring, from April to June. After matura-
tion, the fruit is a dry dehiscent capsule constituted by 
three carpels containing about 50 dark-brown seeds (3 mm 
in length) (Quézel and Santa 1963). A mature plant pro-
duces 1000–2500 seeds per year. For this work, the aver-
age seed mass was determined by weighing three repli-
cates: the mean dry weight of 100 seeds was 5 ± 0.03 g. 

(b)

(c)

(d)

(a)

5 mm

Fig. 1  Peganum harmala L. (Nitrariaceae ex. Zygophyllaceae) “Com-
mon names: Harmal, Syrian Rue”. Whole plant (a), flower (b), fruit 
capsule (c) and seeds (d)
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This species can tolerate very harsh ecological conditions 
such as salinity and drought; native populations of P. har-
mala can be found in very alkaline and salty soils, with 
low annual rainfall (100–250 mm) (Ahmed and Khan 
2010).

Mature seeds of P. harmala were hand-collected in Sep-
tember 2015 from the Dar Chioukh region (Djelfa province) 
located in the central drylands of Algeria (3° 29′ E longi-
tude, 34° 53′ N latitude and 1103 m a.s.l., Northern Algeria). 
Seeds were randomly harvested from 50 individual plants 
in order to reduce the influence of genetic variation. After 
cleaning the fruit capsules, the seeds were kept in a cold 
room at 4 °C until the germination test.

Germination bioassays and seedling measurements

Before use, the seeds were sterilized externally by soaking 
in 5% sodium hypochlorite (NaClO) for 10 min and were 
then washed abundantly with deionized  H2O. The germina-
tion assay was performed in plastic Petri dishes (9 cm Ø) 
included two sterile Whatman filter papers wetted with 5 ml 
of the different treatment solutions (0, 100, 200, 300 µM) of 
the HMs (Zn, Cr, Pb and Cd), added as zinc sulfate  (ZnSO4), 
potassium dichromate  (K2Cr2O7) and lead and cadmium 
nitrate, Pb(NO3)2 and Cd(NO3)2, respectively. The dishes 
were sealed with adhesive tape (Parafilm™) to avoid evapo-
ration loss and incubated for 15 days.

For each treatment, four replications of 25 seeds were 
used. The experiment protocol was conducted on complete 
randomized design. The germination process (protrusion of 
the radicle) was recorded when the radicle length reached 
2–3 mm.

The seeds were germinated in a phytotron with controlled 
photoperiods of 12-h dark and 12-h light, and a temperature 
regime of 15 °C and 25 °C (night/day); these conditions 
were found to be appropriate to enhance the germination 
potential of this Mediterranean species (Nedjimi 2013).

The germination rate (Timson’s index) was assessed 
using the formula described by Nedjimi (2019). Timson’s 
index =Σpg/t, where (pg) is the percent of germination after 
2-d interval and (t) is the total germination period.

To study the influence of the different metals on initial 
seedling growth, the lengths of the radicles and roots were 
measured.

The metal tolerance index (MTI %) was calculated using 
the method of Wilkins (1978): MTI % = (radicle length in 
metal solution/radicle length control) × 100.

Statistical analysis

The results were subjected to two-way ANOVA to determine 
the effects of the HMs, concentrations and their interaction 
(HMs × C) on germination parameters (percent seed ger-
mination and Timson’s index) and seedlings measurements 
(hypocotyl and radicle lengths). Duncan’s multiple-range 
test was applied to evaluate significant variations between 
the treatments at the P < 0.001 level. The data were arcsine 
converted before the statistical analysis to ensure the uni-
formity of variance. Linear regressions were used to deter-
mine the relationships between HM concentrations and ger-
mination. Statistical evaluation was performed using SPSS 
software, version 17.0 (SPSS Inc., Chicago, USA).

Results and discussion

Heavy metal effects on percent seed germination

HMs pollution has been known as a major environmental 
threat due to their pervasiveness and persistence. Accumula-
tion of HMs in soil can create serious threat to plants due to 
their toxicity (Benavides et al. 2005). Therefore, in this work, 
we assessed the phytotoxicity of selected HMs (Cd, Cr, Pb 
and Zn) with regard to the seed germinability of P. harmala. 
A two-way ANOVA indicates a significant impact of the 

Table 1  A two-way ANOVA of the effects of heavy metals (HMs), concentrations (C) and their interaction (HMs × C) on germination, growth 
parameters and tolerance index of P. harmala 

Data represent degree of freedom (df) and F values significant at **P < 0.01; ***P < 0.001, ns not significant

Independent variables Heavy metals (HMs) Concentrations (C) Interaction (HMs × C)

df F values df F values df F values

Percent germination 3 190.18*** 3 336.50*** 9 23.19***
Rate of germination 3 84.04*** 3 168.37*** 9 10.25***
Hypocotyl length 3 20.91*** 3 37.20*** 9 3.27**
Radicle length 3 1.40** 3 61.15*** 9 0.37 ns

Tolerance index 3 26.34*** 3 1231.41*** 9 8.10***
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HMs (F = 190.18, P < 0.001), concentrations (F = 336.50, 
P < 0.001) and their interaction (HMS × C) (F = 23.19, 
P < 0.001) on the percent seed germination (Table 1). Ger-
mination decreased with the increase in the Zn, Cr, Pb and 
Cd concentrations (Fig. 2). For Zn and Cr, this parameter did 
not change significantly at 100 µM (P > 0.05) in comparison 
with the control. The most pronounced suppressive effect 
of the HMs was recorded for Pb and Cd (Fig. 2). Strong 
statistical correlations were found between percent seed ger-
mination and the HMs concentrations, with R2 ranging from 
0.72 to 0.94 (Fig. 3). The phytotoxicity of the HMs can be 
ranked in the order of the suppression effects as follows: 
Cd > Pb > Cr > Zn.

Germination and embryo growth bioassays are the two 
first stages widely used as basic experimental tests of the 
phytotoxicological effect of HMs on different crops and 
plant species (Kranner and Colville 2011). All the tested 
HMs significantly affected seed germination of P. harmala. 
However, the precise effect depends on the particular HM 
and its concentration. At lower concentration, Zn and Cr 
did not reduce the germination which indicates that prob-
ably lower concentrations of Zn and Cr did not interfere 

with the respiratory activity and mobilization of seed 
reserves such as starch, proteins and phytate (Bishnoi et al. 
1993). In general, the percent seed germination decreased 
as the concentrations of HMs increased. These results are 
in conformity with those reported in other investigations. 
For example, Pandey et al. (2007) observed a considerable 
reduction in percent seed germination of Catharanthus 
roseus treated with 50–500 µM of  CdCl2 or  PbCl2. Abra-
ham et al. (2013) stated that exposure of Arachis hypogaea 
seeds to increasing concentrations of Cd, Pb or Cu (0, 75 
and 100 mg  L−1) reduced significantly the germination 
percentage. Also, Li et al. (2005) reported that the seed 
germinability of Arabidopsis thaliana ecotype Colum-
bia was negatively affected by Cd, Pb and Zn provided 
as chloride salts. Shaukat et al. (1999) found comparable 
response when examining the seed germinability of Par-
kinsonia aculeata and Pennisetum americanum exposed to 
Cd, Pb and Cr treatments. Mbadra et al. (2019) indicated 
that soil metallic pollution with Pb, Zn, Cu and Cr affected 
the percentage of germination of Solanum lycopersicum 
and Cicer arietinum, whereas these metals did not affect 
Cucumis sativus germination.

Fig. 2  Cumulative percent 
germination as a function of 
time of P. harmala seeds treated 
with Zn, Cr, Pb or Cd. Differ-
ent letters indicate significant 
difference between treatments 
(P < 0.001, Duncan’s multiple-
range test)
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Both the osmotic and toxic effects of HMs have been 
implicated in the inhibition of the germination in polluted 
media. Street et al. (2007) indicated that high levels of Cu, 
Zn, Cd, Pb and Hg reduced the seed germination in vari-
ous species such as Bowiea volubilis, Eucomis autumnalis 
and Merwilla natalensis due to abnormalities in the embryo 
growth process.

HMs inhibit or cease germination by various mechanisms 
such as (1) by embryonic damage and loss of coleoptile vital-
ity (Wierzbicka and Obidzinska 1998) and (2) by decreas-
ing α-amylase activity, responsible for starch hydrolysis, 
which interrupted the sugar supply to the embryo (Mihoub 
et al. 2005). Li et al. (2005) demonstrated that Arabidopsis 
seeds that had not germinated in Cu treatments were able to 
recover their germinability after transferring them to dis-
tilled  H2O, confirming the osmotic effects of Cu.

Heavy metal effects on the rate of germination 
(Timson’s index)

A two-way ANOVA shows that Timson’s index (germination 
rate) for the P. harmala seeds was significantly affected by 
the HMs (F = 84.04, P < 0.001), concentrations (F = 168.37, 
P < 0.001) and the interaction of these two factors (F = 10.25, 

P < 0.001) (Table 1). An increase in the HMs concentrations 
significantly decreased the Timson’s index. This suppres-
sion was apparent at the highest concentration (300 µM), for 
which this index was reduced by about 68% and 78.83% as 
compared to the control, respectively, for Pb and Cd (Fig. 4).

The phytotoxicity of HMs is influenced by many factors 
such as (1) the type of HMs, (2) plant species (3) devel-
opment stage and (4) duration of exposure to the HMs (s) 
(Kranner and Colville 2011). In the present study, the appli-
cation of Cd, Pb, Cr or Zn adversely affected the Timson’s 
index of P. harmala seeds.

These results are consistent with the previous study, 
who reported that Cd, Cu, Pb and Zn, added as chlorides, 
decreased the germination rate of Cucumis sativus (Mun-
zuroglu and Geckil 2002). Similarly, a study conducted by 
Ćurguz et al. (2012) showed that the Timson’s index of Picea 
abies was affected by Cd, Pb and Zn application, although 
they used lower concentrations of these metals.

Heavy metal effects on early seedling growth

Figure 5 shows that a clear inhibitory effect on hypocotyl 
elongation begins at 100, 200 and 300 µM, respectively, for 

Fig. 3  Regression plots of 
mean percent germination of P. 
harmala seeds treated with Zn, 
Cr, Pb or Cd
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Cd, Pb and Cr. However, the increasing Zn concentration 
did not produce a significant (P < 0.05) effect on hypoco-
tyl length. For the same concentrations, Cd had a stronger 
adverse effect on hypocotyl length when compared with the 
other HMs. A two-way ANOVA displayed that the presence 
of HMs (F = 20.91, P < 0.001), concentrations (F = 37.20, 
P < 0.001) and their interaction (HMS × C) (F = 3.27, 
P < 0.01) significantly affected hypocotyl length (Table 1).

The inhibition of hypocotyl growth decreased in the 
order, Cd > Pb > Cr > Zn, and was probably the consequence 
of direct effects (toxicity of metals accumulated in tissues) 
and/or indirect effects (mineral nutrition deficiencies) of the 
HMs (Kranner and Colville 2011).

The two-way ANOVA shows that the HMs (F = 1.40, 
P < 0.01) and concentrations (F = 61.15, P < 0.001) had 
a significant effect on radicle length, but their interaction 
(HMS × C) was not significant (F = 0.37, P > 0.05) (Table 1). 
The exposure of P. harmala to HMs decreased radicle 
length, with the highest concentration (300 µM) causing a 
reduction of 84.1%, 87.34%, 85.20% and 93.20%, respec-
tively, for Zn, Cr, Pb and Cd (Fig. 6). This suppression of 

Fig. 4  Regression plots of the 
rate of germination (Timson’s 
index) of P. harmala seeds 
treated with Zn, Cr, Pb or Cd
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radicle growth was most apparent for Cd  (NO3)2 but was less 
so in the case of Zn.

The radicle is the primary plant organ most affected by 
metal uptake and its growth is commonly stunted compared 
to aboveground part. Therefore, the measurement of radi-
cles is often used for evaluating the degree of HM toxicity 
(Wilkins 1978). This concept was confirmed here by the pre-
sent results, the radicles being affected before the hypocotyls 
by all the HMs tested. This high sensitivity of the radicle to 
HMs can be explicated by the fact that the root system is the 
first organ of the plant that is in direct contact with toxins in 
the rhizospheric medium. The inhibition of root growth by 
HMs might be due to abnormal mitosis and blockage of cell 
division (Jiang et al. 2001). Similar results have been found 
for other plant species such as Pimpinella anisum (Jeliaz-
kova and Craker 2003) and Ambrosia artemisiifolia (Bae 
et al. 2016).

In this study, germination suppression and seedling 
growth inhibition of P. harmala were more affected by the 
highest Cd and Zn treatments. Cadmium is known for its 
phytotoxicity by inducing failure in seed imbibition, nutrient 
uptake and growth restriction (Li et al. 2005). However, Pb 
has severe effects on many physiological processes such as 
prevention of water absorption, cell membrane dysfunction 
and interaction with many enzymes necessary for normal 
seedling growth (Nagajyoti et al. 2010).

Metal tolerance index

The two-way ANOVA indicates a significant effect of the 
HMs (F = 26.34, P < 0.001), concentrations (F = 1231.41, 

P < 0.001) and their interaction (F = 8.10, P < 0.001) on 
the MTI (Table 1). Figure 7 displays the values of the 
MTI (%) of the P. harmala seedlings. The increase in the 
HMs concentrations substantially reduced this index, but 
it declined more quickly for Cd compared to the other 
HMs. At the highest concentration (300 μM), the MTI 
(%) was 15.89%, 12.64%, 14.80% and 6.79%, respectively, 
for Zn, Cr, Pb and Cd, relative to the untreated seedlings 
(control) (Fig. 7).

The present report shows that Cd, as Cd  (NO3)2, was 
the most toxic HM with respect to the seed germinabil-
ity and initial growth of P. harmala, compared to Pb, Cr 
and Zn. A comparable conclusion was drawn by Shafiq 
and Iqbal (2006), who reported that Cd was more inhibi-
tory than Pb regarding the germinability and initial plant 
growth of Cassia siamea. Cadmium is a non-essential 
trace element (Shahid et al. 2016). Its uptake alters the 
assimilation of mineral nutrients (like Fe and Ca), inhibits 
stomatal conductance and consequently suppresses the 
root hydraulic conductivity (Nedjimi and Daoud 2009; 
Nedjimi 2018).

Among the HMs tested here, Zn showed the lowest 
inhibitory effect on the germination and hypocotyl length 
of P. harmala. Similarly, an experiment carried out with 
Salicornia ramosissima did not show any impact of  ZnSO4, 
at concentrations from 10 to 2000 µM, on the final germi-
nation or on cotyledon and hypocotyl growth (Márquez-
García et al. 2013). The highest tolerance of Zn was also 
reported by Ozdener and Kutbay (2009), who investigated 
the effects of Cu, Cd, Ni, Pb and Zn on seed germination of 
Eruca sativa. Zinc is an essential trace element implicated 
in protein and tryptophan synthesis (the precursor of auxin), 
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which is indispensable for meristem cell division (Marsch-
ner 1995). It plays a role as a stimulator of several enzymes 
such as RNA polymerase and superoxide dismutase (SOD). 
Its deficiency causes growth reduction and leaf chlorosis 
(Kabata-Pendias 2011).

Conclusion

The results found in this study show that seeds of P. har-
mala harvested from the central drylands of Algeria were 
able to germinate in moderate concentrations of HMs and 
appear to be more tolerant/resistant to Zn than to the other 
HMs tested (Cd, Cr and Pb). The phytotoxicity of the HMs 
regarding germination and seedling growth, in descending 
order of damage, was Cd > Pb > Cr > Zn. This information 
can be considered a contributing step in finding of the tol-
erance limit of P. harmala at different concentrations of 
treated metals. However, we will conduct further study in 
near future to evaluate the biomass production and ability 
to uptake different HMs by this species.
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