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Abstract
This study performs the multiscale decomposition of six water quality parameters from Elunuthimangalam station in Noyyal 
River, a water quality hotspot in Southern India, using the complete ensemble empirical mode decomposition with adap-
tive noise method. Then, the intrinsic mode functions (IMFs) obtained are subjected to normalized Hilbert transform-direct 
quadrature-coupled framework for their time–frequency characterization. The time–frequency–amplitude spectra revealed 
that the dominant frequency is dynamic in characteristics and the marginal spectra successfully captured the significant high 
anthropogenic interventions in the form of pollutant disposals in the study area. Then, an in-depth examination of the asso-
ciation of different water quality parameters such as pH, temperature, dissolved oxygen (DO), biochemical oxygen demand 
(BOD) and total hardness (TH) with electrical conductivity (EC) is done through a running correlation method, namely 
time-dependent intrinsic correlation (TDIC) in which the sliding window size is adaptively fixed based on instantaneous 
frequencies estimated by HT. The TDIC analysis revealed that with the exception of TH, the association of water quality 
parameters with EC in different time scales is not alike in both nature and strength. Also the well-debated DO–temperature 
and DO–BOD relationships displayed diverse correlation properties in different time scales and over the time domain.

Keywords Frequency · Decomposition · Time scale · Intrinsic mode functions · Pollutant

Introduction

Characterization of water quality time series and its accu-
rate modeling are of prime concern for the environmental 
modelers as it helps in ensuring the quality standards of 
natural rivers. The characterization of the water quality sig-
nals can be performed by appropriate decomposition and 
spectral analysis procedures to extract the trend, periodicity 
and seasonality (Wang et al. 2014; Duan et al. 2018). The 
use of data-driven hybrid models has been gaining popular-
ity in prediction of water quality parameters (Aghel et al. 
2018; Najafzadeh et al. 2018), and improved understanding 
of the periodic structure of the time series may eventually 
help in developing decomposition-data-driven hybrid mod-
els for prediction of these parameters (Wang et al. 2014). 

Time series data of water quality parameters (WQPs) are 
nonlinear, non-stationary and multiscaling in characteris-
tics (Rao and Hsu 2008). The traditional spectral analysis 
methods such as Fourier transform become inappropriate to 
analyze such series due to its trigonometric functional form 
and global character. Over the years, the alternatives such 
as wavelet transforms were proposed which can analyze the 
hydro-environmental datasets in multiple time scales and 
which may give more insight into the modeling efforts of 
such series. However, the ‘a priori’ selection of mother 
wavelet function and the optimal decomposition level are 
the two challenging issues while using wavelet transforms 
(Sang et al. 2016). Hilbert–Huang transform (HHT) pro-
pounded by Huang et al. (1998) is a popular tool for spec-
tral characterization of non-stationary time series datasets, 
which can overcome such challenges and can identify the 
‘true’ inherent time scales of hydro-environmental time 
series. The HHT involves two stages: (1) decomposition of 
a given time series into different orthogonal modes of spe-
cific periodic scale; (2) the Hilbert transform of the modes 
for extracting the time–frequency–amplitude characteristics 
of the series. The former step is performed by the operation, 
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namely empirical mode decomposition (EMD) in which 
the decomposition of a time series is performed in a data-
adaptive manner iteratively. The complete description of the 
EMD algorithm is available elsewhere (Huang et al. 1998; 
Rao and Hsu 2008). On employing EMD, it is believed that 
the original time series should be separable to a set of oscil-
latory modes each having distinctly different periodicity 
(representing time scales of the processes). However, the 
basic EMD algorithm may lead to modes with more than 
one frequency (popularly known as ‘mode mixing’). The 
time–frequency transformation of such modes may lead to 
physically meaningless frequencies (such as negative instan-
taneous frequencies), and it may lead to erroneous interpre-
tations. To avoid the stated problems, a noise-assisted and 
ensemble averaged version of EMD called ensemble EMD 
(EEMD) was propounded by Wu and Huang (2005). But 
later on, it is noticed that the ensemble averaging in EEMD 
may lead to the lack of pure orthogonality property when 
applied for practical real field datasets. In order to rectify 
the issues related to EEMD, Torres et al. (2011) proposed 
an improved version of EEMD called complete empirical 
mode decomposition with adaptive noise (CEEMDAN). The 
orthogonal modes that resulted from one of the decomposi-
tion procedures are appropriate input for the time–frequency 
characterization of the signal.

The application of HHT for the characterization of hydro-
environmental time series is becoming popular in recent 
days (Huang and Wu 2008; Huang et al. 2009a; Kuai and 
Tsai 2012; Massei and Fournier 2012; Adarsh and Janga 
Reddy 2016a, b). Even though water quality datasets pos-
sess fairly similar characteristics as hydro-meteorological 
datasets, only very limited studies were made to analyze 
such series employing the HHT (Franceschini and Tsai 
2010; Naixia et al. 2011). Adarsh and Janga Reddy (2014) 
made a preliminary attempt for tracking the basic character-
istics of the four WQPs electrical conductivity, temperature, 
magnesium and total hardness data from Elunuthimangalam 
station in Noyyal River in the state of Tamil Nadu in South-
ern India. However, in their study it is not attempted for 
an investigation into the association between the WQPs in 
multiple time scales and such an analysis can have more 
practical appeal. The characteristic analysis of water qual-
ity datasets has proven its multiscaling property (Frances-
chini and Tsai 2010) while for the estimation of WQPs the 
selection of input parameters is still made based on the con-
ventional Pearson coefficient of correlation between time 
series. To get more insight into this issue, a decomposition 
procedure and a subsequent running correlation step can 
be conjunctively used. Wavelet-based procedures such as 
wavelet coherency may suit for such problems, but the dif-
ference in choice of mother wavelet function may change 
the final output and it needs smoothing operation, which in 
turn affects the time–frequency localization (Grinsted et al. 

2004). Moreover, on applying a running correlation proce-
dure fixing the size of sliding window is a major challenge to 
the modeler (Rodo and Rodriguez-Arias 2006). For circum-
venting such issues, Chen et al. (2010) propounded time-
dependent intrinsic correlation (TDIC) technique in which 
the size of sliding window is set adaptively based on the 
instantaneous frequencies derived by HHT. This technique is 
found to be promising in finding the association between dis-
solved oxygen and temperature of maritime datasets (Huang 
and Schmitt 2014). The technique is becoming popular for 
analyzing the multiscale association between two corre-
lated variables (Ismail et al. 2015; Calif et al. 2016; Derot 
et al. 2016; Adarsh and Janga Reddy 2018). The correlation 
analysis of water quality parameters is one of the popular 
research domains for water quality modelers. Starting with 
the simple Pearson or Spearman correlation, different meth-
ods have been used (Lehmann and Rode 2001; Ouyang et al. 
2006; Prathumratana et al. 2008; Bhandari and Nayal 2008; 
Manache and Mecching 2008; Noori et al. 2010; Lee et al. 
2016). In some of the recent studies, HHT is applied for 
investigating the association between different geophysical 
and environmental time series (Xiang et al. 2016), where the 
association between different modes is examined by consid-
ering the complete length of time series. Applying a running 
correlation procedure may give more insight into such asso-
ciation, for which the techniques like TDIC can be adopted.

This study investigates the multiscale running correla-
tion properties among the different water quality param-
eters based on the observations made at Elunuthimangalam 
station in Noyyal River in Southern India, by the Central 
Water Commission (CWC), India. The dying industries are 
responsible for pollution of Noyyal River, and many stud-
ies have been reported on water quality analysis of Noyyal 
River (Govindarajalu 2003; Mohan and Vanalakshmi 2013; 
Rajkumar 2011; Srinivasan et al. 2014; Marimuthu et al. 
2015; Babu et  al. 2017). Even though many studies on 
development of water quality index, situation analysis, effi-
cacy of treatment methods, etc., were performed on Noyyal 
River water quality parameters, none of the studies focused 
on their spectral characterization and multiscale correla-
tion properties. The scientific contribution in the form of 
time–frequency characterization and multiscale correlation 
analysis between different pairs of water quality parameters, 
using an innovative framework, is presented in the study. 
The specific objectives of this study are: (1) to perform the 
spectral characterization of time series of six water qual-
ity parameters from Noyyal River in Southern India using 
HHT; (2) to examine the association between EC with other 
water quality parameters and the popular DO–BOD and 
DO–temperature links in different time scales by employ-
ing the TDIC method.

This research work is performed at TKM College of Engi-
neering, Kollam, during 2017–2018 period, by collecting the 
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water quality data of Elunuthimangalam station in Noyyal 
River published by the CWC, India.

Materials and methods

This section of the paper presents the theoretical background 
of the methods used in the study.

Hilbert–Huang Transform

Hilbert–Huang transform is one of the well-accepted tech-
niques suitable for performing the spectral analysis time 
series that possess nonlinear and non-stationary character-
istics. The technique comprises two stages: (1) multiscale 
disaggregation of time series to obtain zero-mean orthogo-
nal modes, namely intrinsic mode functions (IMFs) and a 
final residue; (2) HT of the obtained IMF components. The 
empirical mode decomposition (EMD) stage involves: (1) 
detection of local extrema (maxima/minima) points and fit-
ting of appropriate mathematical functions connecting these 
points; (2) estimation of the mean series of extrema and 
finding a difference series (by subtracting the mean series 
of extrema from the actual time series). These two steps are 
collectively called as ‘sifting’ and the ‘sifting’ procedure is 
continued iteratively till an IMF is evolved. An orthogonal 
mode is called as an IMF only if it is (a) a zero-mean series; 
(b) difference between total number of extrema points and 
the summation of number of local maxima and number of 
local minima points at the most equal to one. The proce-
dure is continued iteratively till the final residue series is 
monotonically decreasing/increasing or it is single peaked 
(or with one trough). In this study, the improved version of 
EMD, namely the CEEMDAN, is followed for the orthogo-
nal decomposition and steps of CEEMDAN algorithm are 
presented below (Adarsh and Janga Reddy 2016a):

1. Execute the EMD of the N realizations of artificial series 
Xn(t) = X(t) + �0wn(t) and estimate the initial mode of 

CEEMDAN C1(t) by ensemble averaging

where n = 1, 2, …, N is the index for realizations; X(t) is 
the time series signal; wn(t) is the white noise series;�o 
is the noise parameter for the initial step; and Cn(t) is the 
first mode obtained by EMD of each realization.

2. For stage 1 (m = 1), calculate the initial residue as:

(1)C1(t) =
1

N

N∑
n=1

Cn(t),

(2)r1(t) = X(t) − C1(t)

3. Decompose the ensemble of artificial signals 
r1n(t) = r1(t) + �1E1(wn(t)) , n =1, 2, …., N till the evo-
lution of their first EMD mode happens. Then, estimate 

the subsequent mode C2(t) as

where �1 is noise parameter for first stage (m = 1); the 
operator Em(.) represents the development of the mth 
mode by EMD.

4. Compute the mth residue as

where Cm(t) is the IMFs obtained by CEEMDAN.
5. Estimate the first EMD mode of rm(t) + �mEm(wn(t)) , and 

define the (m + 1)th mode by CEEMDAN as

6. Transfer the control to step (4) for next m.
  The steps 4–6 are to be repeated as a loop till the resi-

due obtained is monotonically increasing/decreasing or 
having a single extrema.

  In the above algorithm, C refers to an IMF compo-
nent.

Orthogonality and statistical significance of modes

The IMFs from the decomposition of signal help in better 
understanding of the signal, and the higher the orthogonality, 
the less the leakage of information (Klionski et al. 2008). To 
measure the efficiency of the IMFs, the orthogonality of the 
decomposition should also be checked. The index of orthogo-
nality among different pairs of IMFs can be computed as

where Ci(t) and Cj(t) are ith and jth IMFs; M is the number 
of IMFs; Nt is the length of signal. If the decomposition 
is orthogonal, then the value of Oij should be zero (Zhang 
and Gai 2006). In practice, the value smaller than 0.1 is 
acceptable (Wu et al. 2011). Another possible mean to assess 
the orthogonality among different modes obtained by the 

(3)C2(t) =
1

N

N∑
n=1

E1[r1(t) + �1E1(wn(t)]

(4)rm(t) = rm−1(t) − Cm(t) for m = 2, 3,… ,M

(5)Cm+1(t) =
1

N

N∑
n=1

E1[rm(t) + �mEm(wn(t)]

(6)rM(t) = X(t) −

M∑
m=1

Cm(t).

(7)

Oij =
1

Nt

�
t

⎧⎪⎨⎪⎩

Ci(t).Cj(t)�
C2

i
(t) + C2

j
(t)

�
⎫⎪⎬⎪⎭

i, j = 1, 2,… ,M;t = 1, 2,… ,Nt
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decomposition is the computation of the overall index of 
orthogonality (IO) defined by Huang et al. (1998) as follows:

In this case also, the lower value of IO indicates the close-
ness to orthogonal behavior. A set of perfect orthogonal IMF 
components will give zero, but in practice, the value of IO 
smaller than 0.1 is acceptable (Wu et al. 2011).

To identify the most significant and influential compo-
nents to model the process, statistical significance test (SST) 
propounded by Wu and Huang (2004) is helpful. The SST 
involves the following steps:

(1) estimate the energy (squared sum of the signal) and 
mean period of IMFs of the time series signal X(t); (2) 
normalize the energy of IMFs with respect to that of a ref-
erence IMF (normally the first IMF); (3) generate a time 
series of white noise by Monte Carlo simulations, perform 
its decomposition and estimate the confidence bands of the 
spread function of white noise series at a specified level of 
significance (normally at 5% level); (4) locate the points 
in a 2D plane (mean period of IMFs in X-axis and normal-
ized energy in Y-axis) along with the confidence band of 
white noise; (5) compare the energy level of different IMFs 
with the confidence band. The IMFs that have their energy 
level located above the upper confidence line of the white 
noise series are considered to be statistically significant at 
the specified significance level.

The Hilbert transformation of IMFs obtained by the 
CEEMDAN algorithm is helpful to study the time–frequency 
spectral characterization of the selected signal. The theoreti-
cal details of HT are elaborated in Rao and Hsu (2008). The 
conventional Hilbert Transform algorithm may sometimes 
result in physically meaningless instantaneous frequencies 
(IFs) (say negative frequency) or with mathematical incor-
rectness. To rectify such problems, Huang et al. (2009b) 
proposed a normalization scheme for HT with direct quad-
rature operation (NHT-DQ). The ‘normalization’ scheme of 
HT comprises the following steps: (1) identification of local 
peaks (maxima points) of IMF components; (2) fitting of 
spline function connecting the maxima points; (3) term-by-
term division of IMF series by the spline series, etc. The last 
step is iteratively continued till all the normalized maxima 
points become unity. The resulting series is the frequency-
modulated (FM) part of the signal, which helps in estimating 
amplitude-modulated (AM) part of the signal. This proce-
dure involving normalization process and subsequent Hilbert 
transformation of AM part of the signal is known as the 
normalized Hilbert Transform (NHT). The phase angle is 
computed as inverse tangent of the ratio of Hilbert-trans-
formed series of an IMF and the IMF component, and the 

(8)IO =
1

Nt

∑
t

1

[X(t)]2

(
M∑
i=1

M∑
j=1

Ci(t)Cj(t)

)

implementation scheme which uses ‘arccosine’ in the place 
of ‘arctan’ in the determination of phase angles is called as 
‘direct quadrature (DQ).’

Multiscale correlation analysis of water quality 
parameters

As the time series of WQPs holds multiscaling property, 
a scale-specific dynamic (running) correlation procedure 
is more suitable to investigate the association between two 
correlated parameters. First the decomposition of the time 
series pairs is performed using CEEMDAN for the scale 
separation. Subsequently, the correlation between the modes 
is found to estimate the linear association between the sig-
nals at different time scales. Then, the running correlation 
between the signals at a specific time scale is performed 
using the HHT-based method, namely time-dependent 
intrinsic correlation (TDIC). Here, the running correlation 
analysis between the two correlated signals is performed by 
selecting the time window adaptively by ensuring stationar-
ity of the data within the sliding window. Here, for fixing 
the window size, instantaneous frequencies computed by 
the HHT are helpful. The complete framework of multiscale 
correlation analysis of WQPs is provided in Fig. 1.

Study area and data

Noyyal River originates in the Velliangiri hills in Coim-
batore and drains into the river Cauvery at Noyyal in 
Erode. The river is of 173 km long with a basin area of 
around 3510 km2. It flows through the districts of Coim-
batore, Tiruppur, Erode and Karur in the state of Tamil 
Nadu in Southern India. Textile industry is dominant in 
these districts with numerous units working in knitting, 
dyeing/bleaching, processing, manufacturing operations 
located in the banks of the river. In textile processing, 
bleaching and dyeing are the two major activities that 
require a large amount of water and most of the water 
used by the associated units is discharged as effluent after 
processing, which leads to environmental havoc as the 
people living at the downstream reaches are affected by 
this pollution. In this study, HHT method is used for the 
spectral and multiscale correlation analysis of six WQPs 
of Elunuthimangalam (EMangalam) water quality moni-
toring station (11°01′54″ 77°53′15″) in Erode, located in 
Noyyal River (in Noyyal River Basin) in the state of Tamil 
Nadu in Southern India. Figure 2 presents the location 
map of the Elunuthimangalam station. In India, there are 
nearly 400 water quality monitoring stations operated by 
the CWC, India, which collect and analyze more than 65 
water quality parameters at daily/biweekly/monthly scales. 
The acceptability of river water for drinking and other 
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purposes is fixed with regard to certain permissible limits 
set by the Bureau of Indian Standards (BIS). By compar-
ing the values of numerous WQPs collected at different 
monitoring stations with the respective permissible limits, 

the CWC recognized certain water quality ‘hotspots’ in 
India, in 2011. EMangalam is one such hotspot, where the 
highest number of WQPs fails to meet the quality stand-
ards specified by the BIS (CWC 2011). In this study, three 

Fig. 1  Framework of multiscale correlation analysis of water quality parameters using TDIC method
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physical parameters [temperature (T), pH and electrical 
conductivity (EC)] and the dissolved oxygen (DO), total 
hardness (TH) and biochemical oxygen demand (BOD) 
are considered for the analysis. In this study, the monthly 
data of the above six WQPs for November 2004–May 2012 
period (91 data points) collected from http://www.india 
-wris.nrsc.gov.in/ are considered for analysis.

Results and discussion

The time series of six WQPs considered for the study are 
decomposed to multiple time scales by invoking the CEEM-
DAN algorithm after setting the standard deviation of noise 
parameter as 0.2 and number of realizations as 500 (Antico 
et al. 2014). The authors used the MATLAB program pro-
vided by Patrick Flandrin (http://perso .ens-lyon.fr/patri 
ck.fland rin/emd.html) with appropriate modifications, for the 
implementation of CEEMDAN algorithm. The time series 
of different parameters and the IMFs and residue obtained 
by CEEMDAN decomposition are provided in Fig. 3. It is 
noticed that all the six time series are decomposable to six 

IMFs and one residue component. The mean period of oscil-
latory modes calculated by zero-crossing method (Huang 
et al. 2009b) and the % variability explained by each mode 
are presented in Table 1.

To check the orthogonality, two methods were used in 
this study. First, the indices of orthogonality (Oij) between 
all possible pairs of IMFs obtained by the CEEMDAN-based 
and EEMD-based decomposition are presented in Fig. 4. In 
both cases, even the maximum values are of the order of 
5 × 10−3, which is substantially less than 0.1. Therefore, 
to quantify the relative performance of CEEMDAN and 
EEMD, further the orthogonality is estimated by determin-
ing the IO.

The IO values by CEEMDAN-based and EEMD-based 
decomposition are summarized in Table 2. The IO values 
show that the overall orthogonality property is better for the 
CEEMDAN method when compared with that by EEMD. 
This may be because the ensemble averaged modes may 
not always be satisfying the properties of an IMF and when 
such IMFs are subjected to Hilbert transform, they may lead 
to negative values of instantaneous frequency which lacks 
physical meaning.

Fig. 2  Location map of Elunuthimangalam station in Noyyal River Basin, Tamil Nadu, India

http://www.india-wris.nrsc.gov.in/
http://www.india-wris.nrsc.gov.in/
http://perso.ens-lyon.fr/patrick.flandrin/emd.html
http://perso.ens-lyon.fr/patrick.flandrin/emd.html
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The SST of IMF components of all the six WQP time 
series is performed, and results are provided in Fig. 5. The 
SST of different parameters showed that the IMF5 is statis-
tically significant for all parameters, as the energy level of 
this component falls above the upper significance line and 

such components may be influential upon the predictability 
efforts of the respective parameters (Lee and Ouarda 2011). 
However, it is to be noted that their mean period is differ-
ent for different cases (2–4 years) and in general it can be 
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inferred that modes with periods of 2–4-year time scale are 
influential.

Results presented in Table 1 show that the IMF4 pos-
sesses annual periodicity (~ 11–13 months), while the first 
three IMFs have intra-annual periodicity (of seasonal scales) 
and the fifth and sixth modes are with inter annual periodic-
ity, for all the six time series. The residue infers the long-
term trend of the respective time series signal, and for the 

datasets used in the study, the trend of different water qual-
ity parameters except temperature and BOD is noted to be 
decreasing. Then, the Hilbert transform of IMFs of all the 
six WQP time series is carried out by invoking the NHT-DQ 
scheme. The instantaneous frequency trajectories obtained 
by the HT of IMFs of different parameters are presented in 
Fig. 6.

Table 1  Mean period (T in months) of oscillatory modes of different water quality parameters obtained by CEEMDAN method and the percent-
age variability explained (V) by them

LT long term

IMF number Electrical conductivity pH Temperature

V T V T V T

IMF1 36.81 3.250 20.98 2.844 30.72 3.033
IMF2 20.35 6.067 3.38 5.056 11.17 6.500
IMF3 29.30 10.111 42.75 7.000 7.66 6.500
IMF4 3.45 13.000 2.08 13.000 2.71 13.000
IMF5 1.15 45.500 6.59 22.750 4.09 30.333
IMF6 6.72 65.500 5.09 91.000 10.91 45.500
Residue 2.20 LT 19.13 LT 32.72 LT

IMF number Total hardness DO BOD

V T V T V T

IMF1 38.23 2.935 40.35 2.758 40.89 3.138
IMF2 11.13 6.067 12.59 5.056 3.79 5.353
IMF3 22.19 8.273 7.69 7.000 20.56 9.100
IMF4 3.36 13.000 5.65 11.375 11.96 11.375
IMF5 5.61 30.333 1.61 22.750 11.68 22.750
IMF6 4.64 45.500 7.15 45.500 10.86 45.500
Residue 14.83 LT 24.95 LT 0.27 LT
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Fig. 4  The indices of orthogonality among different pairs of IMFs 
by CEEMDAN and EEMD of different water quality time series: a 
electrical conductivity; b pH; c temperature; d total hardness; e DO; 

f BOD. The upper panel shows the results based on CEEMDAN, and 
the lower panel shows the results based on EEMD
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In Fig. 6, the time–frequency spectra corresponding to 
different process scales are presented and the amplitude 
values of WQPs are discerned by distinct color scheme. In 
general, it is noticed that less frequent physical factors (natu-
ral events) and frequent occurrences (like human activities) 
have a role on variability of WQPs of the river. Intermittent 
frequency is noticed in the spectra of high-frequency modes 
(represented by dots/break in the spectra) while continuous 
regions are noticed in the spectra of low-frequency modes, 

which is a typical signature of nonlinear processes. The 
intermittency could also be linked with the possible fractal 
behavior of different WQP time series which could be con-
firmed by executing classical procedures for the detection of 
fractality (Koirala et al. 2011; Kuai and Tsai 2012; Parmar 
and Bhardwaj 2013). There exists high-frequency modula-
tion in the spectra, which indicates non-stationarity of dif-
ferent signals. The variability of the frequency suggests that 
these parameters are the results of natural events or anthro-
pogenic activities that might repeat at different intervals of 
time (Franceschini and Tsai 2010). Further it is noticed that 
the dominant frequency (where a concentration of the high-
est amplitude occurs) is not constant, but varying with time.

Then, by integrating the marginal spectra of different 
IMFs along the time domain, the marginal Hilbert spectrum 
(MHS) is prepared. A spectral peak in MHS identified at a 
specified frequency ω infers that here is a higher probability 
that physical process with that frequency influences the vari-
ability of the time series. From the time–frequency represen-
tations of different IMFs, the mean MHS of all the six WQPs 
is prepared and presented as shown in Fig. 7. From Fig. 7, 
it is noted that the spectral peaks of all the series except pH 

Table 2  The number of modes and IO by EEMD and CEEMDAN 
methods

Parameter EEMD CEEMDAN

No. of modes IO No. of modes IO

EC 6 0.0054 7 0.0036
pH 8 0.0046 7 0.0011
T 8 0.0045 7 0.002
TH 6 0.0059 7 0.0032
DO 7 0.005 7 0.003
BOD 7 0.0043 7 0.0024
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Fig. 5  Statistical significance test of IMF components of different 
parameters: a electrical conductivity; b pH; c temperature; d TH; e 
DO; f BOD. Solid line represents the upper significance line at 5% 

significance level, and dashed line represents the upper significance 
line at 1% significance level
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are at frequencies greater than 0.085 (i.e., at intra-annual or 
high frequency range).

Individual or combined IMFs and their associated spectra 
can provide insights into the physical characteristics of the 
system under study that are not easily identifiable by other 
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methods (Franceschini and Tsai 2010). In addition to this, 
representing each IMF using the Hilbert spectrum would 
allow quantifying the direct influence of a given factor on 
the WQP. In the case of the analyzed series, it might pro-
vide some insights into the origins of the high concentration 
spikes. The frequency in the marginal spectrum indicates the 
likelihood that an oscillation with such a frequency exists 
(Huang et al. 1998). Accordingly, from the different panels 
of Fig. 7 the dominant frequency (spikes) can be identified. 
For the EC series, the prominent peak is at ~ 0.18 (cycles/
month), which corresponds to a periodicity of 6 months 
approximately. Two more spikes at diverse ranges (0.37 
cycles/month and 0.09 cycles/month) are also noticed from 
the spectrum, which ranges from seasonal (3 months) to 
annual scale approximately. The prominent peaks of tem-
perature ranges from 0.115 to 0.02 cycles per month (cor-
responding to 9–50 years variation), which are also in line 
with the global warming cycle as reported in earlier stud-
ies (Franceschini and Tsai 2010). For the spectra of the pH 
series, the prominent peaks are ~ 0.37 cycles/month and 0.41 
cycle/month, which corresponds to 2.5 months (seasonal 
time scales). Similarly, two spikes at 0.23 cycles/month 
and 0.3 cycles/month are noticed in the spectra of hardness; 
and one spike at ~ 0.13 cycle/month is noticed for spectra 
of BOD. The dominant variation in the dissolved oxygen is 
also at seasonal scale (2.5–4.5 months approximately). In 
general, several predominant frequencies and correspond-
ing time scales can be identified from the Hilbert spectrum 
of the different series and there is a higher likelihood of 
the highest amplitude at seasonal/intra-annual time scales, 
which can be associated with human interferences such as 
disposal of pollutants into the river system, which adds the 
changes in the concentration of the parameters. Dying indus-
tries are polluting Noyyal River which flows through Tirup-
pur, Erode and Karur districts in the state of Tamil Nadu by 
releasing their effluents into the river even without any treat-
ment (Marimuthu et al. 2015). Some of the storage struc-
tures like Orathupalayam Dam have become a tank holding 
effluent (where TDS level in the water is above 9000 ppm) 
and release water after every rainfall, effectively pollut-
ing the down river villages in the near-by districts. Many 
studies performed the water quality analysis and explicitly 
highlighted that the deterioration of water quality of Noyyal 
River is due to human activities (Mohan and Vanalakshmi 
2013). Also it is worth mentioning that these studies have 
been performed on the span of the data chosen for this study 
(Magudeswaran 2004; Magudeswaran and Ramachandran 
2007; Shashi Prabha 2010; Rajkumar and Nagan 2010a, b, 
2011; Jayanth Sarathi et al. 2011; Rajkumar 2011; Kumar 
2012; Mohan and Vanalakshmi 2013). These studies are in 
the form of water quality analysis, investigation of alterna-
tive practices of wastewater treatment or situation analysis 
to summarize the current state of knowledge regarding water 

resources management in the Noyyal sub-basin. One of the 
recent studies also says that more than 700 small-to-medium 
scale dyeing units have their presence in Tiruppur and Erode 
regions (Babu et al. 2017). Despite the establishment of 
treatment plants as per the release of many strict govern-
ment regulations and court orders in the last decade, many 
illegal small-scale home-run units continue to pollute the 
river. The observations and the reports of all these studies 
confirm that the anthropogenic activities are dominant in the 
area and it is found that the Hilbert spectrum successfully 
captured such interventions.

Multiscale local correlation analysis of water quality 
parameters

The water quality characters of EMangalam station show 
that the concentration of EC exceeds drastically over the per-
missible limit (59% for monsoon and 46% for non-monsoon 
periods) (CWC 2011). Therefore, in the present work the 
association of different WQPs with EC is investigated in 
multiple time scales. The total hardness and two important 
parameters pertaining to aquatic system DO and BOD are 
also considered in this study for the multiscale correlation 
analysis. First, the association of different parameters with 
EC is considered, and then, the two most debated links such 
as DO–temperature and DO–BOD are investigated. In this 
exercise, first the linear correlation between decomposed 
modes of EC with that of different parameters is considered. 
The resulting correlation matrices are provided in Table 3.

From Table 3, it is noticed that overall correlation (diago-
nal values of the correlation matrices) of TH with EC and 
pH with EC are consistent at different time scales. In rest of 
the cases, the nature of association (positive/negative cor-
relation) differs at different time scales. Strong correlation 
is noted in the association between TH and EC at different 
time scales, but the degree of association is not alike for the 
rest of the cases. On examining the cases of DO–tempera-
ture, overall correlation is found to be low, but the nature is 
consistent at different time scales, while in the link of BOD 
the nature is different in different time scales. But it is to be 
noted that the association is based on the linear correlation 
considering the complete dataset. In all cases, very strong 
correlation is noticed between the respective residue com-
ponents (more than 0.98 in magnitude). It is to be noted that 
for the links involving temperature, the correlation is less 
(~ 0.66) because of the inherent character of temperature 
records available.

The association between the different modes of EC with 
that of different parameters at the corresponding process 
scales can also be depicted by comparison of modes. As the 
intra-annual to seasonal association is more perceptible in 
the EC–TH, EC–BOD and EC–DO links, the comparison 
plots of these pairs are provided in Figs. 8, 9 and 10. From 
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Figs. 8, 9 and 10, it is clear that the phase-locked (in-phase) 
anti-phase and positive (or negative) associations are not 
prevailing over the complete length of the series; instead, it 
is localized in most of the cases. The overall Pearson cor-
relation between original series of EC and that of pH, tem-
perature, total hardness, BOD and DO is 0.156, − 0.049, 
0.163, − 0.059 and 0.066, respectively. Figures 8, 9 and 10 

show that one cannot ignore the reasonably good correlation 
at the localized time spells and in different process scales 
even though the overall correlation could be very low. This 
low correlation may be due to the fact that both positive and 
negative associations along the time domain could cancel 
each other. That is, the cycles of opposite nature prevailing 
in different time spells could mutually cancel each other.   

Table 3  Cross-correlation 
analysis between modes of EC 
with modes of different water 
quality parameters

Bold numbers show that the correlation is significant at 5% significance level

Mode number 
of EC

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 Residue

pH
IMF1 0.293 0.362 0.278 0.009 − 0.027 − 0.008 0.066
IMF2 − 0.006 0.424 0.274 − 0.013 − 0.159 0.024 − 0.080
IMF3 0.008 0.142 0.443 0.326 − 0.024 − 0.040 − 0.024
IMF4 − 0.001 0.029 0.198 0.024 0.087 0.064 0.018
IMF5 0.000 0.016 0.088 − 0.172 0.509 0.705 0.174
IMF6 − 0.040 0.016 0.047 − 0.062 0.446 0.339 0.510
Residue − 0.055 0.037 0.060 − 0.017 0.230 − 0.092 0.986

Temperature
IMF1 − 0.324 − 0.274 − 0.211 0.070 0.007 − 0.004 − 0.052
IMF2 − 0.061 − 0.017 0.015 0.220 0.018 − 0.056 − 0.028
IMF3 − 0.016 0.031 0.242 0.830 0.007 0.028 0.014
IMF4 − 0.003 0.098 0.387 0.830 0.013 − 0.047 − 0.069
IMF5 − 0.040 − 0.032 0.028 0.020 0.483 − 0.377 − 0.383
IMF6 − 0.021 − 0.071 − 0.027 0.008 0.467 0.084 − 0.271
Residue − 0.008 − 0.065 − 0.009 0.013 0.244 0.091 − 0.657

Total hardness
IMF1 0.447 0.165 0.024 − 0.022 − 0.011 − 0.025 − 0.049
IMF2 0.267 0.395 0.306 0.113 0.023 − 0.071 − 0.060
IMF3 0.235 0.400 0.762 0.537 0.078 0.007 − 0.041
IMF4 0.112 0.158 0.571 0.773 0.177 0.130 0.101
IMF5 − 0.009 − 0.112 − 0.030 0.108 0.758 0.762 0.142
IMF6 0.013 − 0.131 − 0.040 0.000 0.375 0.902 0.513
Residue 0.063 − 0.123 − 0.030 − 0.009 0.030 0.514 0.996

DO
IMF1 0.126 0.045 − 0.027 − 0.013 0.041 0.025 0.016
IMF2 − 0.244 − 0.437 − 0.073 − 0.025 − 0.030 0.004 0.000
IMF3 − 0.001 − 0.378 − 0.322 − 0.115 0.005 0.038 0.055
IMF4 − 0.036 − 0.612 − 0.275 0.113 0.009 0.082 0.086
IMF5 − 0.002 − 0.192 − 0.039 − 0.004 − 0.150 0.312 0.208
IMF6 0.023 − 0.165 − 0.091 − 0.016 0.410 0.785 0.539
Residue 0.065 − 0.104 − 0.025 0.001 0.075 0.507 0.999

BOD
IMF1 − 0.008 0.051 0.058 0.039 0.080 0.102 0.057
IMF2 0.327 0.427 0.245 0.068 − 0.047 − 0.058 − 0.049
IMF3 0.242 0.166 0.449 0.354 0.021 0.023 0.010
IMF4 0.084 − 0.293 0.139 0.370 0.125 0.129 0.014
IMF5 0.061 0.241 0.084 0.151 0.446 − 0.075 − 0.164
IMF6 0.023 0.141 0.094 − 0.007 − 0.576 − 0.717 − 0.048
Residue − 0.066 0.104 0.025 0.000 − 0.048 − 0.471 − 0.999
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The long-term association between water quality param-
eters is examined further by comparing the zero-mean resi-
dues of different cases (shown in Fig. 11). The comparison 
showed that DO–EC and TH–EC relationships are positive 
and the evolution is similar with a minor phase shift for the 

latter case (as the crossing of zero mean not occurs at the 
same year for TH and EC). The BOD–EC link is negative, 
but similar evolution of the trend is noticed in this case. The 
BOD–DO link is opposing and of similar nature of evo-
lution, while the temperature–DO link is not showing any 
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similarity in their long-term associations and this may be 
because of the character of temperature dataset which exhib-
ited a change in ~ 2006, which may be due to anthropogenic 
effect like the disposal of cold industrial water.

To get more insight into the local correlations in the 
temporal domain and over the time scales, dynamic cor-
relation estimation procedure is preferable, for which the 
TDIC method is chosen. The authors used the MATLAB 
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program provided by Yongxiang Huang (https ://zenod o.org/
recor d/9748#.XBhUF 2lS-Uk) with appropriate modifica-
tions, for determination of the TDIC values of different 
WQP–EC pairs considered in this study. After performing 
the TDIC analysis, the TDIC plot is developed. The entry in 
the X-axis of the TDIC plot is the instants corresponding to 
the mid-point of each sliding window, and that in the Y-axis 
is the sliding window size. The shape of the TDIC plot is 
triangular, and the correlation coefficient at the apex of the 
triangle is the correlation coefficient between the two IMFs 
(at same process scale) on considering the complete data, 
if the length of dataset is chosen as maximum window size 
(Chen et al. 2010). The TDIC plots of WQP–EC pairs are 
shown in Fig. 12.

From Fig. 12, it is clear that the pH–EC association is 
fairly consistent and positive in most of the time scales, but 
there are some localized pockets of time spells where the 
association is negative (since 2008 in IMF2 and IMF4). The 
EC–temperature link is not of unique character at different 
time scales. In some of the short-term intra-annual scales 
(IMF1 and IMF2), the association is long range and strongly 
negative, while at annual scale range it is strongly positive. 
The TH–EC association is found to be of the same charac-
ter at different time scales and over the temporal domain, 
even though the strength of association differs. The DO–EC 
relation is dominantly negative at IMF2 and IMF3; positive 

at annual scale, but along the time domain a couple of 
‘switchovers’ in the nature of association is noticed. That 
is, the relationship is not unique over the complete span of 
dataset under consideration. The BOD–EC relationship is 
consistent and strongly positive at scales IMF2–IMF5, but 
it is associated with rich dynamics (the presence of many 
couplets of contrasting correlations) in the time domain for 
the high-frequency mode IMF1. Because of the contrast-
ing behavior, an opposing nature of association is noticed 
between the EC–DO and EC–BOD links in most of the time 
scales, as anticipated. From different plots, it is also noticed 
that at annual scale (IMF4), the associations between most 
of the pairs are found to be strongly positive.

The well-debated DO–BOD and DO–temperature links 
are also analyzed by TDIC, and the results are presented in 
Fig. 13. The well-debated negative relationship between DO 
and temperature is not valid at all time scales and over the 
complete time domain. The characteristics of contracting 
correlations are noticed in many localized time spells, at 
different time scales, which have also been noted earlier by 
Huang and Schmitt (2014) in databases from marine envi-
ronment. On considering the association between BOD and 
DO also, similar behavior is noticeable, they are positively 
associated in IMF3 and IMF4 (close to annual scales), but 
in the rest of the cases the association is dominantly nega-
tive. In each of the cases, it is hard to provide a physical 
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explanation for such switchovers, but in a broad sense the 
pollutant disposal, environmental factors such as discharge 
variations in the river could be the reason.

It is to be noted that the river discharge (Q) is also one 
of the key parameters which decides the fate of water qual-
ity of the river system. Therefore, the monthly discharge 
of the corresponding period (2004–2012) is collected, and 
the decomposition and HT of the modes are performed. 
The modes and the corresponding frequency spectra of dis-
charge time series are presented in Fig. 14. Subsequently, 
TDIC analysis between discharge and different water qual-
ity parameters is performed and the results are presented in 
Fig. 15. From Fig. 15, the dominant negative association 
between discharge and different quality parameters is evi-
dent, except for discharge–DO and discharge–temperature at 
IMF2 and discharge–pH at IMF5, but there could be many 
localized reversals in the nature of association. Because of 
the contrasting behavior, an opposing nature of association 
is noticed between the discharge–DO and discharge–BOD 
links at all the time scales.

This study presented a multiscale framework for inves-
tigating the association between the different pairs of 
water quality parameters by considering the datasets from 
a water quality hotspot in Southern India. The framework 
of HHT-based multiscale running correlation analysis pre-
sented in this study is general one, and it can be applied 
for analyzing the association between any two correlated 
non-stationary time series, for example, the link between 
DO and temperature in a marine environment (Huang and 
Schmitt 2014), the link between marine temperature time 
series of different locations (Ismail et al. 2015; Derot et al. 

2016), streamflow–sediment link (Adarsh and Janga Reddy 
2016a), teleconnection between climatic variable and hydro-
logical variable (Adarsh and Janga Reddy 2016b). Through 
this study, it is proven that in a similar way the presented 
framework can be successfully applied for any pair of cor-
related stream water quality datasets. This approach provides 
a better understanding of the processes and physical events 
governing the measured pollutant concentrations in the river 
systems. The analysis helps in identification of the particular 
processes or events that each IMF represents by comparison 
of periodicity or the amplitudes of the spectra derived from 
the IMFs. The TDIC analysis breaks the notion of unique-
ness in the nature of association between different water 
quality parameters; instead, it could be different at different 
time scales and in time domain. Also such observations are 
problem specific (for example in the TH–EC link the rela-
tion is similar at all time scales), and such differences may 
not exist universally and it may also be data specific. But, 
on capturing such association the predictability efforts of 
the water quality parameters can be improved by following 
hybrid modeling frameworks which capture scale-specific 
information (Hu and Si 2013; Liu et al. 2016; Adarsh et al. 
2017; Adarsh and Janga Reddy 2018, 2019) which may sub-
sequently help in the risk assessment of the water quality 
parameters of the study area. As the study area is domi-
nated by the textile industry, the selection and understanding 
characteristics of typical textile factory discharges may give 
more insight into the problem (Yaseen and Scholz 2018), 
provided long and reliable datasets are available to proceed 
with the predictive modeling.
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Conclusion

This study performed the HHT analysis of six important 
water quality parameters from EMangalam monitoring sta-
tion of Noyyal River in Southern India and proposed an 
alternate method for investigating the correlation between 
prominent parameters in multiple time scales. The specific 
conclusions of the study are:

• The HHT analysis is successful in capturing the anthro-
pogenic interventions at the Noyyal River in the form of 
frequent pollutant disposals

• From the HHT-based multiscale correlation analysis, it 
can be concluded that the nature of linear association 
(positive or negative) of different parameters with EC 
varies at different time scales except for total hardness 
(TH)–EC and pH–EC links

• The nature and strength of association among different 
pairwise combinations of water quality parameters vary 
in the different time scales and over the time domain with 
the exception for total hardness–EC link

• In contrary to the well-known DO–temperature and 
DO–BOD relationships, the nature of associations can 
be different at different process scales and at localized 
spells in the time domain; capturing such associations 
may provide better insight into the modeling of these 
parameters in the river systems

• This enhanced understanding of the behavior of mutual 
associations among the water quality parameters of the 
Noyyal River in multiple time scales may finally help us 
in improving the predictability efforts and subsequent 
risk assessment.
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C1(t): First mode obtained by CEEMDAN
υo, υ1, υm: Noise parameters for different steps
Ci(t), Cj(t): ith and jth IMFs
Em(.):  Operator representing development of the mth 

mode by EMD
M: Number of IMFs
n: Index for the number of realizations
N: Number of realizations
Nt: Length of the signal
rm(t): mth residual series
wn(t): nth realization of a white noise series
X(t): Time series signal
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